Advertisement

Biomarker Discovery in Cardio-Oncology

  • Anita Vohra
  • Aarti Asnani
Cardio-Oncology (SA Francis and RB Morgan, Section Editors)
Part of the following topical collections:
  1. Topical Collection on Cardio-Oncology

Abstract

Purpose of Review

In this article, we review current and emerging approaches to biomarker discovery to facilitate early diagnosis of cancer therapy-associated cardiovascular toxicity.

Recent Findings

Although small studies have demonstrated an association between established biomarkers of cardiac injury (troponins and brain natriuretic peptide) and acute or subacute cardiotoxicity, there is insufficient evidence to support their use in routine clinical care. Preclinical studies to define the molecular mechanisms of cardiotoxicity, as well as the use of unbiased “omics” techniques in small patient cohorts, have yielded promising candidate biomarkers that have the potential to enrich current risk stratification algorithms.

Summary

New biomarkers of cardiotoxicity have the potential to improve patient outcomes in cardio-oncology. Further studies are needed to assess the clinical relevance of molecular mechanisms described in animal models. Similarly, findings from “omics” platforms require validation in large patient cohorts before they can be incorporated into everyday practice.

Keywords

Biomarker Cardiotoxicity Cardio-oncology Genomics Proteomics Metabolomics 

Notes

Compliance with Ethical Standards

Conflict of Interest

Anita Vohra declares that she has no conflict of interest.

Aarti Asnani reports a pending patent on Tricyclic Compounds as CYP1 Inhibitors.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by the author.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Cardinale D, Colombo A, Bacchiani G, Tedeschi I, Meroni CA, Veglia F, et al. Early detection of anthracycline cardiotoxicity and improvement with heart failure therapy. Circulation. 2015;131(22):1981–8.CrossRefPubMedGoogle Scholar
  2. 2.
    Octavia Y, Tocchetti CG, Gabrielson KL, Janssens S, Crijns HJ, Moens AL. Doxorubicin-induced cardiomyopathy: from molecular mechanisms to therapeutic strategies. J Mol Cell Cardiol. 2012;52(6):1213–25.CrossRefPubMedGoogle Scholar
  3. 3.
    Johri AM, Picard MH, Newell J, Marshall JE, King ME, Hung J. Can a teaching intervention reduce interobserver variability in LVEF assessment: a quality control exercise in the echocardiography lab. JACC Cardiovasc Imaging. 2011;4(8):821–9.CrossRefPubMedGoogle Scholar
  4. 4.
    Thavendiranathan P, Popovic ZB, Flamm SD, Dahiya A, Grimm RA, Marwick TH. Improved interobserver variability and accuracy of echocardiographic visual left ventricular ejection fraction assessment through a self-directed learning program using cardiac magnetic resonance images. J Am Soc Echocardiogr. 2013;26(11):1267–73.CrossRefPubMedGoogle Scholar
  5. 5.
    Thavendiranathan P, Poulin F, Lim KD, Plana JC, Woo A, Marwick TH. Use of myocardial strain imaging by echocardiography for the early detection of cardiotoxicity in patients during and after cancer chemotherapy: a systematic review. J Am Coll Cardiol. 2014;63(25 Pt A):2751–68.CrossRefPubMedGoogle Scholar
  6. 6.
    Khouri MG, Ky B, Dunn G, Plappert T, Englefield V, Rabineau D, et al. Echocardiography Core Laboratory Reproducibility of Cardiac Safety Assessments in Cardio-Oncology. J Am Soc Echocardiogr. 2018;31(3):361–371.e3.CrossRefPubMedGoogle Scholar
  7. 7.
    Hamm CW, Goldmann BU, Heeschen C, Kreymann G, Berger J, Meinertz T. Emergency room triage of patients with acute chest pain by means of rapid testing for cardiac troponin T or troponin I. N Engl J Med. 1997;337(23):1648–53.CrossRefPubMedGoogle Scholar
  8. 8.
    Shave R, Baggish A, George K, Wood M, Scharhag J, Whyte G, et al. Exercise-induced cardiac troponin elevation: evidence, mechanisms, and implications. J Am Coll Cardiol. 2010;56(3):169–76.CrossRefPubMedGoogle Scholar
  9. 9.
    Weil BR, Young RF, Shen X, Suzuki G, Qu J, Malhotra S, et al. Brief myocardial ischemia produces cardiac troponin I release and focal myocyte apoptosis in the absence of pathological infarction in swine. JACC Basic Transl Sci. 2017;2(2):105–14.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Omland T, de Lemos JA, Sabatine MS, Christophi CA, Rice MM, Jablonski KA, et al. A sensitive cardiac troponin T assay in stable coronary artery disease. N Engl J Med. 2009;361(26):2538–47.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Cardinale D, Sandri MT, Martinoni A, Tricca A, Civelli M, Lamantia G, et al. Left ventricular dysfunction predicted by early troponin I release after high-dose chemotherapy. J Am Coll Cardiol. 2000;36(2):517–22.CrossRefPubMedGoogle Scholar
  12. 12.•
    Cardinale D, Sandri MT, Colombo A, Colombo N, Boeri M, Lamantia G, et al. Prognostic value of troponin I in cardiac risk stratification of cancer patients undergoing high-dose chemotherapy. Circulation. 2004;109(22):2749–54. This study of over 700 patients treated with high-dose chemotherapy demonstrated that elevated troponin levels were associated with subsequent LV dysfunction. CrossRefPubMedGoogle Scholar
  13. 13.
    Cardinale D, Colombo A, Torrisi R, Sandri MT, Civelli M, Salvatici M, et al. Trastuzumab-induced cardiotoxicity: clinical and prognostic implications of troponin I evaluation. J Clin Oncol: off J Am Soc Clin Oncol. 2010;28(25):3910–6.CrossRefGoogle Scholar
  14. 14.
    Cardinale D, Colombo A, Sandri MT, Lamantia G, Colombo N, Civelli M, et al. Prevention of high-dose chemotherapy-induced cardiotoxicity in high-risk patients by angiotensin-converting enzyme inhibition. Circulation. 2006;114(23):2474–81.CrossRefPubMedGoogle Scholar
  15. 15.
    Romano S, Fratini S, Ricevuto E, Procaccini V, Stifano G, Mancini M, et al. Serial measurements of NT-proBNP are predictive of not-high-dose anthracycline cardiotoxicity in breast cancer patients. Br J Cancer. 2011;105(11):1663–8.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Lenihan DJ, Stevens PL, Massey M, Plana JC, Araujo DM, Fanale MA, et al. The utility of point-of-care biomarkers to detect cardiotoxicity during anthracycline chemotherapy: a feasibility study. J Card Fail. 2016;22(6):433–8.CrossRefPubMedGoogle Scholar
  17. 17.
    Kilickap S, Barista I, Akgul E, Aytemir K, Aksoyek S, Aksoy S, et al. cTnT can be a useful marker for early detection of anthracycline cardiotoxicity. Ann Oncol. 2005;16(5):798–804.CrossRefPubMedGoogle Scholar
  18. 18.
    Lipshultz SE, Miller TL, Scully RE, Lipsitz SR, Rifai N, Silverman LB, et al. Changes in cardiac biomarkers during doxorubicin treatment of pediatric patients with high-risk acute lymphoblastic leukemia: associations with long-term echocardiographic outcomes. J Clin Oncol: Off J Am Soc Clin Oncol. 2012;30(10):1042–9.CrossRefGoogle Scholar
  19. 19.
    Pourier MS, Kapusta L, van Gennip A, Bokkerink JP, Loonen J, Bellersen L, et al. Values of high sensitive troponin T in long-term survivors of childhood cancer treated with anthracyclines. Clin Chim Acta; Int J Clin Chem. 2015;441:29–32.CrossRefGoogle Scholar
  20. 20.
    Ylanen K, Poutanen T, Savukoski T, Eerola A, Vettenranta K. Cardiac biomarkers indicate a need for sensitive cardiac imaging among long-term childhood cancer survivors exposed to anthracyclines. Acta Paediatr. 2015;104(3):313–9.CrossRefPubMedGoogle Scholar
  21. 21.
    Skytta T, Tuohinen S, Boman E, Virtanen V, Raatikainen P, Kellokumpu-Lehtinen PL. Troponin T-release associates with cardiac radiation doses during adjuvant left-sided breast cancer radiotherapy. Radiat Oncol. 2015;10:141.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Johnson DB, Balko JM, Compton ML, Chalkias S, Gorham J, Xu Y, et al. Fulminant myocarditis with cImmune checkpoint blockade. N Engl J Med. 2016;375(18):1749–55.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Escudier M, Cautela J, Malissen N, Ancedy Y, Orabona M, Pinto J, et al. Clinical features, management, and outcomes of immune checkpoint inhibitor-related cardiotoxicity. Circulation. 2017;136(21):2085–7.CrossRefPubMedGoogle Scholar
  24. 24.
    Pavo N, Raderer M, Hulsmann M, Neuhold S, Adlbrecht C, Strunk G, et al. Cardiovascular biomarkers in patients with cancer and their association with all-cause mortality. Heart. 2015;101(23):1874–80.CrossRefPubMedGoogle Scholar
  25. 25.
    Sandri MT, Salvatici M, Cardinale D, Zorzino L, Passerini R, Lentati P, et al. N-terminal pro-B-type natriuretic peptide after high-dose chemotherapy: a marker predictive of cardiac dysfunction? Clin Chem. 2005;51(8):1405–10.CrossRefPubMedGoogle Scholar
  26. 26.
    Gimeno E, Gomez M, Gonzalez JR, Comin J, Alvarez-Larran A, Sanchez-Gonzalez B, et al. NT-proBNP: a cardiac biomarker to assess prognosis in non-Hodgkin lymphoma. Leuk Res. 2011;35(6):715–20.CrossRefPubMedGoogle Scholar
  27. 27.
    D'Errico MP, Grimaldi L, Petruzzelli MF, Gianicolo EA, Tramacere F, Monetti A, et al. N-terminal pro-B-type natriuretic peptide plasma levels as a potential biomarker for cardiac damage after radiotherapy in patients with left-sided breast cancer. Int J Radiat Oncol Biol Phys. 2012;82(2):e239–46.CrossRefPubMedGoogle Scholar
  28. 28.
    Sawaya H, Sebag IA, Plana JC, Januzzi JL, Ky B, Tan TC, et al. Assessment of echocardiography and biomarkers for the extended prediction of cardiotoxicity in patients treated with anthracyclines, taxanes, and trastuzumab. Circ Cardiovasc Imaging. 2012;5(5):596–603.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Morris PG, Chen C, Steingart R, Fleisher M, Lin N, Moy B, et al. Troponin I and C-reactive protein are commonly detected in patients with breast cancer treated with dose-dense chemotherapy incorporating trastuzumab and lapatinib. Clin Cancer Res: Off J Am Assoc Cancer Res. 2011;17(10):3490–9.CrossRefGoogle Scholar
  30. 30.
    Davila ML, Riviere I, Wang X, Bartido S, Park J, Curran K, et al. Efficacy and toxicity management of 19-28z CAR T cell therapy in B cell acute lymphoblastic leukemia. Sci Transl Med. 2014;6(224):224ra25.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Lee DW, Gardner R, Porter DL, Louis CU, Ahmed N, Jensen M, et al. Current concepts in the diagnosis and management of cytokine release syndrome. Blood. 2014;124(2):188–95.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.••
    Ky B, Putt M, Sawaya H, French B, Januzzi JL Jr, Sebag IA, et al. Early increases in multiple biomarkers predict subsequent cardiotoxicity in patients with breast cancer treated with doxorubicin, taxanes, and trastuzumab. J Am Coll Cardiol. 2014;63(8):809–16. This study in breast cancer patients treated with anthracyclines and trastuzumab assessed the utility of a multimarker approach in predicting subsequent cardiotoxicity. CrossRefPubMedGoogle Scholar
  33. 33.
    Putt M, Hahn VS, Januzzi JL, Sawaya H, Sebag IA, Plana JC, et al. Longitudinal changes in multiple biomarkers are associated with cardiotoxicity in breast cancer patients treated with doxorubicin, taxanes, and trastuzumab. Clin Chem. 2015;61(9):1164–72.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Myers C. The role of iron in doxorubicin-induced cardiomyopathy. Semin Oncol. 1998;25(4 Suppl 10):10–4.PubMedGoogle Scholar
  35. 35.
    Hampton MB, Kettle AJ, Winterbourn CC. Inside the neutrophil phagosome: oxidants, myeloperoxidase, and bacterial killing. Blood. 1998;92(9):3007–17.PubMedGoogle Scholar
  36. 36.
    Kempf T, Eden M, Strelau J, Naguib M, Willenbockel C, Tongers J, et al. The transforming growth factor-beta superfamily member growth-differentiation factor-15 protects the heart from ischemia/reperfusion injury. Circ Res. 2006;98(3):351–60.CrossRefPubMedGoogle Scholar
  37. 37.
    Mukhopadhyay P, Rajesh M, Batkai S, Kashiwaya Y, Hasko G, Liaudet L, et al. Role of superoxide, nitric oxide, and peroxynitrite in doxorubicin-induced cell death in vivo and in vitro. Am J Physiol Heart Circ Physiol. 2009;296(5):H1466–83.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Duquaine D, Hirsch GA, Chakrabarti A, Han Z, Kehrer C, Brook R, et al. Rapid-onset endothelial dysfunction with adriamycin: evidence for a dysfunctional nitric oxide synthase. Vasc Med. 2003;8(2):101–7.CrossRefPubMedGoogle Scholar
  39. 39.
    Finkelman BS, Putt M, Wang T, Wang L, Narayan H, Domchek S, et al. Arginine-nitric oxide metabolites and cardiac dysfunction in patients with breast cancer. J Am Coll Cardiol. 2017;70(2):152–62.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Ichikawa Y, Ghanefar M, Bayeva M, Wu R, Khechaduri A, Naga Prasad SV, et al. Cardiotoxicity of doxorubicin is mediated through mitochondrial iron accumulation. J Clin Invest. 2014;124(2):617–30.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Miranda CJ, Makui H, Soares RJ, Bilodeau M, Mui J, Vali H, et al. Hfe deficiency increases susceptibility to cardiotoxicity and exacerbates changes in iron metabolism induced by doxorubicin. Blood. 2003 Oct 1;102(7):2574–80.CrossRefPubMedGoogle Scholar
  42. 42.
    Berthiaume JM, Wallace KB. Adriamycin-induced oxidative mitochondrial cardiotoxicity. Cell Biol Toxicol. 2007;23(1):15–25.CrossRefPubMedGoogle Scholar
  43. 43.
    Liu Y, Asnani A, Zou L, Bentley VL, Yu M, Wang Y, et al. Visnagin protects against doxorubicin-induced cardiomyopathy through modulation of mitochondrial malate dehydrogenase. Sci Transl Med. 2014;6(266):266ra170.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Li DL, Wang ZV, Ding G, Tan W, Luo X, Criollo A, et al. Doxorubicin Blocks Cardiomyocyte Autophagic Flux by Inhibiting Lysosome Acidification. Circulation. 2016;133(17):1668–87.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Zhang S, Liu X, Bawa-Khalfe T, Lu LS, Lyu YL, Liu LF, et al. Identification of the molecular basis of doxorubicin-induced cardiotoxicity. Nat Med. 2012;18(11):1639–42.CrossRefPubMedGoogle Scholar
  46. 46.
    Asnani A, Zheng B, Liu Y, Wang Y, Chen HH, Vohra A, et al. Highly potent visnagin derivatives inhibit Cyp1 and prevent doxorubicin cardiotoxicity. JCI Insight. 2018;3(1):e96753.CrossRefPubMedCentralGoogle Scholar
  47. 47.
    Sawyer DB, Zuppinger C, Miller TA, Eppenberger HM, Suter TM. Modulation of anthracycline-induced myofibrillar disarray in rat ventricular myocytes by neuregulin-1beta and anti-erbB2: potential mechanism for trastuzumab-induced cardiotoxicity. Circulation. 2002;105(13):1551–4.CrossRefPubMedGoogle Scholar
  48. 48.
    Bian Y, Sun M, Silver M, Ho KK, Marchionni MA, Caggiano AO, et al. Neuregulin-1 attenuated doxorubicin-induced decrease in cardiac troponins. Am J Physiol Heart Circ Physiol. 2009;297(6):H1974–83.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Kersting G, Tzvetkov MV, Huse K, Kulle B, Hafner V, Brockmoller J, et al. Topoisomerase II beta expression level correlates with doxorubicin-induced apoptosis in peripheral blood cells. Naunyn Schmiedeberg’s Arch Pharmacol. 2006;374(1):21–30.CrossRefGoogle Scholar
  50. 50.
    Burridge PW, Li YF, Matsa E, Wu H, Ong SG, Sharma A, et al. Human induced pluripotent stem cell-derived cardiomyocytes recapitulate the predilection of breast cancer patients to doxorubicin-induced cardiotoxicity. Nat Med. 2016;22(5):547–56.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Jay SM, Murthy AC, Hawkins JF, Wortzel JR, Steinhauser ML, Alvarez LM, et al. An engineered bivalent neuregulin protects against doxorubicin-induced cardiotoxicity with reduced proneoplastic potential. Circulation. 2013;128(2):152–61.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Chintalgattu V, Rees ML, Culver JC, Goel A, Jiffar T, Zhang J, et al. Coronary microvascular pericytes are the cellular target of sunitinib malate-induced cardiotoxicity. Sci Transl Med. 2013;5(187):187ra69.CrossRefPubMedGoogle Scholar
  53. 53.•
    Serie DJ, Crook JE, Necela BM, Dockter TJ, Wang X, Asmann YW, et al. Genome-wide association study of cardiotoxicity in the NCCTG N9831 (Alliance) adjuvant trastuzumab trial. Pharmacogenet Genomics. 2017;27(10):378–85. This study represents the largest GWAS performed to date in patients treated with cardiotoxic cancer therapy. CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Wells QS, Veatch OJ, Fessel JP, Joon AY, Levinson RT, Mosley JD, et al. Genome-wide association and pathway analysis of left ventricular function after anthracycline exposure in adults. Pharmacogenet Genomics. 2017;27(7):247–54.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Aminkeng F, Bhavsar AP, Visscher H, Rassekh SR, Li Y, Lee JW, et al. A coding variant in RARG confers susceptibility to anthracycline-induced cardiotoxicity in childhood cancer. Nat Genet. 2015;47(9):1079–84.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Beer LA, Kossenkov AV, Liu Q, Luning Prak E, Domchek S, Speicher DW, et al. Baseline Immunoglobulin E Levels as a Marker of Doxorubicin- and Trastuzumab-Associated Cardiac Dysfunction. Circ Res. 2016;119(10):1135–44.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Ngo D, Sinha S, Shen D, Kuhn EW, Keyes MJ, Shi X, et al. Aptamer-Based Proteomic Profiling Reveals Novel Candidate Biomarkers and Pathways in Cardiovascular Disease. Circulation. 2016;134(4):270–85.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Lind L, Arnlov J, Lindahl B, Siegbahn A, Sundstrom J, Ingelsson E. Use of a proximity extension assay proteomics chip to discover new biomarkers for human atherosclerosis. Atherosclerosis. 2015;242(1):205–10.CrossRefPubMedGoogle Scholar
  59. 59.
    Lendvai N, Tsakos I, Devlin SM, Schaffer WL, Hassoun H, Lesokhin AM, et al. Predictive biomarkers and practical considerations in the management of carfilzomib-associated cardiotoxicity. Leuk Lymphoma. 2018:1–5.Google Scholar
  60. 60.
    Asnani A, Shi X, Farrell L, Tainsh R, Vandenwijngaert S, Cheng K-H, et al. Changes in citric acid metabolism are associated with the development of anthracycline-induced cardiotoxicity in mice and in patients. J Am Coll Cardiol. 2017;69(11 Supplement):669.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Beth Israel Deaconess Medical CenterBostonUSA
  2. 2.Harvard Medical SchoolBostonUSA

Personalised recommendations