Skip to main content
Log in

Molecular Imaging of Cardiac Amyloidosis

  • Nuclear Cardiology (V Dilsizian, Section Editor)
  • Published:
Current Cardiology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

The aim of this review is to give an update on the molecular imaging tools currently available as well as to discuss the potential roles and limitations of molecular imaging in cardiac amyloidosis.

Recent Findings

Molecular imaging plays a central role in the evaluation of patients with suspected cardiac amyloidosis. It can be used to diagnose and distinguish between the different types of cardiac amyloidosis. The diagnostic properties of bone scintigraphy are such that it allows reliable diagnosis of transthyretin cardiac amyloidosis without the need of endomyocardial biopsy in a significant proportion of patients. Furthermore, molecular tracers assessing amyloid plaque burden and sympathetic innervation may be useful for the non-invasive evaluation diagnosis and risk stratification of patients with suspected cardiac amyloidosis.

Summary

Cardiac amyloidosis is an under-recognized cause of left ventricular hypertrophy and heart failure in the elderly. The role of molecular imaging in cardiac amyloidosis is expected to grow considering the arrival of new therapies and molecular imaging probes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Maleszewski JJ. Cardiac amyloidosis: pathology, nomenclature, and typing. Cardiovasc Pathol. 2015;24:343–50.

    Article  CAS  Google Scholar 

  2. Fikrle M, Paleček T, Kuchynka P, Němeček E, Bauerová L, Straub J, et al. Cardiac amyloidosis: a comprehensive review. Cor Vasa. 2013;55:e60–75.

    Article  Google Scholar 

  3. Merlini G, Seldin DC, Gertz MA. Amyloidosis: pathogenesis and new therapeutic options. J Clin Oncol. 2011;29:1924–33.

    Article  Google Scholar 

  4. Pereira NL, Grogan M, Dec GW. Spectrum of restrictive and infiltrative cardiomyopathies: part 1 of a 2-part series. J Am Coll Cardiol. 2018;71:1130–48.

    Article  Google Scholar 

  5. Maurer MS, Elliott P, Comenzo R, Semigran M, Rapezzi C. Addressing common questions encountered in the diagnosis and management of cardiac amyloidosis. Circulation. 2017;135:1357–77.

    Article  Google Scholar 

  6. Siddiqi OK, Ruberg FL. Cardiac amyloidosis: an update on pathophysiology, diagnosis, and treatment. Trends Cardiovasc Med. 2018;28:10–21.

    Article  CAS  Google Scholar 

  7. Lobato L. Portuguese-type amyloidosis (transthyretin amyloidosis, ATTR V30M). J Nephrol. 2003;16:438–42.

    CAS  PubMed  Google Scholar 

  8. Gertz MA, Benson MD, Dyck PJ, Grogan M, Coelho T, Cruz M, et al. Diagnosis, prognosis, and therapy of transthyretin amyloidosis. J Am Coll Cardiol. 2015;66:2451–66.

    Article  CAS  Google Scholar 

  9. Merlini G, Bellotti V. Molecular mechanisms of amyloidosis. N Engl J Med. 2003;349:583–96.

    Article  CAS  Google Scholar 

  10. Dharmarajan K, Maurer MS. Transthyretin cardiac amyloidoses in older North Americans. J Am Geriatr Soc. 2012;60:765–74.

    Article  Google Scholar 

  11. Mohammed SF, Mirzoyev SA, Edwards WD, Dogan A, Grogan DR, Dunlay SM, et al. Left ventricular amyloid deposition in patients with heart failure and preserved ejection fraction. JACC Heart Fail. 2014;2:113–22.

    Article  Google Scholar 

  12. Tanskanen M, Peuralinna T, Polvikoski T, Notkola I-L, Sulkava R, Hardy J, et al. Senile systemic amyloidosis affects 25% of the very aged and associates with genetic variation in alpha2-macroglobulin and tau: a population-based autopsy study. Ann Med. 2008;40:232–9.

    Article  CAS  Google Scholar 

  13. Falk RH, Quarta CC, Dorbala S. How to image cardiac amyloidosis. Circ Cardiovasc Imaging. 2014;7:552–62.

    Article  Google Scholar 

  14. Falk RH. Diagnosis and management of the cardiac amyloidoses. Circulation. 2005;112:2047–60.

    Article  Google Scholar 

  15. Falk RH, Quarta CC. Echocardiography in cardiac amyloidosis. Heart Fail Rev. 2015;20:125–31.

    Article  Google Scholar 

  16. Phelan D, Collier P, Thavendiranathan P, Popović ZB, Hanna M, Plana JC, et al. Relative apical sparing of longitudinal strain using two-dimensional speckle-tracking echocardiography is both sensitive and specific for the diagnosis of cardiac amyloidosis. Heart. 2012;98:1442–8.

    Article  Google Scholar 

  17. Syed IS, Glockner JF, Feng D, Araoz PA, Martinez MW, Edwards WD, et al. Role of cardiac magnetic resonance imaging in the detection of cardiac amyloidosis. JACC Cardiovasc Imaging. 2010;3:155–64.

    Article  Google Scholar 

  18. Mongeon F-P, Jerosch-Herold M, Coelho-Filho OR, Blankstein R, Falk RH, Kwong RY. Quantification of extracellular matrix expansion by CMR in infiltrative heart disease. JACC Cardiovasc Imaging. 2012;5:897–907.

    Article  Google Scholar 

  19. Fontana M, Pica S, Reant P, Abdel-Gadir A, Treibel TA, Banypersad SM, et al. Prognostic value of late gadolinium enhancement cardiovascular magnetic resonance in cardiac amyloidosis. Circulation. 2015;132:1570–9.

    Article  CAS  Google Scholar 

  20. Boynton SJ, Geske JB, Dispenzieri A, Syed IS, Hanson TJ, Grogan M, et al. LGE provides incremental prognostic information over serum biomarkers in AL cardiac amyloidosis. JACC Cardiovasc Imaging. 2016;9:680–6.

    Article  Google Scholar 

  21. Austin BA, Tang WHW, Rodriguez ER, Tan C, Flamm SD, Taylor DO, et al. Delayed hyper-enhancement magnetic resonance imaging provides incremental diagnostic and prognostic utility in suspected cardiac amyloidosis. JACC Cardiovasc Imaging. 2009;2:1369–77.

    Article  Google Scholar 

  22. Pawar S, Haq M, Ruberg FL, Miller EJ. Imaging options in cardiac amyloidosis: differentiating AL from ATTR. Curr Cardiovasc Imaging Rep. 2017;10:1.

    Article  Google Scholar 

  23. Wizenberg TA, Muz J, Sohn YH, Samlowski W, Weissler AM. Value of positive myocardial technetium-99m-pyrophosphate scintigraphy in the noninvasive diagnosis of cardiac amyloidosis. Am Heart J. 1982;103:468–73.

    Article  CAS  Google Scholar 

  24. Vallabhajosula S, Owunwanne A. Basis of radiopharmaceutical localization. Pathophysiol Basis Nucl Med [Internet]. Springer, Cham; 2015 [cited 2018 Jun 8]. p. 45–68. Available from: https://link.springer.com/chapter/10.1007/978-3-319-06112-2_3.

  25. Rapezzi C, Quarta CC, Guidalotti PL, Pettinato C, Fanti S, Leone O, et al. Role of (99m)Tc-DPD scintigraphy in diagnosis and prognosis of hereditary transthyretin-related cardiac amyloidosis. JACC Cardiovasc Imaging. 2011;4:659–70.

    Article  Google Scholar 

  26. Rapezzi C, Gagliardi C, Milandri A. Analogies and disparities among scintigraphic bone tracers in the diagnosis of cardiac and non-cardiac ATTR amyloidosis. J Nucl Cardiol. 2018.

  27. Puille M, Altland K, Linke RP, Steen-Müller MK, Kiett R, Steiner D, et al. 99mTc-DPD scintigraphy in transthyretin-related familial amyloidotic polyneuropathy. Eur J Nucl Med Mol Imaging. 2002;29:376–9.

    Article  CAS  Google Scholar 

  28. Rapezzi C, Quarta CC, Guidalotti PL, Longhi S, Pettinato C, Leone O, et al. Usefulness and limitations of 99mTc-3,3-diphosphono-1,2-propanodicarboxylic acid scintigraphy in the aetiological diagnosis of amyloidotic cardiomyopathy. Eur J Nucl Med Mol Imaging. 2011;38:470–8.

    Article  Google Scholar 

  29. Quarta CC, Guidalotti PL, Longhi S, Pettinato C, Leone O, Ferlini A, et al. Defining the diagnosis in echocardiographically suspected senile systemic amyloidosis. JACC Cardiovasc Imaging. 2012;5:755–8.

    Article  Google Scholar 

  30. •• Gillmore JD, Maurer MS, Falk RH, Merlini G, Damy T, Dispenzieri A, et al. Nonbiopsy diagnosis of cardiac transthyretin amyloidosis. Circulation. 2016;133:2404–12 This large multicentric study of 1217 patients proposes and validates a non-invasive algorithm for the investigation of patients with suspected cardiac amyloidosis.

    Article  CAS  Google Scholar 

  31. •• Treglia G, Glaudemans AWJM, Bertagna F, Hazenberg BPC, Erba PA, Giubbini R, et al. Diagnostic accuracy of bone scintigraphy in the assessment of cardiac transthyretin-related amyloidosis: a bivariate meta-analysis. Eur J Nucl Med Mol Imaging. 2018;45(11):1945–55 This meta-analysis reviews the diagnosis accuracy of bone scintigraphy in patient with suspected ATTR cardiac amyloidosis and confirms the high sensitivity and specificity of the modality.

    Article  CAS  Google Scholar 

  32. Bokhari S, Castaño A, Pozniakoff T, Deslisle S, Latif F, Maurer MS. 99mTc-Pyrophosphate scintigraphy for differentiating light-chain cardiac amyloidosis from the transthyretin-related familial and senile cardiac amyloidoses. Clinical perspective. Circ Cardiovasc Imaging. 2013;6:195–201.

    Article  Google Scholar 

  33. Galat A, Rosso J, Guellich A, Van Der Gucht A, Rappeneau S, Bodez D, et al. Usefulness of (99m)Tc-HMDP scintigraphy for the etiologic diagnosis and prognosis of cardiac amyloidosis. Amyloid. 2015;22:210–20.

    Article  CAS  Google Scholar 

  34. Perugini E, Guidalotti PL, Salvi F, Cooke RMT, Pettinato C, Riva L, et al. Noninvasive etiologic diagnosis of cardiac amyloidosis using 99mTc-3,3-diphosphono-1,2-propanodicarboxylic acid scintigraphy. J Am Coll Cardiol. 2005;46:1076–84.

    Article  Google Scholar 

  35. Gagliardi C, Tabacchi E, Bonfiglioli R, Diodato S, Nanni C, Guidalotti P, et al. Does the etiology of cardiac amyloidosis determine the myocardial uptake of [18F]-NaF PET/CT? J Nucl Cardiol. 2017;24:746–9.

    Article  Google Scholar 

  36. Morgenstern R, Yeh R, Castano A, Maurer MS, Bokhari S. 18 Fluorine sodium fluoride positron emission tomography, a potential biomarker of transthyretin cardiac amyloidosis. J Nucl Cardiol. 2017:1–9.

  37. • Trivieri MG, Dweck MR, Abgral R, Robson PM, Karakatsanis NA, Lala A, et al. 18F-sodium fluoride PET/MR for the assessment of cardiac amyloidosis. J Am Coll Cardiol. 2016;68:2712–4 A first prospective study demonstrating the feasibility of NaF imaging to detect cardiac amyloidosis and differentiate between ATTR and AL cardiac amyloidoses.

    Article  CAS  Google Scholar 

  38. Glaudemans AWJM, Slart RHJA, Zeebregts CJ, Veltman NC, Tio RA, Hazenberg BPC, et al. Nuclear imaging in cardiac amyloidosis. Eur J Nucl Med Mol Imaging. 2009;36:702–14.

    Article  CAS  Google Scholar 

  39. •• Bateman RJ, Xiong C, Benzinger TLS, Fagan AM, Goate A, Fox NC, et al. Clinical and biomarker changes in dominantly inherited Alzheimer’s disease. N Engl J Med. 2012;367:795–804.

    Article  CAS  Google Scholar 

  40. • Dorbala S, Vangala D, Semer J, Strader C, Bruyere JR, Carli MFD, et al. Imaging cardiac amyloidosis: a pilot study using 18F-florbetapir positron emission tomography. Eur J Nucl Med Mol Imaging. 2014;41:1652–62 First trial demonstrating increased uptake of amyloid tracer in the heart of patients with cardiac amyloidosis.

    Article  CAS  Google Scholar 

  41. • Lee S-P, Lee ES, Choi H, Im H-J, Koh Y, Lee M-H, et al. 11C-Pittsburgh B PET imaging in cardiac amyloidosis. JACC Cardiovasc Imaging. 2015;8:50–9 A small study showing that 11C-PiB can differentiate between patients with cardiac amyloidosis and controls.

    Article  Google Scholar 

  42. Law WP, Wang WYS, Moore PT, Mollee PN, Ng ACT. Cardiac amyloid imaging with 18F-florbetaben PET: a pilot study. J Nucl Med. 2016;57:1733–9.

    Article  CAS  Google Scholar 

  43. Park M-A, Padera RF, Belanger A, Dubey S, Hwang DH, Veeranna V, Falk RH, di Carli MF, Dorbala S 18F-Florbetapir binds specifically to myocardial light chain and transthyretin amyloid deposits: autoradiography study. Circ Cardiovasc Imaging. 2015;8:e002954

  44. Carrió I, Cowie MR, Yamazaki J, Udelson J, Camici PG. Cardiac sympathetic imaging with mIBG in heart failure. JACC Cardiovasc Imaging. 2010;3:92–100.

    Article  Google Scholar 

  45. Nakata T, Shimamoto K, Yonekura S, Kobayashi N, Sugiyama T, Imai K, et al. Cardiac sympathetic denervation in transthyretin-related familial amyloidotic polyneuropathy: detection with iodine-123-MIBG. J Nucl Med. 1995;36:1040–2.

    CAS  PubMed  Google Scholar 

  46. Delahaye N, Dinanian S, Slama MS, Mzabi H, Samuel D, Adams D, et al. Cardiac sympathetic denervation in familial amyloid polyneuropathy assessed by iodine-123 metaiodobenzylguanidine scintigraphy and heart rate variability. Eur J Nucl Med. 1999;26:416–24.

    Article  CAS  Google Scholar 

  47. Tanaka M, Hongo M, Kinoshita O, Takabayashi Y, Fujii T, Yazaki Y, et al. Iodine-123 metaiodobenzylguanidine scintigraphic assessment of myocardial sympathetic innervation in patients with familial amyloid polyneuropathy. J Am Coll Cardiol. 1997;29:168–74.

    Article  CAS  Google Scholar 

  48. •• Piekarski E, Chequer R, Algalarrondo V, Eliahou L, Mahida B, Vigne J, et al. Cardiac denervation evidenced by MIBG occurs earlier than amyloid deposits detection by diphosphonate scintigraphy in TTR mutation carriers. Eur J Nucl Med Mol Imaging. 2018;45:1108–18 This study demonstrates that in carriers of TTR mutation, sympathetic denervation as demonstrated by decreased MIBG uptake occurs before amyloid accumulation can be detected by increased uptake on bone scan. They concluded that MIBG could allow early detection of cardiac involvement in TTR mutation carriers.

    Article  CAS  Google Scholar 

  49. Algalarrondo V, Antonini T, Théaudin M, Chemla D, Benmalek A, Lacroix C, et al. Cardiac dysautonomia predicts long-term survival in hereditary transthyretin amyloidosis after liver transplantation. JACC Cardiovasc Imaging. 2016;9:1432–41.

    Article  Google Scholar 

  50. Coutinho MCA, Cortez-Dias N, Cantinho G, Conceição I, Oliveira A, Bordalo e Sá A, et al. Reduced myocardial 123-iodine metaiodobenzylguanidine uptake: a prognostic marker in familial amyloid polyneuropathy. Circ Cardiovasc Imaging. 2013;6:627–36.

    Article  Google Scholar 

  51. Algalarrondo V, Piekarski E, Eliahou L, Le Guludec D, Slama MS, Rouzet F. Can nuclear imaging techniques predict patient outcome and guide medical management in hereditary transthyretin cardiac amyloidosis? Curr Cardiol Rep. 2018;20:33.

    Article  Google Scholar 

  52. Slart RHJA, Glaudemans AWJM, Hazenberg BPC, Noordzij W. Imaging cardiac innervation in amyloidosis. J Nucl Cardiol. 2017:1–14.

  53. Lee JH, Lee GY, Kim SJ, Kim KH, Jeon E-S, Lee K-H, et al. Imaging findings and literature review of 18F-FDG PET/CT in primary systemic AL amyloidosis. Nucl Med Mol Imaging. 2015;49:182–90.

    Article  CAS  Google Scholar 

  54. Mekinian A, Jaccard A, Soussan M, Launay D, Berthier S, Federici L, et al. 18F-FDG PET/CT in patients with amyloid light-chain amyloidosis: case-series and literature review. Amyloid. 2012;19:94–8.

    Article  CAS  Google Scholar 

  55. Ng B, Connors LH, Davidoff R, Skinner M, Falk RH. Senile systemic amyloidosis presenting with heart failure: a comparison with light chain-associated amyloidosis. Arch Intern Med. 2005;165:1425–9.

    Article  Google Scholar 

  56. Dungu JN, Valencia O, Pinney JH, Gibbs SDJ, Rowczenio D, Gilbertson JA, et al. CMR-based differentiation of AL and ATTR cardiac amyloidosis. JACC Cardiovasc Imaging. 2014;7:133–42.

    Article  Google Scholar 

  57. Castano A, Haq M, Narotsky DL, Goldsmith J, Weinberg RL, Morgenstern R, et al. Multicenter study of planar technetium 99m pyrophosphate cardiac imaging: predicting survival for patients with ATTR cardiac amyloidosis. JAMA Cardiol. 2016;1:880–9.

    Article  Google Scholar 

  58. Stats MA, Stone JR. Varying levels of small microcalcifications and macrophages in ATTR and AL cardiac amyloidosis: implications for utilizing nuclear medicine studies to subtype amyloidosis. Cardiovasc Pathol. 2016;25:413–7.

    Article  CAS  Google Scholar 

  59. Ansari-Lari MA, Ali SZ. Fine-needle aspiration of abdominal fat pad for amyloid detection: a clinically useful test? Diagn Cytopathol. 2004;30:178–81.

    Article  Google Scholar 

  60. Fine NM, Arruda-Olson AM, Dispenzieri A, Zeldenrust SR, Gertz MA, Kyle RA, et al. Yield of noncardiac biopsy for the diagnosis of transthyretin cardiac amyloidosis. Am J Cardiol. 2014;113:1723–7.

    Article  CAS  Google Scholar 

  61. Holzmann M, Nicko A, Kühl U, Noutsias M, Poller W, Hoffmann W, et al. Complication rate of right ventricular endomyocardial biopsy via the femoral approach: a retrospective and prospective study analyzing 3048 diagnostic procedures over an 11-year period. Circulation. 2008;118:1722–8.

    Article  Google Scholar 

  62. Promislow SJ, Ruddy TD. The evolving landscape of nuclear imaging in cardiac amyloidosis. J Nucl Cardiol 2018;

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthieu Pelletier-Galarneau.

Ethics declarations

Conflict of Interest

Matthieu Pelletier-Galarneau, Gad Abikhzer, Genevieve Giraldeau, and Francois Harel declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Nuclear Cardiology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pelletier-Galarneau, M., Abikhzer, G., Giraldeau, G. et al. Molecular Imaging of Cardiac Amyloidosis. Curr Cardiol Rep 21, 12 (2019). https://doi.org/10.1007/s11886-019-1097-9

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11886-019-1097-9

Keywords

Navigation