Skip to main content

Advertisement

Log in

Contemporary Perspectives in Durable Mechanical Circulatory Support: What Did We Learn in the Last 3 Years?

  • Heart Failure (HJ Eisen, Section Editor)
  • Published:
Current Cardiology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

In this paper, we will review developments in the field of durable mechanical circulatory support over the past 3 years.

Recent Findings

The role of left ventricular assist device (LVAD) placement in non-inotrope-dependent ambulatory heart failure patients remains controversial in light of recent clinical trials. New devices are on the horizon for destination therapy in advanced heart failure patients. The concept of hemocompatibility and the calculation of hemocompatibility scores represent a novel approach to common adverse events.

Summary

Recent research in mechanical circulatory support has impacted our approach to durable LVAD therapy and set the stage for further advancements in the field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

Papers of Particular Interest, Published Recently, Have Been Highlighted as: •Of Importance ••Of Major Importance

  1. Kirklin JK, Naftel DC, Pagani FD, Kormos RL, Stevenson LW, Blume ED, et al. Seventh INTERMACS annual report: 15,000 patients and counting. J Heart Lung Transpl. 2015;34(12):1495–504. https://doi.org/10.1016/j.healun.2015.10.003.

    Article  Google Scholar 

  2. Miller LW, Pagani FD, Russell SD, John R, Boyle AJ, Aaronson KD, et al. Use of a continuous-flow device in patients awaiting heart transplantation. N Engl J Med. 2007;357(9):885–96. https://doi.org/10.1056/NEJMoa067758.

    Article  CAS  PubMed  Google Scholar 

  3. Slaughter MS, Rogers JG, Milano CA, Russell SD, Conte JV, Feldman D, et al. Advanced heart failure treated with continuous-flow left ventricular assist device. N Engl J Med. 2009;361(23):2241–51. https://doi.org/10.1056/NEJMoa0909938.

    Article  CAS  PubMed  Google Scholar 

  4. Jorde UP, Kushwaha SS, Tatooles AJ, Naka Y, Bhat G, Long JW, et al. Results of the destination therapy post-food and drug administration approval study with a continuous flow left ventricular assist device: a prospective study using the INTERMACS registry (Interagency Registry for Mechanically Assisted Circulatory Support). J Am Coll Cardiol. 2014;63(17):1751–7. https://doi.org/10.1016/j.jacc.2014.01.053.

    Article  PubMed  Google Scholar 

  5. Pagani FD, Aaronson KD, Kormos R, Mann DL, Spino C, Jeffries N, et al. The NHLBI REVIVE-IT study: understanding its discontinuation in the context of current left ventricular assist device therapy. J Heart Lung Transpl. 2016;35(11):1277–83. https://doi.org/10.1016/j.healun.2016.09.002.

    Article  Google Scholar 

  6. Starling RC, Moazami N, Silvestry SC, Ewald G, Rogers JG, Milano CA, et al. Unexpected abrupt increase in left ventricular assist device thrombosis. N Engl J Med. 2014;370(1):33–40. https://doi.org/10.1056/NEJMoa1313385.

    Article  CAS  PubMed  Google Scholar 

  7. Estep JD, Starling RC, Horstmanshof DA, Milano CA, Selzman CH, Shah KB, et al. Risk assessment and comparative effectiveness of left ventricular assist device and medical management in ambulatory heart failure patients: results from the ROADMAP study. J Am Coll Cardiol. 2015;66(16):1747–61. https://doi.org/10.1016/j.jacc.2015.07.075.

    Article  PubMed  Google Scholar 

  8. Starling RC, Estep JD, Horstmanshof DA, Milano CA, Stehlik J, Shah KB, et al. Risk assessment and comparative effectiveness of left ventricular assist device and medical management in ambulatory heart failure patients: the ROADMAP study 2-year results. JACC Heart Fail. 2017;5(7):518–27. https://doi.org/10.1016/j.jchf.2017.02.016.

    Article  PubMed  Google Scholar 

  9. Dunlay SM, Park SJ, Joyce LD, Daly RC, Stulak JM, McNallan SM, et al. Frailty and outcomes after implantation of left ventricular assist device as destination therapy. J Heart Lung Transpl. 2014;33(4):359–65. https://doi.org/10.1016/j.healun.2013.12.014.

    Article  Google Scholar 

  10. Chung CJ, Wu C, Jones M, Kato TS, Dam TT, Givens RC, et al. Reduced handgrip strength as a marker of frailty predicts clinical outcomes in patients with heart failure undergoing ventricular assist device placement. J Card Fail. 2014;20(5):310–5. https://doi.org/10.1016/j.cardfail.2014.02.008.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Cooper LB, Hammill BG, Allen LA, Lindenfeld J, Mentz RJ, Rogers JG, et al. Assessing frailty in patients undergoing destination therapy left ventricular assist device: observations from Interagency Registry for Mechanically Assisted Circulatory Support. ASAIO J. 2017. https://doi.org/10.1097/MAT.0000000000000600.

  12. •• Rogers JG, Pagani FD, Tatooles AJ, Bhat G, Slaughter MS, Birks EJ, et al. Intrapericardial left ventricular assist device for advanced heart failure. New Engl J Med. 2017;376(5):451–60. This study describes the primary findings of the ENDURANCE study in which the use of the Heartware device was compared to Heartmate II

    Article  PubMed  Google Scholar 

  13. Netuka I, Sood P, Pya Y, Zimpfer D, Krabatsch T, Garbade J, et al. Fully magnetically levitated left ventricular assist system for treating advanced HF: a multicenter study. J Am Coll Cardiol. 2015;66(23):2579–89. https://doi.org/10.1016/j.jacc.2015.09.083.

    Article  PubMed  Google Scholar 

  14. •• Mehra MR, Naka Y, Uriel N, Goldstein DJ, Cleveland JC Jr, Colombo PC, et al. A fully magnetically levitated circulatory pump for advanced heart failure. New Engl J Med. 2017;376(5):440–450. This study describes the primary findings of the MOMEMTUM 3 trial in which the use of the Heartmate 3 device was compared to HeartMate II. https://doi.org/10.1056/NEJMoa1610426.

    Article  PubMed  Google Scholar 

  15. Mehra MR. The burden of haemocompatibility with left ventricular assist systems: a complex weave. Eur Heart J. 2017. https://doi.org/10.1093/eurheartj/ehx036.

  16. •• Uriel N, Colombo PC, Cleveland JC, Long JW, Salerno C, Goldstein DJ, et al. Hemocompatibility-related outcomes in the MOMENTUM 3 trial at 6 months: a randomized controlled study of a fully magnetically levitated pump in advanced heart failure. Circulation. 2017;135(21):2003–2012. This study describes the use of the hemocompatibility score. https://doi.org/10.1161/CIRCULATIONAHA.117.028303.

    Article  PubMed  Google Scholar 

  17. Uriel N, Pak SW, Jorde UP, Jude B, Susen S, Vincentelli A, et al. Acquired von Willebrand syndrome after continuous-flow mechanical device support contributes to a high prevalence of bleeding during long-term support and at the time of transplantation. J Am Coll Cardiol. 2010;56(15):1207–13. https://doi.org/10.1016/j.jacc.2010.05.016.

    Article  PubMed  Google Scholar 

  18. Demirozu ZT, Radovancevic R, Hochman LF, Gregoric ID, Letsou GV, Kar B, et al. Arteriovenous malformation and gastrointestinal bleeding in patients with the HeartMate II left ventricular assist device. J Heart Lung Transpl. 2011;30(8):849–53.

    Google Scholar 

  19. Wever-Pinzon O, Selzman CH, Drakos SG, Saidi A, Stoddard GJ, Gilbert EM, et al. Pulsatility and the risk of nonsurgical bleeding in patients supported with the continuous-flow left ventricular assist device HeartMate II. Circ Heart Fail. 2013;6(3):517–26. https://doi.org/10.1161/CIRCHEARTFAILURE.112.000206.

    Article  CAS  PubMed  Google Scholar 

  20. Patel SR, Madan S, Saeed O, Algodi M, Luke A, Gibber M, et al. Association of nasal mucosal vascular alterations, gastrointestinal arteriovenous malformations, and bleeding in patients with continuous-flow left ventricular assist devices. JACC Heart Fail. 2016;4(12):962–70. https://doi.org/10.1016/j.jchf.2016.08.005.

    Article  PubMed  Google Scholar 

  21. Tabit CE, Chen P, Kim GH, Fedson SE, Sayer G, Coplan MJ, et al. Elevated angiopoietin-2 level in patients with continuous-flow left ventricular assist devices leads to altered angiogenesis and is associated with higher nonsurgical bleeding. Circulation. 2016;134(2):141–52. https://doi.org/10.1161/CIRCULATIONAHA.115.019692.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Tabit CE, Coplan MJ, Chen P, Jeevanandam V, Uriel N, Liao JK. Tumor necrosis factor-alpha levels and non-surgical bleeding in continuous-flow left ventricular assist devices. J Heart Lung Transpl. 2017;36(4):S121–2. https://doi.org/10.1016/j.healun.2017.01.313.

    Article  Google Scholar 

  23. Frontera JA, Starling R, Cho SM, Nowacki AS, Uchino K, Hussain MS, et al. Risk factors, mortality, and timing of ischemic and hemorrhagic stroke with left ventricular assist devices. J Heart Lung Transpl. 2017;36(6):673–83. https://doi.org/10.1016/j.healun.2016.12.010.

    Article  Google Scholar 

  24. Teuteberg JJ, Slaughter MS, Rogers JG, McGee EC, Pagani FD, Gordon R, et al. The HVAD left ventricular assist device: risk factors for neurological events and risk mitigation strategies. JACC Heart Fail. 2015;3(10):818–28. https://doi.org/10.1016/j.jchf.2015.05.011.

    Article  PubMed  Google Scholar 

  25. Katz JN, Adamson RM, John R, Tatooles A, Sundareswaran K, Kallel F, et al. Safety of reduced anti-thrombotic strategies in HeartMate II patients: a one-year analysis of the US-TRACE study. J Heart Lung Transpl. 2015;34(12):1542–8. https://doi.org/10.1016/j.healun.2015.06.018.

    Article  Google Scholar 

  26. • Maltais S, Kilic A, Nathan S, Keebler M, Emani S, Ransom J, et al. PREVENtion of HeartMate II pump thrombosis through clinical management: the PREVENT multi-center study. J Heart Lung Transpl. 2017;36(1):1–12. This study describes the utilization of surgical and medical protocols to decrease the incidence of LVAD thrombosis in patients implanted with Heartmate II

    Article  Google Scholar 

  27. Najjar SS, Slaughter MS, Pagani FD, Starling RC, McGee EC, Eckman P, et al. An analysis of pump thrombus events in patients in the HeartWare ADVANCE bridge to transplant and continued access protocol trial. J Heart Lung Transpl. 2014;33(1):23–34. https://doi.org/10.1016/j.healun.2013.12.001.

    Article  Google Scholar 

  28. Jorde UP, Aaronson KD, Najjar SS, Pagani FD, Hayward C, Zimpfer D, et al. Identification and management of pump thrombus in the HeartWare left ventricular assist device system: a novel approach using log file analysis. JACC Heart Fail. 2015;3(11):849–56. https://doi.org/10.1016/j.jchf.2015.06.015.

    Article  PubMed  Google Scholar 

  29. Levin AP, Saeed O, Willey JZ, Levin CJ, Fried JA, Patel SR, et al. Watchful waiting in continuous-flow left ventricular assist device patients with ongoing hemolysis is associated with an increased risk for cerebrovascular accident or death. Circ Heart Fail. 2016;9(5):e002896. https://doi.org/10.1161/CIRCHEARTFAILURE.115.002896.

    Article  CAS  PubMed  Google Scholar 

  30. Jorde UP, Uriel N, Nahumi N, Bejar D, Gonzalez-Costello J, Thomas SS, et al. Prevalence, significance, and management of aortic insufficiency in continuous flow left ventricular assist device recipients. Circ Heart Fail. 2014;7(2):310–9. https://doi.org/10.1161/CIRCHEARTFAILURE.113.000878.

    Article  PubMed  Google Scholar 

  31. Pak SW, Uriel N, Takayama H, Cappleman S, Song R, Colombo PC, et al. Prevalence of de novo aortic insufficiency during long-term support with left ventricular assist devices. J Heart Lung Transpl. 2010;29(10):1172–6. https://doi.org/10.1016/j.healun.2010.05.018.

    Article  Google Scholar 

  32. Cowger J, Pagani FD, Haft JW, Romano MA, Aaronson KD, Kolias TJ. The development of aortic insufficiency in left ventricular assist device-supported patients. Circ Heart Fail. 2010;3(6):668–74. https://doi.org/10.1161/CIRCHEARTFAILURE.109.917765.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Soleimani B, Haouzi A, Manoskey A, Stephenson ER, El-Banayosy A, Pae WE. Development of aortic insufficiency in patients supported with continuous flow left ventricular assist devices. ASAIO J. 2012;58(4):326–9. https://doi.org/10.1097/MAT.0b013e318251cfff.

    Article  PubMed  Google Scholar 

  34. Cowger JA, Aaronson KD, Romano MA, Haft J, Pagani FD. Consequences of aortic insufficiency during long-term axial continuous-flow left ventricular assist device support. J Heart Lung Transpl. 2014;33(12):1233–40. https://doi.org/10.1016/j.healun.2014.06.008.

    Article  Google Scholar 

  35. Grinstein J, Kruse E, Sayer G, Fedson S, Kim GH, Sarswat N, et al. Novel echocardiographic parameters of aortic insufficiency in continuous-flow left ventricular assist devices and clinical outcome. J Heart Lung Transpl. 2016;35(8):976–85. https://doi.org/10.1016/j.healun.2016.05.009.

    Article  Google Scholar 

  36. Grinstein J, Kruse E, Sayer G, Fedson S, Kim GH, Jorde UP, et al. Accurate quantification methods for aortic insufficiency severity in patients with LVAD: role of diastolic flow acceleration and systolic-to-diastolic peak velocity ratio of outflow cannula. JACC Cardiovasc Imaging. 2016;9(6):641–51. https://doi.org/10.1016/j.jcmg.2015.06.020.

    Article  PubMed  Google Scholar 

  37. Sayer G, Sarswat N, Kim GH, Adatya S, Medvedofsky D, Rodgers D, et al. The hemodynamic effects of aortic insufficiency in patients supported with continuous-flow left ventricular assist devices. J Card Fail. 2017;23(7):545–51. https://doi.org/10.1016/j.cardfail.2017.04.012.

    Article  PubMed  Google Scholar 

  38. Lampert BC, Teuteberg JJ. Right ventricular failure after left ventricular assist devices. J Heart Lung Transpl. 2015;34(9):1123–30. https://doi.org/10.1016/j.healun.2015.06.015.

    Article  Google Scholar 

  39. Rich JD, Gosev I, Patel CB, Joseph S, Katz JN, Eckman PM, et al. The incidence, risk factors, and outcomes associated with late right-sided heart failure in patients supported with an axial-flow left ventricular assist device. J eart Lung Transpl. 2017;36(1):50–8. https://doi.org/10.1016/j.healun.2016.08.010.

    Article  Google Scholar 

  40. Grinstein J, Rodgers D, Kalantari S, Sayer G, Kim GH, Sarswat N, Adatya S, Ota T, Jeevanandam V, Burkhoff D, Uriel N HVAD waveform analysis as a noninvasive marker of pulmonary capillary wedge pressure: a first step toward the development of a smart left ventricular assist device pump. ASAIO J. 2017. https://doi.org/10.1097/MAT.0000000000000604.

  41. Wang JX, Smith JR, Bonde P. Energy transmission and power sources for mechanical circulatory support devices to achieve total implantability. Ann Thorac Surg. 2014;97(4):1467–74. https://doi.org/10.1016/j.athoracsur.2013.10.107.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jayant Raikhelkar.

Ethics declarations

Conflict of Interest

Jayant Raikhelkar declares that he has no conflict of interest.

Nir Uriel is a consultant to Abbott Medical and Medtronic.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Heart Failure

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raikhelkar, J., Uriel, N. Contemporary Perspectives in Durable Mechanical Circulatory Support: What Did We Learn in the Last 3 Years?. Curr Cardiol Rep 20, 6 (2018). https://doi.org/10.1007/s11886-018-0945-3

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11886-018-0945-3

Keywords

Navigation