Skip to main content

The Role of Epicardial Fat in Pericardial Diseases

Abstract

Purpose of Review

Despite the recent advancements in diagnostic modalities and therapeutic options available, the pathophysiology of pericardial syndromes remains poorly understood. In this review article, we explore the possible links between cardiac adiposity and pericardial syndromes.

Recent Findings

Over the last years, the notion of cardiac adipose tissue has radically changed, and its pivotal role in myocardial diseases has been acknowledged. Recent evidence suggests a cross-talk between epicardial fat and the heart. Imaging of epicardial and pericardial adipose tissue has an independent predictive/prognostic value in cardiovascular disease. Recent data suggests that imaging of epicardial adipose tissue may also provide prognostic information on the clinical course of patients with acute pericarditis.

Summary

Evidence from clinical and translational studies suggests possible links between epicardial fat and pericardial diseases, which need to be further explored. Epicardial adipose tissue could have a role both as a prognostic biomarker in pericardial syndromes and as potential therapeutic target for pericardial diseases. The findings of future research in the field are eagerly anticipated.

This is a preview of subscription content, access via your institution.

Fig. 1

Abbreviations

EAT :

Epicardial adipose tissue

PAT :

Pericardial adipose tissue

CT:

Computed tomography

CMR:

Cardiac magnetic resonance

NSAIDs:

Non-steroidal anti-inflammatory drugs

PET:

Positron emission tomography

AF:

Atrial fibrillation

AMI:

Acute myocardial infarction

CAD:

Coronary artery disease

CVD:

Cardiovascular disease

HF:

Heart failure

MACE:

Major adverse coronary events

VT:

Ventricular tachycardia

VF:

Ventricular fibrillation

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. •• Adler Y, Charron P, Imazio M, et al. ESC guidelines for the diagnosis and management of pericardial diseases: the task force for the diagnosis and management of pericardial diseases of the European Society of Cardiology. Eur Heart J. 2015;36:2921–64. This is the full text of the most recent guidelines for the diagnosis and management of pericardial diseases.

    Article  PubMed  Google Scholar 

  2. •• Antonopoulos AS, Sanna F, Sabharwal N, et al. Detecting human coronary inflammation by imaging perivascular fat. Sci Transl Med. 2017;9:398. Τhe paracrine effects that human vessels exert on the nearby perivascular adipose tissue and the phenotyping of human fat by computed tomography imaging have been shown in this work.

    Article  Google Scholar 

  3. Antonopoulos AS, Margaritis M, Coutinho P, Shirodaria C, Psarros C, Herdman L, et al. Adiponectin as a link between type 2 diabetes and vascular NADPH oxidase activity in the human arterial wall: the regulatory role of perivascular adipose tissue. Diabetes. 2015;64:2207–19.

    Article  PubMed  CAS  Google Scholar 

  4. Antonopoulos AS, Margaritis M, Verheule S, Recalde A, Sanna F, Herdman L, et al. Mutual regulation of Epicardial adipose tissue and myocardial redox state by PPAR-gamma/adiponectin signalling. Circ Res. 2016;118:842–55.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Antonopoulos AS, Oikonomou EK, Antoniades C, Tousoulis D. From the BMI paradox to the obesity paradox: the obesity-mortality association in coronary heart disease. Obes Rev. 2016;17:989–1000.

    Article  PubMed  CAS  Google Scholar 

  6. Antonopoulos AS, Tousoulis D. The molecular mechanisms of obesity paradox. Cardiovasc Res. 2017;113:1074–86.

    Article  PubMed  CAS  Google Scholar 

  7. • Antonopoulos AS, Antoniades C. The role of epicardial adipose tissue in cardiac biology: classic concepts and emerging roles. J Physiol. 2017;595:3907–17. A comprehensive review on the role of epicardial fat in cardiovascular disease.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  8. • Lazaros G, Antonopoulos AS, Oikonomou EK, et al. Prognostic implications of epicardial fat volume quantification in acute pericarditis. Eur J Clin Invest. 2017;47:129–36. This investigation depicted for the first time an association of epicardial fat volume with the clinical features and outcome of patients with acute pericarditis.

    Article  PubMed  CAS  Google Scholar 

  9. • Vogiatzidis K, Zarogiannis SG, Aidonidis I, et al. Physiology of pericardial fluid production and drainage. Front Physiol. 2015;6:62. Comprehensive review concerning pericardial anatomy and function as well as pericardial space physiology and pericardial fluid turnover regulation.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Rodriguez ER, Tan CD. Structure and anatomy of the human pericardium. Prog Cardiovasc Dis. 2017;59:327–40.

    Article  PubMed  Google Scholar 

  11. Khandaker MH, Espinosa RE, Nishimura RA, Sinak LJ, Hayes SN, Melduni RM, et al. Pericardial disease: diagnosis and management. Mayo Clin Proc. 2010;85:572–93.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Parmar YJ, Shah AB, Poon M, Kronzon I. Congenital abnormalities of the pericardium. Cardiol Clin. 2017;35:601–64.

    Article  PubMed  Google Scholar 

  13. Lazaros G, Vlachopoulos C, Stefanadis C. Idiopathic recurrent pericarditis: searching for Ariadne’s thread. Hell J Cardiol. 2009;50:345–51.

    Google Scholar 

  14. •• Imazio M, Lazaros G, Brucato A, Gaita F. Recurrent pericarditis: new and emerging therapeutic options. Nat Rev Cardiol. 2016;13:99–105. Practical guide on the currently available treatment options in difficult to treat patients with recurrent pericarditis.

    Article  PubMed  CAS  Google Scholar 

  15. Imazio M, Brucato A, Maestroni S, Cumetti D, Belli R, Trinchero R, et al. Risk of constrictive pericarditis after acute pericarditis. Circulation. 2011;124:1270–5.

    Article  PubMed  Google Scholar 

  16. • Cremer PC, Kumar A, Kontzias A, et al. Complicated pericarditis: understanding risk factors and pathophysiology to inform imaging and treatment. J Am Coll Cardiol. 2016;68:2311–28. Important study which deals with the troublesome subset of patients with complicated pericarditis with respect to their diagnostic approach and treatment.

    Article  PubMed  Google Scholar 

  17. Lazaros G, Antonatou K, Vassilopoulos D. The therapeutic role of interleukin-1 inhibition in idiopathic recurrent pericarditis: current evidence and future challenges. Front Med (Lausanne). 2017;4:78.

    Article  Google Scholar 

  18. Lazaros G, Imazio M, Brucato A, Tousoulis D. Untying the Gordian knot of pericardial diseases: a pragmatic approach. Hell J Cardiol. 2016;57:315–22.

    Article  Google Scholar 

  19. Imazio M, Brucato A, Maestroni S, Cumetti D, Dominelli A, Natale G, et al. Prevalence of C-reactive protein elevation and time course of normalization in acute pericarditis: implications for the diagnosis, therapy, and prognosis of pericarditis. Circulation. 2011;123:1092–7.

    Article  PubMed  CAS  Google Scholar 

  20. Lazaros G, Karavidas A, Spyropoulou M, Tsiachris D, Halapas A, Zacharoulis A, et al. The role of the immunogenetic background in the development and recurrence of acute idiopathic pericarditis. Cardiology. 2011;118:55–62.

    Article  PubMed  CAS  Google Scholar 

  21. Vasileiou P, Tsioufis C, Lazaros G, Hadziyannis E, Kasiakogias A, Stefanadis C, et al. Interleukin-8 as a predictor of acute idiopathic pericarditis recurrences. A pilot study. Int J Cardiol. 2014;172:e463–4.

    Article  PubMed  Google Scholar 

  22. Davidovich D, Gastaldelli A, Sicari R. Imaging cardiac fat. Eur Heart J Cardiovasc Imaging. 2013;14:625–30.

    Article  PubMed  Google Scholar 

  23. Iacobellis G, Willens HJ. Echocardiographic epicardial fat: a review of research and clinical applications. J Am Soc Cardiol. 2009;22:1311–9.

    Google Scholar 

  24. Iacobellis G. Epicardial and pericardial fat: close, but very different. Obesity (Silver Spring). 2009;17:625. author reply 627

    Article  Google Scholar 

  25. Mahabadi AA, Berg MH, Lehmann N, Kälsch H, Bauer M, Kara K, et al. Association of epicardial fat with cardiovascular risk factors and incident myocardial infarction in the general population: the Heinz Nixdorf Recall Study. J Am Coll Cardiol. 2013;61:1388–95.

    Article  PubMed  Google Scholar 

  26. Kunita E, Yamamoto H, Kitagawa T, Ohashi N, Oka T, Utsunomiya H, et al. Prognostic value of coronary artery calcium and epicardial adipose tissue assessed by non-contrast cardiac computed tomography. Atherosclerosis. 2014;233:447–53.

    Article  PubMed  CAS  Google Scholar 

  27. Nakanishi K, Fukuda S, Tanaka A, Otsuka K, Jissho S, Taguchi H, et al. Persistent epicardial adipose tissue accumulation is associated with coronary plaque vulnerability and future acute coronary syndrome in non-obese subjects with coronary artery disease. Atherosclerosis. 2014;237:353–60.

    Article  PubMed  CAS  Google Scholar 

  28. Mahabadi AA, Massaro JM, Rosito GA, Levy D, Murabito JM, Wolf PA, et al. Association of pericardial fat, intrathoracic fat, and visceral abdominal fat with cardiovascular disease burden: the Framingham heart study. Eur Heart J. 2009;30:850–6.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Ding J, Hsu FC, Harris TB, Liu Y, Kritchevsky SB, Szklo M, et al. The association of pericardial fat with incident coronary heart disease: the multi-ethnic study of atherosclerosis (MESA). Am J Clin Nutr. 2009;90:499–504.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Shah RV, Anderson A, Ding J, Budoff M, Rider O, Petersen SE, et al. Pericardial, but not hepatic, fat by CT is associated with CV outcomes and structure: The Multi-Ethnic Study of Atherosclerosis. JACC Cardiovasc Imaging. 2017;10:1016–27.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Wang T, Liu Q, Liu C, Sun L, Li D, Liu A, et al. Correlation of echocardiographic epicardial fat thickness with severity of coronary artery disease in patients with acute myocardial infarction. Echocardiography. 2014;31:1177–81.

    Article  PubMed  CAS  Google Scholar 

  32. Forouzandeh F, Chang SM, Muhyieddeen K, Zaid RR, Trevino AR, Xu J, et al. Does quantifying epicardial and intrathoracic fat with non-contrast computed tomography improve risk stratification beyond calcium scoring alone? Circ Cardiovasc Imaging. 2013;6:58–66.

    Article  PubMed  Google Scholar 

  33. Mancio J, Azevedo D, Saraiva F, Azevedo AI, Pires-Morais G, Leite-Moreira A, et al. Epicardial adipose tissue volume assessed by computed tomography and coronary artery disease: a systematic review and meta-analysis. Eur Heart J Cardiovasc Imaging. 2017; https://doi.org/10.1093/ehjci/jex314.

  34. Wu CK, Tsai HY, Su MY, et al. Pericardial fat is associated with ventricular tachyarrhythmia and mortality in patients with systolic heart failure. Atherosclerosis. 2015;241:607–14.

    Article  PubMed  CAS  Google Scholar 

  35. Thanassoulis G, Massaro JM, O'Donnell CJ, Hoffmann U, Levy D, Ellinor PT, et al. Pericardial fat is associated with prevalent atrial fibrillation: the Framingham heart study. Circ Arrhythm Electrophysiol. 2010;3:345–50.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Mahabadi AA, Lehmann N, Kalsch H, Bauer M, Dykun I, Kara K, et al. Association of epicardial adipose tissue and left atrial size on non-contrast CT with atrial fibrillation: the Heinz Nixdorf recall study. Eur Heart J Cardiovasc Imaging. 2014;15:863–9.

    Article  PubMed  Google Scholar 

  37. Zhu W, Zhang H, Guo L, Hong K. Relationship between epicardial adipose tissue volume and atrial fibrillation: a systematic review and meta-analysis. Herz. 2015;41:421–7.

    Article  PubMed  Google Scholar 

  38. Antonopoulos AS, Margaritis M, Coutinho P, Digby J, Patel R, Psarros C, et al. Reciprocal effects of systemic inflammation and brain natriuretic peptide on adiponectin biosynthesis in adipose tissue of patients with ischemic heart disease. Arterioscler Thromb Vasc Biol. 2014;34(9):2151–9.

    Article  PubMed  CAS  Google Scholar 

  39. Kumar A, Sato K, Yzeiraj E, Betancor J, Lin L, Tamarappoo BK, et al. Quantitative pericardial delayed hyperenhancement informs clinical course in recurrent pericarditis. JACC Cardiovasc Imaging. 2017;10:1337–46.

    Article  PubMed  Google Scholar 

  40. Cremer PC, Tariq MU, Karwa A, Alraies MC, Benatti R, Schuster A, et al. Quantitative assessment of pericardial delayed hyperenhancement predicts clinical improvement in patients with constrictive pericarditis treated with anti-inflammatory therapy. Circ Cardiovasc Imaging. 2015;8(5):e003125. https://doi.org/10.1161/CIRCIMAGING.114.003125.

    Article  PubMed  Google Scholar 

  41. Horckmans M, Bianchini M, Santovito D, Megens RTA, Springael JY, Negri I, et al. Pericardial adipose tissue regulates Granulopoiesis, fibrosis and cardiac function after myocardial infarction. Circulation. 2017;137:948–60. https://doi.org/10.1161/CIRCULATIONAHA.117.028833.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George Lazaros.

Ethics declarations

Conflict of Interest

George Lazaros, Alexios Antonopoulos, Charalambos Antoniades, and Dimitris Tousoulis declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Pericardial Disease

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lazaros, G., Antonopoulos, A., Antoniades, C. et al. The Role of Epicardial Fat in Pericardial Diseases. Curr Cardiol Rep 20, 40 (2018). https://doi.org/10.1007/s11886-018-0986-7

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11886-018-0986-7

Keywords