Skip to main content

Is Hemispheric Hypoperfusion a Treatable Cause of Cognitive Impairment?

Abstract

Purpose of Review

To review the current literature that supports the notion that cerebral hemodynamic compromise from internal carotid artery stenosis may be a cause of vascular cognitive impairment that is amenable to treatment by revascularization.

Recent Findings

Converging evidence suggests that successful carotid endarterectomy and carotid artery stenting are associated with reversal of cognitive decline in many patients with severe but asymptomatic carotid artery stenosis. Most of these findings have been derived from cohort studies and comparisons with either normal or surgical controls. Failure to find treatment benefit in a number of studies appears to have been the result of patient heterogeneity or confounding from concomitant conditions independently associated with cognitive decline, such as heart failure and other cardiovascular risk factors, or failure to establish pre-procedure hemodynamic failure.

Summary

Patients with severe carotid artery stenosis causing cerebral hemodynamic impairment may have a reversible cause of cognitive decline. None of the prior studies, however, were done in the context of a randomized clinical trial with large numbers of participants. The ongoing CREST-2 trial comparing revascularization with medical therapy versus medical therapy alone, and its associated CREST-H study determining whether cognitive decline is reversible among those with hemodynamic compromise may address this question.

This is a preview of subscription content, access via your institution.

References

Papers of particular interest, published recently, have been highlighted as: •• Of major importance

  1. Gorelick PB, Furie KL, Iadecola C, Smith EE, Waddy SP, Lloyd-Jones DM, et al. Defining optimal brain health in adults: a presidential advisory from the American Heart Association/American Stroke Association. Stroke. 2017;48(10):e284–303. https://doi.org/10.1161/STR.0000000000000148.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Fiocco AJ, Yaffe K. Defining successful aging: the importance of including cognitive function over time. Arch Neurol. 2010;67(7):876–80. https://doi.org/10.1001/archneurol.2010.130.

    Article  PubMed  Google Scholar 

  3. Hurd MD, Martorell P, Langa KM. Monetary costs of dementia in the United States. N Engl J Med. 2013;369(5):489–90. https://doi.org/10.1056/NEJMc1305541.

    Article  PubMed  Google Scholar 

  4. Hugo J, Ganguli M. Dementia and cognitive impairment: epidemiology, diagnosis, and treatment. Clin Geriatr Med. 2014;30(3):421–42. https://doi.org/10.1016/j.cger.2014.04.001.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Santos CY, Snyder PJ, Wu WC, Zhang M, Echeverria A, Alber J. Pathophysiologic relationship between Alzheimer's disease, cerebrovascular disease, and cardiovascular risk: a review and synthesis. Alzheimers Dement (Amst). 2017;7:69–87. https://doi.org/10.1016/j.dadm.2017.01.005.

    Article  Google Scholar 

  6. Marshall RS, Lazar RM. Pumps, aqueducts, and drought management: vascular physiology in vascular cognitive impairment. Stroke. 2011;42(1):221–6. https://doi.org/10.1161/STROKEAHA.110.595645.

    Article  PubMed  Google Scholar 

  7. de Weerd M, Greving JP, Hedblad B, Lorenz MW, Mathiesen EB, O'Leary DH, et al. Prevalence of asymptomatic carotid artery stenosis in the general population: an individual participant data meta-analysis. Stroke. 2010;41(6):1294–7. https://doi.org/10.1161/STROKEAHA.110.581058.

    Article  PubMed  PubMed Central  Google Scholar 

  8. O’Leary DH, Polak JF, Kronmal RA, Kittner SJ, Bond MG, Wolfson SK, et al. Distribution and correlates of sonographically detected carotid artery disease in the Cardiovascular Health Study. The CHS Collaborative Research Group. Stroke. 1992;23:1752–60.

    Article  Google Scholar 

  9. Goessens BM, Visseren FL, Kappelle LJ, Algra A, van der Graaf Y. Asymptomatic carotid artery stenosis and the risk of new vascular events in patients with manifest arterial disease: the SMART study. Stroke. 2007;38(5):1470–5. https://doi.org/10.1161/STROKEAHA.106.477091.

    Article  PubMed  Google Scholar 

  10. Savji N, Rockman CB, Skolnick AH, Guo Y, Adelman MA, Riles T, et al. Association between advanced age and vascular disease in different arterial territories: a population database of over 3.6 million subjects. J Am Coll Cardiol. 2013;61(16):1736–43. https://doi.org/10.1016/j.jacc.2013.01.054.

    Article  PubMed  Google Scholar 

  11. de Weerd M, Greving JP, Hedblad B, Lorenz MW, Mathiesen EB, O'Leary DH, et al. Prediction of asymptomatic carotid artery stenosis in the general population: identification of high-risk groups. Stroke. 2014;45(8):2366–71. https://doi.org/10.1161/STROKEAHA.114.005145.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Fine-Edelstein JS, Wolf PA, O’Leary DH, Poehlman H, Belanger AJ, Kase CS, et al. Precursors of extracranial carotid atherosclerosis in the Framingham study. Neurology. 1994;44(6):1046–50.

    CAS  Article  Google Scholar 

  13. Berry JD, Dyer A, Cai X, Garside DB, Ning H, Thomas A, et al. Lifetime risks of cardiovascular disease. N Engl J Med. 2012;366:321–9.

    CAS  Article  Google Scholar 

  14. Alosco ML, Gunstad J, Xu X, Clark US, Labbe DR, Riskin-Jones HH, et al. The impact of hypertension on cerebral perfusion and cortical thickness in older adults. J Am Soc Hypertens. 2014;8(8):561–70. https://doi.org/10.1016/j.jash.2014.04.002.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Wennberg AM, Spira AP, Pettigrew C, Soldan A, Zipunnikov V, Rebok GW, et al. Blood glucose levels and cortical thinning in cognitively normal, middle-aged adults. J Neurol Sci. 2016;365:89–95. https://doi.org/10.1016/j.jns.2016.04.017.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  16. Tchistiakova E, Anderson ND, Greenwood CE, MacIntosh BJ. Combined effects of type 2 diabetes and hypertension associated with cortical thinning and impaired cerebrovascular reactivity relative to hypertension alone in older adults. Neuroimage Clin. 2014;5:36–41. https://doi.org/10.1016/j.nicl.2014.05.020.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Kumar R, Yadav SK, Palomares JA, Park B, Joshi SH, Ogren JA, et al. Reduced regional brain cortical thickness in patients with heart failure. PLoS One. 2015;10(5):e0126595. https://doi.org/10.1371/journal.pone.0126595.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  18. •• Marshall RS, Asllani I, Pavol MA, Cheung YK, Lazar RM. Altered cerebral hemodyamics and cortical thinning in asymptomatic carotid artery stenosis. PLoS One. 2017;12(12):e0189727. https://doi.org/10.1371/journal.pone.0189727 This study demonstrates that cerebral hemodynamic compromise in the setting of asymptomatic carotid occlusion is associated with cortical thinning as measured by MRI arterial spin labeling. These findings provide important anatomical support for the notion that altered blood flow can alter brain structure that could potentially affect cognitive function.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  19. Johnston SC, O’Meara ES, Manolio TA, Lefkowitz D, O’Leary DH, Goldstein S, et al. Cognitive impairment and decline are associated with carotid artery disease in patients without clinically evident cerebrovascular disease. Ann Intern Med. 2004;140:237–47.

    Article  Google Scholar 

  20. Bor-Seng-Shu E, Kita WS, Figueiredo EG, Paiva WS, Fonoff ET, Teixeira MJ, et al. Cerebral hemodynamics- concepts of clinical importance. Arq Neuropsiquiatr. 2012;70(5):357–65.

    Article  Google Scholar 

  21. De la Torre JC. Critically attained threshold of cerebral hypoperfusion: can it cause Alzheimer’s disease? Ann N Y Acad Sci. 2006.

  22. Cechetti F, Pagnussat AS, Worm PV, Elsner VR, Ben J, da Costa MS, et al. Chronic brain hypoperfusion causes early glial activation and neuronal death, and subsequent long-term memory impairment. Brain Res Bull. 2012;87(1):109–16. https://doi.org/10.1016/j.brainresbull.2011.10.006.

    CAS  Article  PubMed  Google Scholar 

  23. Fisher M. Senile dementia–a new explanation of its causation. Can Med Assoc J. 1951;65(1):1–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Bakker FC, Klijn CJM, Jennekens-Schinkel A, Kappelle LJ. Cognitive disorders in patients with occlusive disease of the carotid artery- a systematic review of the literature. J Neurol. 2000;247:669–76.

    CAS  Article  Google Scholar 

  25. Mathiesen EB, Waterloo K, Joakimsen O, Bakker SJ, Jacobsen EA, BØnaa KH. Reduced neuropsychological test performance in asymptomatic carotid stenosis: the Tromsø Study. Neurology. 2004;62(5):695–701. https://doi.org/10.1212/01.WNL.0000113759.80877.1F.

    CAS  Article  PubMed  Google Scholar 

  26. Romero JR, Beiser A, Seshadri S, Benjamin EJ, Polak JF, Vasan RS, et al. Carotid artery atherosclerosis, MRI indices of brain ischemia, aging, and cognitive impairment: the Framingham study. Stroke. 2009;40(5):1590–6. https://doi.org/10.1161/STROKEAHA.108.535245.

    Article  PubMed  PubMed Central  Google Scholar 

  27. •• Lal BK, Dux MC, Sikdar S, Goldstein C, Khan AA, Yokemick J, et al. Asymptomatic carotid stenosis is associated with cognitive impairment. J Vasc Surg. 2017;66(4):1083–92. https://doi.org/10.1016/j.jvs.2017.04.038 An excellent cross-sectional study of patients with asymptomatic carotid stenosis, half of whom had impaired vasomotor reactivity on transcranial Doppler. Nearly half of all patients were impaired in at least two domains of cogntiive function. Importantly, those with impaired cerebral hemodynamics had a worse overall cognitive scores and in learning/memory.

    Article  PubMed  Google Scholar 

  28. Balestrini S, Perozzi C, Altamura C, Vernieri F, Luzzi S, Bartolini M, et al. Severe carotid stenosis and impaired cerebral hemodynamics can influence cognitive deterioration. Neurology. 2013;80(23):2145–50. https://doi.org/10.1212/WNL.0b013e318295d71a.

    Article  PubMed  Google Scholar 

  29. Buratti L, Balucani C, Viticchi G, Falsetti L, Altamura C, Avitabile E, et al. Cognitive deterioration in bilateral asymptomatic severe carotid stenosis. Stroke. 2014;45(7):2072–7. https://doi.org/10.1161/STROKEAHA.114.005645.

    Article  PubMed  Google Scholar 

  30. Pressler SJ, Subramanian U, Kareken D, Perkins SM, Gradus-Pizlo I, Sauve MJ, et al. Cognitive deficits in chronic heart failure. Nurs Res. 2011;59(2):127–39. https://doi.org/10.1097/NNR.0b013e3181d1a747.

    Article  Google Scholar 

  31. Farina E, Magni E, Ambrosini F, Manfredini R, Binda A, Sina C, et al. Neuropsychological deficits in asymptomatic atrial fibrillation. Acta Neurol Scand. 1997;96(5):310–6.

    CAS  Article  Google Scholar 

  32. Yew B, Nation DA. Cerebrovascular resistance: effects on cognitive decline, cortical atrophy, and progression to dementia. Brain. 2017;140(7):1987–2001. https://doi.org/10.1093/brain/awx112.

    Article  PubMed  PubMed Central  Google Scholar 

  33. O'Brien JT, Erkinjuntti T, Reisberg B, Roman G, Sawada T, Pantoni L, et al. Vascular cognitive impairment. Lancet Neurol. 2003;2(2):89–98. https://doi.org/10.1016/s1474-4422(03)00305-3.

    Article  PubMed  Google Scholar 

  34. Chmayssani M, Festa JR, Marshall RS. Chronic ischemia and neurocognition. Neuroimaging Clin N Am. 2007;17(3):313–24, viii. https://doi.org/10.1016/j.nic.2007.03.002.

    Article  PubMed  Google Scholar 

  35. Wendell CR, Waldstein SR, Ferrucci L, O'Brien RJ, Strait JB, Zonderman AB. Carotid atherosclerosis and prospective risk of dementia. Stroke. 2012;43(12):3319–24. https://doi.org/10.1161/STROKEAHA.112.672527.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Chen WH, Jin W, Lyu PY, Liu Y, Li R, Hu M, et al. Carotid atherosclerosis and cognitive impairment in nonstroke patients. Chin Med J. 2017;130(19):2375–9. https://doi.org/10.4103/0366-6999.215331.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Yamauchi H, Fukuyama H, Nagahama Y, Katsumi Y, Dong Y, Konishi J, et al. Atrophy of the corpus callosum associated with cognitive impairment and widespread cortical hypometabolism in carotid artery occlusive disease. Arch Neurol. 1996;53(11):1103–9.

    CAS  Article  Google Scholar 

  38. Hossmann KA. Viability thresholds and the penumbra of focal ischemia. Am Neurol Assoc. 1994;36(4):557–65. https://doi.org/10.1002/ana.410360404.

    CAS  Article  Google Scholar 

  39. Farkas E, Luiten PGM. Cerebral microvascular pathology in aging and Alzheimer's disease. Prog Neurobiol. 2001;64(6):575–611.

    CAS  Article  Google Scholar 

  40. Marshall RS, Festa JR, Cheung YK, Chen R, Pavol MA, Derdeyn CP, et al. Cerebral hemodynamics and cognitive impairment. Neurology. 2012;78(4):250–5. https://doi.org/10.1212/WNL.0b013e31824365d3.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  41. Haratz S, Weinstein G, Molshazki N, Beeri MS, Ravona-Springer R, Marzeliak O, et al. Impaired cerebral hemodynamics and cognitive performance in patients with atherothrombotic disease. J Alzheimer's Dis: JAD. 2015;46(1):137–44. https://doi.org/10.3233/JAD-150052.

    Article  Google Scholar 

  42. Silvestrini M, Paolino I, Vernieri F, Pedone C, Baruffaldi R, Gobbi B, et al. Cerebral hemodynamics and cognitive performance in patients with asymptomatic carotid stenosis. Neurology. 2009;72(12):1062–8. https://doi.org/10.1212/01.wnl.0000345015.35520.52.

    CAS  Article  PubMed  Google Scholar 

  43. Ruitenberg A, den Heijer T, Bakker SL, van Swieten JC, Koudstaal PJ, Hofman A, et al. Cerebral hypoperfusion and clinical onset of dementia: the Rotterdam study. Ann Neurol. 2005;57(6):789–94. https://doi.org/10.1002/ana.20493.

    Article  PubMed  Google Scholar 

  44. Fearn SJ, Hutchinson S, Riding G, Hill-Wilson G, Wesnes K, McCollum CN. Carotid endarterectomy improves cognitive function in patients with exhausted cerebrovascular reserve. Eur J Vasc Endovasc Surg. 2003;26(5):529–36. https://doi.org/10.1016/s1078-5884(03)00384-8.

    CAS  Article  PubMed  Google Scholar 

  45. Irvine CD, Gardner FV, Davies AH, Lamont PM. Cognitive testing in patients undergoing carotid endarterectomy. Eur J Vasc Endovasc Surg. 1998;15:195–204. https://doi.org/10.1016/S1078-5884(98)80176-7.

    CAS  Article  PubMed  Google Scholar 

  46. Lehrner J, Willfort A, Mlekusch I, Guttmann G, Minar E, Ahmadi R, et al. Neuropsychological outcome 6 months after unilateral carotid stenting. J Clin Exp Neuropsychol. 2005;27(7):859–66. https://doi.org/10.1080/13803390490919083.

    CAS  Article  PubMed  Google Scholar 

  47. Lunn S, Crawley F, Harrisson MJG, Brown MM, Newman SP. Impact of carotid endarterectomy upon cognitive functioning. A systematic review of the literature. Cerebrovasc Dis. 1999;9(2):74–81. https://doi.org/10.1159/000015901.

    CAS  Article  PubMed  Google Scholar 

  48. De Rango P, Caso V, Leys D, Paciaroni M, Lenti M, Cao P. The role of carotid artery stenting and carotid endarterectomy in cognitive performance: a systematic review. Stroke. 2008;39(11):3116–27. https://doi.org/10.1161/STROKEAHA.108.518357.

    Article  PubMed  Google Scholar 

  49. Antonopoulos CN, Kakisis JD, Sfyroeras GS, Moulakakis KG, Kallinis A, Giannakopoulos T, et al. The impact of carotid artery stenting on cognitive function in patients with extracranial carotid artery stenosis. Ann Vasc Surg. 2015;29(3):457–69. https://doi.org/10.1016/j.avsg.2014.10.024.

    Article  PubMed  Google Scholar 

  50. Wasser K, Hildebrandt H, Groschel S, Stojanovic T, Schmidt H, Groschel K, et al. Age-dependent effects of carotid endarterectomy or stenting on cognitive performance. J Neurol. 2012;259(11):2309–18. https://doi.org/10.1007/s00415-012-6491-9.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Mocco J, Wilson DA, Komotar RJ, Zurica J, Mack WJ, Halazun HJ, et al. Predictors of neurocognitive decline after carotid endarterectomy. Neurosurgery. 2006;58(5):844–50; discussion-50. https://doi.org/10.1227/01.NEU.0000209638.62401.7E.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  52. De la Torre JC, Fortin T, Park GA, Pappas BA, Richard MT. Brain blood flow restoration 'rescues' chronically damaged rat CA1 neurons. Brain Res. 1993;623:6–15. https://doi.org/10.1016/0006-8993(93)90003-6.

    Article  PubMed  Google Scholar 

  53. Bossema ER, Brand N, Moll FL, Ackerstaff RG, van Doornen LJ. Does carotid endarterectomy improve cognitive functioning? J Vasc Surg. 2005;41(5):775–81; discussion 81. https://doi.org/10.1016/j.jvs.2004.12.057.

    Article  PubMed  Google Scholar 

  54. Ogasawara K, Yamadate K, Kobayashi M, Endo H, Fukuda T, Yoshida K, et al. Postoperative cerebral hyperperfusion associated with impaired cognitive function in patients undergoing carotid endarterectomy. J Neurosurg. 2005;102:38–44. https://doi.org/10.3171/jns.2005.102.1.0038.

    Article  PubMed  Google Scholar 

  55. Bernstein M, Fleming JF, Deck JH. Cerebral hyperperfusion after carotid endarterectomy: a cause of cerebral hemorrhage. Neurosurgery. 1984;15(1):50–6.

    CAS  Article  Google Scholar 

  56. Borroni B, Tiberio G, Bonardelli S, Cottini E, Facheris M, Akkawi N, et al. Is mild vascular cognitive impairment reversible? Evidence from a study on the effect of carotid endarterectomy. Neurol Res. 2004;26(5):594–7. https://doi.org/10.1179/016164104225016245.

    Article  PubMed  Google Scholar 

  57. Tiemann L, Reidt JH, Esposito L, Sander D, Theiss W, Poppert H. Neuropsychological sequelae of carotid angioplasty with stent placement: correlation with ischemic lesions in diffusion weighted imaging. PLoS One. 2009;4(9):e7001. https://doi.org/10.1371/journal.pone.0007001.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  58. Feliziani FT, Polidori MC, De Rango P, Mangialasche F, Monastero R, Ercolani S, et al. Cognitive performance in elderly patients undergoing carotid endarterectomy or carotid artery stenting: a twelve-month follow-up study. Cerebrovasc Dis. 2010;30(3):244–51. https://doi.org/10.1159/000319066.

    CAS  Article  PubMed  Google Scholar 

  59. Grunwald IQ, Papanagiotou P, Reith W, Backens M, Supprian T, Politi M, et al. Influence of carotid artery stenting on cognitive function. Neuroradiology. 2010;52(1):61–6. https://doi.org/10.1007/s00234-009-0618-4.

    Article  PubMed  Google Scholar 

  60. Lal BK, Younes M, Cruz G, Kapadia I, Jamil Z, Pappas PJ. Cognitive changes after surgery vs stenting for carotid artery stenosis. J Vasc Surg. 2011;54(3):691–8. https://doi.org/10.1016/j.jvs.2011.03.253.

    Article  PubMed  Google Scholar 

  61. Baracchini C, Mazzalai F, Gruppo M, Lorenzetti R, Ermani M, Ballotta E. Carotid endarterectomy protects elderly patients from cognitive decline: a prospective study. Surgery. 2012;151(1):99–106. https://doi.org/10.1016/j.surg.2011.06.031.

    Article  PubMed  Google Scholar 

  62. Picchetto L, Spalletta G, Casolla B, Cacciari C, Cavallari M, Fantozzi C, et al. Cognitive performance following carotid endarterectomy or stenting in asymptomatic patients with severe ICA stenosis. Cardiovasc Psychiatry Neurol. 2013;2013:342571–6. https://doi.org/10.1155/2013/342571.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Ortega G, Alvarez B, Quintana M, Yugueros X, Alvarez-Sabin J, Matas M. Asymptomatic carotid stenosis and cognitive improvement using transcervical stenting with protective flow reversal technique. Eur J Vasc Endovasc Surg. 2014;47(6):585–92. https://doi.org/10.1016/j.ejvs.2014.02.022.

    CAS  Article  PubMed  Google Scholar 

  64. Kougias P, Collins R, Pastorek N, Sharath S, Barshes NR, McCulloch K, et al. Comparison of domain-specific cognitive function after carotid endarterectomy and stenting. J Vasc Surg. 2015;62(2):355–61. https://doi.org/10.1016/j.jvs.2015.02.057.

    Article  PubMed  Google Scholar 

  65. Ainslie PN, Cotter JD, George KP, Lucas S, Murrell C, Shave R, et al. Elevation in cerebral blood flow velocity with aerobic fitness throughout healthy human ageing. J Physiol. 2008;586(16):4005–10. https://doi.org/10.1113/jphysiol.2008.158279.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  66. Colcombe SJ, Erickson KI, Scalf PE, Kim JS, Prakash R, McAuley E, et al. Aerobic exercise training increases brain volume in aging humans. J Gerontol. 2006;61A(11):1166–70.

    Article  Google Scholar 

  67. Erickson KI, Voss MW, Prakash RS, Basak C, Szabo A, Chaddock L, et al. Exercise training increases size of hippocampus and improves memory. Proc Natl Acad Sci U S A. 2011;108(7):3017–22. https://doi.org/10.1073/pnas.1015950108.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Chen YH, Lin MS, Lee JK, Chao CL, Tang SC, Chao CC, et al. Carotid stenting improves cognitive function in asymptomatic cerebral ischemia. Int J Cardiol. 2012;157(1):104–7. https://doi.org/10.1016/j.ijcard.2011.10.086.

    Article  PubMed  Google Scholar 

  69. Howard VJ, Meschia JF, Lal BK, Turan TN, Roubin GS, Brown RD Jr, et al. Carotid revascularization and medical management for asymptomatic carotid stenosis: protocol of the CREST-2 clinical trials. Int J Stroke. 2017;12(7):770–8. https://doi.org/10.1177/1747493017706238.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Marshall RS, Lazar RM, Liebeskind DS, Connolly ES, Howard G, Lal BK, et al. Carotid revascularization and medical management for asymptomatic carotid stenosis – hemodynamics (CREST-H): study design and rationale. Int J Stroke. 2018, in press;13:985–91.

    Article  Google Scholar 

  71. Sivilia S, Giuliani A, Del Vecchio G, Giardino L, Calza L. Age-dependent impairment of hippocampal neurogenesis in chronic cerebral hypoperfusion. Neuropathol Appl Neurobiol. 2008;34(1):52–61. https://doi.org/10.1111/j.1365-2990.2007.00863.x.

    CAS  Article  PubMed  Google Scholar 

Download references

Funding

This manuscript was funded in part by NIGMS 5T32 GM109780-4 (AMN), NINDS R01 NS097876 (RML, RSM, DSL), U01 NS080168 (TGB, JFM, BKL, RML), and U01 NS080165 (GH,VH). Additional support comes from NIH StrokeNet U01 NS06872 (RSM) and NIH StrokeNet U24NS107223 (RML).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronald M. Lazar.

Ethics declarations

Conflict of Interest

Amani M. Norling, Randolph S. Marshall, Marykay A. Pavol, George Howard, Virginia Howard, John Huston, III, Brajesh K. Lal, Thomas G. Brott, and Ronald M. Lazar declare that they have no conflict of interest.

David Liebeskind reports being a consultant as Imaging Core Lab for Stryker and Medtronic.

Human and Animal Rights and Informed Consent

This article does not contain any studies with animal subjects performed by any of the authors. All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Stroke

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Norling, A.M., Marshall, R.S., Pavol, M.A. et al. Is Hemispheric Hypoperfusion a Treatable Cause of Cognitive Impairment?. Curr Cardiol Rep 21, 4 (2019). https://doi.org/10.1007/s11886-019-1089-9

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11886-019-1089-9

Keywords

  • Severe carotid artery stenosis
  • Revascularization
  • Carotid endarterectomy
  • Carotid artery stenting
  • Cerebral hemodynamic impairment
  • Cognition