Skip to main content
Log in

HDL Cholesterol Metabolism and the Risk of CHD: New Insights from Human Genetics

  • Cardiovascular Genomics (TL Assimes, Section Editor)
  • Published:
Current Cardiology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Elevated high-density lipoprotein cholesterol levels in the blood (HDL-C) represent one of the strongest epidemiological surrogates for protection against coronary heart disease (CHD), but recent human genetic and pharmacological intervention studies have raised controversy about the causality of this relationship. Here, we review recent discoveries from human genome studies using new analytic tools as well as relevant animal studies that have both addressed, and in some cases, fueled this controversy.

Recent Findings

Methodologic developments in genotyping and sequencing, such as genome-wide association studies (GWAS), exome sequencing, and exome array genotyping, have been applied to the study of HDL-C and risk of CHD in large, multi-ethnic populations. Some of these efforts focused on population-wide variation in common variants have uncovered new polymorphisms at novel loci associated with HDL-C and, in some cases, CHD risk. Other efforts have discovered loss-of-function variants for the first time in genes previously implicated in HDL metabolism through common variant studies or animal models. These studies have allowed the genetic relationship between these pathways, HDL-C and CHD to be explored in humans for the first time through analysis tools such as Mendelian randomization. We explore these discoveries for selected key HDL-C genes CETP, LCAT, LIPG, SCARB1, and novel loci implicated from GWAS including GALNT2, KLF14, and TTC39B.

Summary

Recent human genetics findings have identified new nodes regulating HDL metabolism while reshaping our current understanding of known candidate genes to HDL and CHD risk through the study of critical variants across model systems. Despite their effect on HDL-C, variants in many of the reviewed genes were found to lack any association with CHD. These data collectively indicate that HDL-C concentration, which represents a static picture of a very dynamic and heterogeneous metabolic milieu, is unlikely to be itself causally protective against CHD. In this context, human genetics represent an extremely valuable tool to further explore the biological mechanisms regulating HDL metabolism and investigate what role, if any, HDL plays in the pathogenesis of CHD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Assmann G, Cullen P, Schulte H. Simple scoring scheme for calculating the risk of acute coronary events based on the 10-year follow-up of the prospective cardiovascular Munster (PROCAM) study. Circulation. 2002;105:310–5.

    Article  PubMed  Google Scholar 

  2. Di Angelantonio E, Sarwar N, Perry P, et al. Major lipids, apolipoproteins, and risk of vascular disease. JAMA. 2009;302:1993–2000.

    Article  PubMed  Google Scholar 

  3. Kannel WB, Dawber TR, Friedman GD, Glennon WE, McNamara PM. Risk factors in coronary heart disease. an evaluation of several serum lipids as predictors of coronary heart disease; the Framingham study. Ann Intern Med. 1964;61:888–99.

    Article  CAS  PubMed  Google Scholar 

  4. Navab M, Reddy ST, Van Lenten BJ, Fogelman AM. HDL and cardiovascular disease: atherogenic and atheroprotective mechanisms. Nat Rev Cardiol. 2011;8:222–32.

    Article  CAS  PubMed  Google Scholar 

  5. Holmes MV, Ala-Korpela M, Smith GD. Mendelian randomization in cardiometabolic disease: challenges in evaluating causality. Nat Rev Cardiol. 2017;

  6. Voight BF, Peloso GM, Orho-Melander M, et al. Plasma HDL cholesterol and risk of myocardial infarction: a mendelian randomisation study. Lancet (London, England). 2012;380:572–80.

    Article  CAS  Google Scholar 

  7. Lincoff AM, Nicholls SJ, Riesmeyer JS, et al. Evacetrapib and cardiovascular outcomes in high-risk vascular disease. N Engl J Med. 2017;376:1933–42.

    Article  PubMed  Google Scholar 

  8. Barter PJ, Caulfield M, Eriksson M, et al. Effects of torcetrapib in patients at high risk for coronary events. N Engl J Med. 2007;357:2109–22.

    Article  CAS  PubMed  Google Scholar 

  9. Schwartz GG, Olsson AG, Abt M, et al. Effects of dalcetrapib in patients with a recent acute coronary syndrome. N Engl J Med. 2012;367:2089–99.

    Article  CAS  PubMed  Google Scholar 

  10. Weissglas-Volkov D, Pajukanta P. Genetic causes of high and low serum HDL-cholesterol. J Lipid Res. 2010;51:2032–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hegele RA. Plasma lipoproteins: genetic influences and clinical implications. Nat Rev Genet. 2009;10:109–21.

    Article  CAS  PubMed  Google Scholar 

  12. Larach DB, Cuchel M, Rader DJ. Monogenic causes of elevated HDL cholesterol and implications for development of new therapeutics. Clinical Lipidology. 2013;8:635–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. • Zanoni P, Khetarpal SA, Larach DB, et al. Rare variant in scavenger receptor BI raises HDL cholesterol and increases risk of coronary heart disease. Science (New York, NY). 2016;351:1166–71. This paper describes the paradoxical association of a loss-of-function mutation in SCARB1 gene that confers incresed HDL-C but is associated with incresed CHD risk and supports the role of a functional SR-BI in HDL metabolism and RCT

    Article  CAS  Google Scholar 

  14. McCarthy MI, Abecasis GR, Cardon LR, et al. Genome-wide association studies for complex traits: consensus, uncertainty and challenges. Nat Rev Genet. 2008;9:356–69.

    Article  CAS  PubMed  Google Scholar 

  15. McCarthy MI, Hirschhorn JN. Genome-wide association studies: past, present and future. Hum Mol Genet. 2008;17:R100–1.

    Article  CAS  PubMed  Google Scholar 

  16. Peters DT, Musunuru K. Functional evaluation of genetic variation in complex human traits. Hum Mol Genet. 2012;21:R18–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Willer CJ, Mohlke KL. Finding genes and variants for lipid levels after genome-wide association analysis. Curr Opin Lipidol. 2012;23:98–103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Khetarpal SA, Rader DJ. Genetics of lipid traits: genome-wide approaches yield new biology and clues to causality in coronary artery disease. Biochim Biophys Acta. 1842;2014:2010–20.

    Google Scholar 

  19. Morrison AC, Voorman A, Johnson AD, et al. Whole-genome sequence-based analysis of high-density lipoprotein cholesterol. Nat Genet. 2013;45:899–901.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Voight BF, Kang HM, Ding J, et al. The metabochip, a custom genotyping array for genetic studies of metabolic, cardiovascular, and anthropometric traits. PLoS Genet. 2012;8:e1002793.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Peloso GM, Timofeev N, Lunetta KL. Principal-component-based population structure adjustment in the North American Rheumatoid Arthritis Consortium data: impact of single-nucleotide polymorphism set and analysis method. BMC Proc. 2009;3(Suppl 7):S108.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Page CM, Baranzini SE, Mevik BH, Bos SD, Harbo HF, Andreassen BK. Assessing the power of exome chips. PLoS One. 2015;10:e0139642.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Thanassoulis G, O'Donnell CJ. Mendelian randomization: nature's randomized trial in the post-genome era. JAMA. 2009;301:2386–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Jonas A. Lecithin cholesterol acyltransferase. Biochim Biophys Acta. 2000;1529:245–56.

    Article  CAS  PubMed  Google Scholar 

  25. Kunnen S, Van Eck M. Lecithin:cholesterol acyltransferase: old friend or foe in atherosclerosis? J Lipid Res. 2012;53:1783–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Mehlum A, Gjernes E, Solberg LA, Hagve TA, Prydz H. Overexpression of human lecithin:cholesterol acyltransferase in mice offers no protection against diet-induced atherosclerosis. APMIS : acta pathologica, microbiologica, et immunologica Scandinavica. 2000;108:336–42.

    Article  CAS  PubMed  Google Scholar 

  27. Berard AM, Foger B, Remaley A, et al. High plasma HDL concentrations associated with enhanced atherosclerosis in transgenic mice overexpressing lecithin-cholesteryl acyltransferase. Nat Med. 1997;3:744–9.

    Article  CAS  PubMed  Google Scholar 

  28. Mehlum A, Muri M, Hagve TA, Solberg LA, Prydz H. Mice overexpressing human lecithin: cholesterol acyltransferase are not protected against diet-induced atherosclerosis. APMIS : acta pathologica, microbiologica, et immunologica Scandinavica. 1997;105:861–8.

    Article  CAS  PubMed  Google Scholar 

  29. Tanigawa H, Billheimer JT, Tohyama J, et al. Lecithin: cholesterol acyltransferase expression has minimal effects on macrophage reverse cholesterol transport in vivo. Circulation. 2009;120:160–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Brousseau ME, Kauffman RD, Herderick EE, et al. LCAT modulates atherogenic plasma lipoproteins and the extent of atherosclerosis only in the presence of normal LDL receptors in transgenic rabbits. Arterioscler Thromb Vasc Biol. 2000;20(2):450–8.

    Article  CAS  PubMed  Google Scholar 

  31. Hoeg JM, Vaisman BL, Demosky SJ Jr, et al. Lecithin:cholesterol acyltransferase overexpression generates hyperalpha-lipoproteinemia and a nonatherogenic lipoprotein pattern in transgenic rabbits. J Biol Chem. 1996;271:4396–402.

    Article  CAS  PubMed  Google Scholar 

  32. Amar MJ, Shamburek RD, Vaisman B, et al. Adenoviral expression of human lecithin-cholesterol acyltransferase in nonhuman primates leads to an antiatherogenic lipoprotein phenotype by increasing high-density lipoprotein and lowering low-density lipoprotein. Metab Clin Exp. 2009;58:568–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lambert G, Sakai N, Vaisman BL, et al. Analysis of glomerulosclerosis and atherosclerosis in lecithin cholesterol acyltransferase-deficient mice. J Biol Chem. 2001;276:15090–8.

    Article  CAS  PubMed  Google Scholar 

  34. Furbee JW Jr, Sawyer JK, Parks JS. Lecithin:cholesterol acyltransferase deficiency increases atherosclerosis in the low density lipoprotein receptor and apolipoprotein E knockout mice. J Biol Chem. 2002;277:3511–9.

    Article  CAS  PubMed  Google Scholar 

  35. Ng DS, Maguire GF, Wylie J, et al. Oxidative stress is markedly elevated in lecithin:cholesterol acyltransferase-deficient mice and is paradoxically reversed in the apolipoprotein E knockout background in association with a reduction in atherosclerosis. J Biol Chem. 2002;277:11715–20.

    Article  CAS  PubMed  Google Scholar 

  36. Maugeais C, Tietge UJ, Broedl UC, et al. Dose-dependent acceleration of high-density lipoprotein catabolism by endothelial lipase. Circulation. 2003;108:2121–6.

    Article  CAS  PubMed  Google Scholar 

  37. Jaye M, Lynch KJ, Krawiec J, et al. A novel endothelial-derived lipase that modulates HDL metabolism. Nat Genet. 1999;21:424–8.

    Article  CAS  PubMed  Google Scholar 

  38. Ishida T, Choi S, Kundu RK, et al. Endothelial lipase is a major determinant of HDL level. J Clin Invest. 2003;111:347–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Broedl UC, Maugeais C, Millar JS, et al. Endothelial lipase promotes the catabolism of ApoB-containing lipoproteins. Circ Res. 2004;94:1554–61.

    Article  CAS  PubMed  Google Scholar 

  40. Wiersma H, Gatti A, Nijstad N, Kuipers F, Tietge UJ. Hepatic SR-BI, not endothelial lipase, expression determines biliary cholesterol secretion in mice. J Lipid Res. 2009;50:1571–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wang C, Nishijima K, Kitajima S, et al. Increased hepatic expression of endothelial lipase inhibits cholesterol diet-induced hypercholesterolemia and atherosclerosis in transgenic rabbits. Arterioscler Thromb Vasc Biol. 2017;

  42. Edmondson AC, Brown RJ, Kathiresan S, et al. Loss-of-function variants in endothelial lipase are a cause of elevated HDL cholesterol in humans. J Clin Invest. 2009;119:1042–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Brown RJ, Lagor WR, Sankaranaravanan S, et al. Impact of combined deficiency of hepatic lipase and endothelial lipase on the metabolism of both high-density lipoproteins and apolipoprotein B-containing lipoproteins. Circ Res. 2010;107:357–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ko KW, Paul A, Ma K, Li L, Chan L. Endothelial lipase modulates HDL but has no effect on atherosclerosis development in apoE-/- and LDLR-/- mice. J Lipid Res. 2005;46:2586–94.

    Article  CAS  PubMed  Google Scholar 

  45. Ishida T, Choi SY, Kundu RK, et al. Endothelial lipase modulates susceptibility to atherosclerosis in apolipoprotein-E-deficient mice. J Biol Chem. 2004;279:45085–92.

    Article  CAS  PubMed  Google Scholar 

  46. Ma K, Cilingiroglu M, Otvos JD, Ballantyne CM, Marian AJ, Chan L. Endothelial lipase is a major genetic determinant for high-density lipoprotein concentration, structure, and metabolism. Proc Natl Acad Sci U S A. 2003;100:2748–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Zhang Y, Da Silva JR, Reilly M, Billheimer JT, Rothblat GH, Rader DJ. Hepatic expression of scavenger receptor class B type I (SR-BI) is a positive regulator of macrophage reverse cholesterol transport in vivo. J Clin Invest. 2005;115:2870–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Wang N, Arai T, Ji Y, Rinninger F, Tall AR. Liver-specific overexpression of scavenger receptor BI decreases levels of very low density lipoprotein ApoB, low density lipoprotein ApoB, and high density lipoprotein in transgenic mice. J Biol Chem. 1998;273:32920–6.

    Article  CAS  PubMed  Google Scholar 

  49. Ueda Y, Royer L, Gong E, et al. Lower plasma levels and accelerated clearance of high density lipoprotein (HDL) and non-HDL cholesterol in scavenger receptor class B type I transgenic mice. J Biol Chem. 1999;274:7165–71.

    Article  CAS  PubMed  Google Scholar 

  50. Kozarsky KF, Donahee MH, Rigotti A, Iqbal SN, Edelman ER, Krieger M. Overexpression of the HDL receptor SR-BI alters plasma HDL and bile cholesterol levels. Nature. 1997;387:414–7.

    Article  CAS  PubMed  Google Scholar 

  51. Kozarsky KF, Donahee MH, Glick JM, Krieger M, Rader DJ. Gene transfer and hepatic overexpression of the HDL receptor SR-BI reduces atherosclerosis in the cholesterol-fed LDL receptor-deficient mouse. Arterioscler Thromb Vasc Biol. 2000;20:721–7.

    Article  CAS  PubMed  Google Scholar 

  52. Arai T, Wang N, Bezouevski M, Welch C, Tall AR. Decreased atherosclerosis in heterozygous low density lipoprotein receptor-deficient mice expressing the scavenger receptor BI transgene. J Biol Chem. 1999;274:2366–71.

    Article  CAS  PubMed  Google Scholar 

  53. Varban ML, Rinninger F, Wang N, et al. Targeted mutation reveals a central role for SR-BI in hepatic selective uptake of high density lipoprotein cholesterol. Proc Natl Acad Sci U S A. 1998;95:4619–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Rigotti A, Trigatti BL, Penman M, Rayburn H, Herz J, Krieger M. A targeted mutation in the murine gene encoding the high density lipoprotein (HDL) receptor scavenger receptor class B type I reveals its key role in HDL metabolism. Proc Natl Acad Sci U S A. 1997;94:12610–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Brundert M, Ewert A, Heeren J, et al. Scavenger receptor class B type I mediates the selective uptake of high-density lipoprotein-associated cholesteryl ester by the liver in mice. Arterioscler Thromb Vasc Biol. 2005;25:143–8.

    Article  CAS  PubMed  Google Scholar 

  56. Huszar D, Varban ML, Rinninger F, et al. Increased LDL cholesterol and atherosclerosis in LDL receptor-deficient mice with attenuated expression of scavenger receptor B1. Arterioscler Thromb Vasc Biol. 2000;20:1068–73.

    Article  CAS  PubMed  Google Scholar 

  57. Braun A, Trigatti BL, Post MJ, et al. Loss of SR-BI expression leads to the early onset of occlusive atherosclerotic coronary artery disease, spontaneous myocardial infarctions, severe cardiac dysfunction, and premature death in apolipoprotein E-deficient mice. Circ Res. 2002;90:270–6.

    Article  CAS  PubMed  Google Scholar 

  58. Marotti KR, Castle CK, Boyle TP, Lin AH, Murray RW, Melchior GW. Severe atherosclerosis in transgenic mice expressing simian cholesteryl ester transfer protein. Nature. 1993;364:73–5.

    Article  CAS  PubMed  Google Scholar 

  59. Plump AS, Masucci-Magoulas L, Bruce C, Bisgaier CL, Breslow JL, Tall AR. Increased atherosclerosis in ApoE and LDL receptor gene knock-out mice as a result of human cholesteryl ester transfer protein transgene expression. Arterioscler Thromb Vasc Biol. 1999;19:1105–10.

    Article  CAS  PubMed  Google Scholar 

  60. Hayek T, Masucci-Magoulas L, Jiang X, et al. Decreased early atherosclerotic lesions in hypertriglyceridemic mice expressing cholesteryl ester transfer protein transgene. J Clin Invest. 1995;96:2071–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Harder C, Lau P, Meng A, Whitman SC, McPherson R. Cholesteryl ester transfer protein (CETP) expression protects against diet induced atherosclerosis in SR-BI deficient mice. Arterioscler Thromb Vasc Biol. 2007;27:858–64.

    Article  CAS  PubMed  Google Scholar 

  62. Tanigawa H, Billheimer JT, Tohyama J, Zhang Y, Rothblat G, Rader DJ. Expression of cholesteryl ester transfer protein in mice promotes macrophage reverse cholesterol transport. Circulation. 2007;116:1267–73.

    Article  CAS  PubMed  Google Scholar 

  63. Okamoto H, Yonemori F, Wakitani K, Minowa T, Maeda K, Shinkai H. A cholesteryl ester transfer protein inhibitor attenuates atherosclerosis in rabbits. Nature. 2000;406:203–7.

    Article  CAS  PubMed  Google Scholar 

  64. Rittershaus CW, Miller DP, Thomas LJ, et al. Vaccine-induced antibodies inhibit CETP activity in vivo and reduce aortic lesions in a rabbit model of atherosclerosis. Arterioscler Thromb Vasc Biol. 2000;20:2106–12.

    Article  CAS  PubMed  Google Scholar 

  65. Huang Z, Inazu A, Nohara A, Higashikata T, Mabuchi H. Cholesteryl ester transfer protein inhibitor (JTT-705) and the development of atherosclerosis in rabbits with severe hypercholesterolaemia. Clinical Science (London, England: 1979). 2002;103:587–94.

    Article  CAS  Google Scholar 

  66. Sugano M, Makino N, Sawada S, et al. Effect of antisense oligonucleotides against cholesteryl ester transfer protein on the development of atherosclerosis in cholesterol-fed rabbits. J Biol Chem. 1998;273:5033–6.

    Article  CAS  PubMed  Google Scholar 

  67. Zhang J, Niimi M, Yang D, et al. Deficiency of cholesteryl ester transfer protein protects against atherosclerosis in rabbits. Arterioscler Thromb Vasc Biol. 2017;37:1068–75.

    Article  CAS  PubMed  Google Scholar 

  68. Willer CJ, Schmidt EM, Sengupta S, et al. Discovery and refinement of loci associated with lipid levels. Nat Genet. 2013;45:1274–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Teslovich TM, Musunuru K, Smith AV, et al. Biological, clinical and population relevance of 95 loci for blood lipids. Nature. 2010;466:707–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Howson JMM, Zhao W, Barnes DR, et al. Fifteen new risk loci for coronary artery disease highlight arterial-wall-specific mechanisms. Nat Genet. 2017;

  71. Webb TR, Erdmann J, Stirrups KE, et al. Systematic evaluation of pleiotropy identifies 6 further loci associated with coronary artery disease. J Am Coll Cardiol. 2017;69:823–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Keavney B, Palmer A, Parish S, et al. Lipid-related genes and myocardial infarction in 4685 cases and 3460 controls: discrepancies between genotype, blood lipid concentrations, and coronary disease risk. Int J Epidemiol. 2004;33:1002–13.

    Article  PubMed  Google Scholar 

  73. Niu W, Qi Y. Circulating cholesteryl ester transfer protein and coronary heart disease: mendelian randomization meta-analysis. Circ Cardiovasc Genet. 2015;8:114–21.

    Article  CAS  PubMed  Google Scholar 

  74. Haase CL, Tybjaerg-Hansen A, Qayyum AA, Schou J, Nordestgaard BG, Frikke-Schmidt R. LCAT, HDL cholesterol and ischemic cardiovascular disease: a Mendelian randomization study of HDL cholesterol in 54,500 individuals. J Clin Endocrinol Metab. 2012;97:E248–56.

    Article  CAS  PubMed  Google Scholar 

  75. • Nomura A, Won HH, Khera AV, et al. Protein truncating variants at the cholesteryl ester transfer protein gene and risk for coronary heart disease. Circ Res. 2017; This paper showed for the first time that loss-of-function coding mutations in CETP that raise HDL-C are associated with reduced risk of coronary heart disease

  76. Wu Z, Lou Y, Qiu X, et al. Association of cholesteryl ester transfer protein (CETP) gene polymorphism, high density lipoprotein cholesterol and risk of coronary artery disease: a meta-analysis using a Mendelian randomization approach. BMC Medical Genetics. 2014;15:118.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Calabresi L, Baldassarre D, Castelnuovo S, et al. Functional lecithin: cholesterol acyltransferase is not required for efficient atheroprotection in humans. Circulation. 2009;120:628–35.

    Article  CAS  PubMed  Google Scholar 

  78. Calabresi L, Pisciotta L, Costantin A, et al. The molecular basis of lecithin:cholesterol acyltransferase deficiency syndromes: a comprehensive study of molecular and biochemical findings in 13 unrelated Italian families. Arterioscler Thromb Vasc Biol. 2005;25:1972–8.

    Article  CAS  PubMed  Google Scholar 

  79. Ayyobi AF, McGladdery SH, Chan S, John Mancini GB, Hill JS, Frohlich JJ. Lecithin: cholesterol acyltransferase (LCAT) deficiency and risk of vascular disease: 25 year follow-up. Atherosclerosis. 2004;177:361–6.

    Article  CAS  PubMed  Google Scholar 

  80. Calabresi L, Favari E, Moleri E, et al. Functional LCAT is not required for macrophage cholesterol efflux to human serum. Atherosclerosis. 2009;204:141–6.

    Article  CAS  PubMed  Google Scholar 

  81. Hovingh GK, Hutten BA, Holleboom AG, et al. Compromised LCAT function is associated with increased atherosclerosis. Circulation. 2005;112:879–84.

    Article  CAS  PubMed  Google Scholar 

  82. Duivenvoorden R, Holleboom AG, van den Bogaard B, et al. Carriers of lecithin cholesterol acyltransferase gene mutations have accelerated atherogenesis as assessed by carotid 3.0-T magnetic resonance imaging [corrected]. J Am Coll Cardiol. 2011;58:2481–7.

    Article  CAS  PubMed  Google Scholar 

  83. Hirano K, Yamashita S, Nakajima N, et al. Genetic cholesteryl ester transfer protein deficiency is extremely frequent in the Omagari area of Japan. Marked hyperalphalipoproteinemia caused by CETP gene mutation is not associated with longevity. Arterioscler Thromb Vasc Biol. 1997;17:1053–9.

    Article  CAS  PubMed  Google Scholar 

  84. Mabuchi H, Nohara A, Inazu A. Cholesteryl Ester Transfer Protein (CETP) Deficiency and CETP Inhibitors. Mol Cells. 2014;37(11):777–84.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Holleboom AG, Kuivenhoven JA, Vergeer M, et al. Plasma levels of lecithin:cholesterol acyltransferase and risk of future coronary artery disease in apparently healthy men and women: a prospective case-control analysis nested in the EPIC-Norfolk population study. J Lipid Res. 2010;51:416–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Peloso GM, Auer PL, Bis JC, et al. Association of low-frequency and rare coding-sequence variants with blood lipids and coronary heart disease in 56,000 whites and blacks. Am J Hum Genet. 2014;94:223–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Tietjen I, Hovingh GK, Singaraja R, et al. Increased risk of coronary artery disease in Caucasians with extremely low HDL cholesterol due to mutations in ABCA1, APOA1, and LCAT. Biochim Biophys Acta. 1821;2012:416–24.

    Google Scholar 

  88. Kiss RS, Kavaslar N, Okuhira K, et al. Genetic etiology of isolated low HDL syndrome: incidence and heterogeneity of efflux defects. Arterioscler Thromb Vasc Biol. 2007;27:1139–45.

    Article  CAS  PubMed  Google Scholar 

  89. Kuivenhoven JA, Pritchard H, Hill J, Frohlich J, Assmann G, Kastelein J. The molecular pathology of lecithin:cholesterol acyltransferase (LCAT) deficiency syndromes. J Lipid Res. 1997;38:191–205.

    CAS  PubMed  Google Scholar 

  90. van den Bogaard B, Holleboom AG, Duivenvoorden R, et al. Patients with low HDL-cholesterol caused by mutations in LCAT have increased arterial stiffness. Atherosclerosis. 2012;225:481–5.

    Article  PubMed  CAS  Google Scholar 

  91. Holleboom AG, Kuivenhoven JA, Peelman F, et al. High prevalence of mutations in LCAT in patients with low HDL cholesterol levels in The Netherlands: identification and characterization of eight novel mutations. Hum Mutat. 2011;32:1290–8.

    Article  CAS  PubMed  Google Scholar 

  92. Yasuda T, Ishida T, Rader DJ. Update on the role of endothelial lipase in high-density lipoprotein metabolism, reverse cholesterol transport, and atherosclerosis. Circulation journal : official journal of the Japanese Circulation Society. 2010;74:2263–70.

    Article  CAS  Google Scholar 

  93. Strauss JG, Hayn M, Zechner R, Levak-Frank S, Frank S. Fatty acids liberated from high-density lipoprotein phospholipids by endothelial-derived lipase are incorporated into lipids in HepG2 cells. The Biochemical Journal. 2003;371:981–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Jahangiri A, Rader DJ, Marchadier D, Curtiss LK, Bonnet DJ, Rye KA. Evidence that endothelial lipase remodels high density lipoproteins without mediating the dissociation of apolipoprotein A-I. J Lipid Res. 2005;46:896–903.

    Article  CAS  PubMed  Google Scholar 

  95. McCoy MG, Sun GS, Marchadier D, Maugeais C, Glick JM, Rader DJ. Characterization of the lipolytic activity of endothelial lipase. J Lipid Res. 2002;43:921–9.

    CAS  PubMed  Google Scholar 

  96. deLemos AS, Wolfe ML, Long CJ, Sivapackianathan R, Rader DJ. Identification of genetic variants in endothelial lipase in persons with elevated high-density lipoprotein cholesterol. Circulation. 2002;106:1321–6.

    Article  CAS  PubMed  Google Scholar 

  97. Singaraja RR, Tietjen I, Hovingh GK, et al. Identification of four novel genes contributing to familial elevated plasma HDL cholesterol in humans. J Lipid Res. 2014;55:1693–701.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Singaraja RR, Sivapalaratnam S, Hovingh K, et al. The impact of partial and complete loss-of-function mutations in endothelial lipase on high-density lipoprotein levels and functionality in humans. Circ Cardiovasc Genet. 2013;6:54–62.

    Article  CAS  PubMed  Google Scholar 

  99. Tietjen I, Hovingh GK, Singaraja RR, et al. Segregation of LIPG, CETP, and GALNT2 mutations in Caucasian families with extremely high HDL cholesterol. PLoS One. 2012;7:e37437.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Khetarpal SA, Edmondson AC, Raghavan A, et al. Mining the LIPG allelic spectrum reveals the contribution of rare and common regulatory variants to HDL cholesterol. PLoS Genet. 2011;7:e1002393.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Paradis ME, Couture P, Bosse Y, et al. The T111I mutation in the EL gene modulates the impact of dietary fat on the HDL profile in women. J Lipid Res. 2003;44:1902–8.

    Article  CAS  PubMed  Google Scholar 

  102. Jensen MK, Rimm EB, Mukamal KJ, et al. The T111I variant in the endothelial lipase gene and risk of coronary heart disease in three independent populations. Eur Heart J. 2009;30:1584–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Smith CE, Arnett DK, Tsai MY, et al. Physical inactivity interacts with an endothelial lipase polymorphism to modulate high density lipoprotein cholesterol in the GOLDN study. Atherosclerosis. 2009;206:500–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Razzaghi H, Santorico SA, Kamboh MI. Population-based resequencing of LIPG and ZNF202 genes in subjects with extreme HDL levels. Front Genet. 2012;3:89.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Vergeer M, Cohn DM, Boekholdt SM, et al. Lack of association between common genetic variation in endothelial lipase (LIPG) and the risk for CAD and DVT. Atherosclerosis. 2010;211:558–64.

    Article  CAS  PubMed  Google Scholar 

  106. Kathiresan S, Willer CJ, Peloso GM, et al. Common variants at 30 loci contribute to polygenic dyslipidemia. Nat Genet. 2009;41:56–65.

    Article  CAS  PubMed  Google Scholar 

  107. Nikpay M, Goel A, Won HH, et al. A comprehensive 1,000 genomes-based genome-wide association meta-analysis of coronary artery disease. Nat Genet. 2015;47:1121–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Deloukas P, Kanoni S, Willenborg C, et al. Large-scale association analysis identifies new risk loci for coronary artery disease. Nat Genet. 2013;45:25–33.

    Article  CAS  PubMed  Google Scholar 

  109. Helgadottir A, Gretarsdottir S, Thorleifsson G, et al. Variants with large effects on blood lipids and the role of cholesterol and triglycerides in coronary disease. Nat Genet. 2016;48:634–9.

    Article  CAS  PubMed  Google Scholar 

  110. Acton S, Rigotti A, Landschulz KT, Xu S, Hobbs HH, Krieger M. Identification of scavenger receptor SR-BI as a high density lipoprotein receptor. Science (New York, NY). 1996;271:518–20.

    Article  CAS  Google Scholar 

  111. Hoekstra M. SR-BI as target in atherosclerosis and cardiovascular disease–a comprehensive appraisal of the cellular functions of SR-BI in physiology and disease. Atherosclerosis. 2017;258:153–61.

    Article  CAS  PubMed  Google Scholar 

  112. Ji Y, Wang N, Ramakrishnan R, et al. Hepatic scavenger receptor BI promotes rapid clearance of high density lipoprotein free cholesterol and its transport into bile. J Biol Chem. 1999;274:33398–402.

    Article  CAS  PubMed  Google Scholar 

  113. Ueda Y, Gong E, Royer L, Cooper PN, Francone OL, Rubin EM. Relationship between expression levels and atherogenesis in scavenger receptor class B, type I transgenics. J Biol Chem. 2000;275:20368–73.

    Article  CAS  PubMed  Google Scholar 

  114. Van Eck M, Twisk J, Hoekstra M, et al. Differential effects of scavenger receptor BI deficiency on lipid metabolism in cells of the arterial wall and in the liver. J Biol Chem. 2003;278:23699–705.

    Article  PubMed  CAS  Google Scholar 

  115. Trigatti B, Rayburn H, Vinals M, et al. Influence of the high density lipoprotein receptor SR-BI on reproductive and cardiovascular pathophysiology. Proc Natl Acad Sci U S A. 1999;96:9322–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Acton S, Osgood D, Donoghue M, et al. Association of polymorphisms at the SR-BI gene locus with plasma lipid levels and body mass index in a white population. Arterioscler Thromb Vasc Biol. 1999;19:1734–43.

    Article  CAS  PubMed  Google Scholar 

  117. Osgood D, Corella D, Demissie S, et al. Genetic variation at the scavenger receptor class B type I gene locus determines plasma lipoprotein concentrations and particle size and interacts with type 2 diabetes: the framingham study. J Clin Endocrinol Metab. 2003;88:2869–79.

    Article  CAS  PubMed  Google Scholar 

  118. Morabia A, Ross BM, Costanza MC, et al. Population-based study of SR-BI genetic variation and lipid profile. Atherosclerosis. 2004;175:159–68.

    Article  CAS  PubMed  Google Scholar 

  119. Niemsiri V, Wang X, Pirim D, et al. Impact of genetic variants in human scavenger receptor class B type I (SCARB1) on plasma lipid traits. Circ Cardiovasc Genet. 2014;7:838–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Manichaikul A, Naj AC, Herrington D, Post W, Rich SS, Rodriguez A. Association of SCARB1 variants with subclinical atherosclerosis and incident cardiovascular disease: the multi-ethnic study of atherosclerosis. Arterioscler Thromb Vasc Biol. 2012;32:1991–9.

    Article  CAS  PubMed  Google Scholar 

  121. Ritsch A, Sonderegger G, Sandhofer A, et al. Scavenger receptor class B type I polymorphisms and peripheral arterial disease. Metab Clin Exp. 2007;56:1135–41.

    Article  CAS  PubMed  Google Scholar 

  122. Naj AC, West M, Rich SS, et al. Association of scavenger receptor class B type I polymorphisms with subclinical atherosclerosis: the multi-ethnic study of atherosclerosis. Circ Cardiovasc Genet. 2010;3:47–52.

    Article  CAS  PubMed  Google Scholar 

  123. Manichaikul A, Wang XQ, Musani SK, et al. Association of the lipoprotein receptor SCARB1 common missense variant rs4238001 with incident coronary heart disease. PLoS One. 2015;10:e0125497.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  124. Vergeer M, Korporaal SJ, Franssen R, et al. Genetic variant of the scavenger receptor BI in humans. N Engl J Med. 2011;364:136–45.

    Article  CAS  PubMed  Google Scholar 

  125. Do R, Willer CJ, Schmidt EM, et al. Common variants associated with plasma triglycerides and risk for coronary artery disease. Nat Genet. 2013;45:1345–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Tang CS, Zhang H, Cheung CY, et al. Exome-wide association analysis reveals novel coding sequence variants associated with lipid traits in Chinese. Nat Commun. 2015;6:10206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Thompson A, Di Angelantonio E, Sarwar N, et al. Association of cholesteryl ester transfer protein genotypes with CETP mass and activity, lipid levels, and coronary risk. JAMA. 2008;299:2777–88.

    Article  CAS  PubMed  Google Scholar 

  128. Eiriksdottir G, Bolla MK, Thorsson B, Sigurdsson G, Humphries SE, Gudnason V. The -629C>A polymorphism in the CETP gene does not explain the association of TaqIB polymorphism with risk and age of myocardial infarction in Icelandic men. Atherosclerosis. 2001;159:187–92.

    Article  CAS  PubMed  Google Scholar 

  129. Kappelle PJ, Gansevoort RT, Hillege HJ, Wolffenbuttel BH, Dullaart RP. Common variation in cholesteryl ester transfer protein: relationship of first major adverse cardiovascular events with the apolipoprotein B/apolipoprotein A-I ratio and the total cholesterol/high-density lipoprotein cholesterol ratio. Journal of Clinical Lipidology. 2013;7:56–64.

    Article  PubMed  Google Scholar 

  130. Ikewaki K, Rader DJ, Sakamoto T, et al. Delayed catabolism of high density lipoprotein apolipoproteins A-I and A-II in human cholesteryl ester transfer protein deficiency. J Clin Invest. 1993;92:1650–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Inazu A, Brown ML, Hesler CB, et al. Increased high-density lipoprotein levels caused by a common cholesteryl-ester transfer protein gene mutation. N Engl J Med. 1990;323:1234–8.

    Article  CAS  PubMed  Google Scholar 

  132. Inazu A, Jiang XC, Haraki T, et al. Genetic cholesteryl ester transfer protein deficiency caused by two prevalent mutations as a major determinant of increased levels of high density lipoprotein cholesterol. J Clin Invest. 1994;94:1872–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Koizumi J, Mabuchi H, Yoshimura A, et al. Deficiency of serum cholesteryl-ester transfer activity in patients with familial hyperalphalipoproteinaemia. Atherosclerosis. 1985;58:175–86.

    Article  CAS  PubMed  Google Scholar 

  134. The HPS3/TIMI55-REVEAL Collaborative Group: effects of anacetrapib in patients with atherosclerotic vascular disease. The New England Journal of Medicine 2017; August 29, 2017DOI: https://doi.org/10.1056/NEJMoa1706444

  135. • Hsieh J, Koseki M, Molusky MM, et al. TTC39B deficiency stabilizes LXR reducing both atherosclerosis and steatohepatitis. Nature. 2016;535:303–7. This manuscript elucidated the functional genomics by which a novel GWAS locus for HDL-C at the gene TTC39B influences LXR, lipid metabolism, and atherosclerosis

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Kathiresan S, Melander O, Guiducci C, et al. Six new loci associated with blood low-density lipoprotein cholesterol, high-density lipoprotein cholesterol or triglycerides in humans. Nat Genet. 2008;40:189–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Holleboom AG, Karlsson H, Lin RS, et al. Heterozygosity for a loss-of-function mutation in GALNT2 improves plasma triglyceride clearance in man. Cell Metab. 2011;14:811–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Roman TS, Marvelle AF, Fogarty MP, et al. Multiple hepatic regulatory variants at the GALNT2 GWAS locus associated with high-density lipoprotein cholesterol. Am J Hum Genet. 2015;97:801–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Khetarpal SA, Schjoldager KT, Christoffersen C, et al. Loss of function of GALNT2 lowers high-density lipoproteins in humans, nonhuman primates, and rodents. Cell Metab. 2016;24:234–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Small KS, Hedman AK, Grundberg E, et al. Identification of an imprinted master trans regulator at the KLF14 locus related to multiple metabolic phenotypes. Nat Genet. 2011;43:561–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Voight BF, Scott LJ, Steinthorsdottir V, et al. Twelve type 2 diabetes susceptibility loci identified through large-scale association analysis. Nat Genet. 2010;42:579–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Kong A, Steinthorsdottir V, Masson G, et al. Parental origin of sequence variants associated with complex diseases. Nature. 2009;462:868–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Guo Y, Fan Y, Zhang J, et al. Perhexiline activates KLF14 and reduces atherosclerosis by modulating ApoA-I production. J Clin Invest. 2015;125:3819–30.

    Article  PubMed  PubMed Central  Google Scholar 

  144. Franzen O, Ermel R, Cohain A, et al. Cardiometabolic risk loci share downstream cis- and trans-gene regulation across tissues and diseases. Science (New York, NY). 2016;353:827–30.

    Article  CAS  Google Scholar 

  145. Innocenti F, Cooper GM, Stanaway IB, et al. Identification, replication, and functional fine-mapping of expression quantitative trait loci in primary human liver tissue. PLoS Genet. 2011;7:e1002078.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Civelek M, Wu Y, Pan C, et al. Genetic regulation of adipose gene expression and cardio-metabolic traits. Am J Hum Genet. 2017;100:428–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Ellison RC, Zhang Y, Qureshi MM, Knox S, Arnett DK, Province MA. Lifestyle determinants of high-density lipoprotein cholesterol: the National Heart, Lung, and Blood Institute Family Heart Study. Am Heart J. 2004;147:529–35.

    Article  CAS  PubMed  Google Scholar 

  148. Barter P. Raising HDL-C can be achieved by both lifestyle changes and pharmacological means. Introduction Atherosclerosis Supplements. 2011;12:265–6.

    Article  PubMed  Google Scholar 

  149. Rader DJ, Tall AR. The not-so-simple HDL story: is it time to revise the HDL cholesterol hypothesis? Nat Med. 2012;18:1344–6.

    Article  CAS  PubMed  Google Scholar 

  150. Khera AV, Cuchel M, de la Llera-Moya M, et al. Cholesterol efflux capacity, high-density lipoprotein function, and atherosclerosis. N Engl J Med. 2011;364:127–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. • Rohatgi A, Khera A, Berry JD, et al. HDL cholesterol efflux capacity and incident cardiovascular events. N Engl J Med. 2014;371:2383–93. This paper was the first to report an inverse association between HDL cholesterol efflux capacity and incident CV events and showed that this was independent of HDL-C.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Saleheen D, Scott R, Javad S, et al. Association of HDL cholesterol efflux capacity with incident coronary heart disease events: a prospective case-control study. The Lancet Diabetes & Endocrinology. 2015;3:507–13.

    Article  CAS  Google Scholar 

  153. Ishikawa T, Ayaori M, Uto-Kondo H, Nakajima T, Mutoh M, Ikewaki K. High-density lipoprotein cholesterol efflux capacity as a relevant predictor of atherosclerotic coronary disease. Atherosclerosis. 2015;242:318–22.

    Article  CAS  PubMed  Google Scholar 

  154. Li XM, Tang WH, Mosior MK, et al. Paradoxical association of enhanced cholesterol efflux with increased incident cardiovascular risks. Arterioscler Thromb Vasc Biol. 2013;33:1696–705.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Landray MJ, Haynes R, Hopewell JC, et al. Effects of extended-release niacin with laropiprant in high-risk patients. N Engl J Med. 2014;371:203–12.

    Article  PubMed  CAS  Google Scholar 

  156. El Khoury P, Waldmann E, Huby T, et al. Extended-Release niacin/laropiprant improves overall efficacy of postprandial reverse cholesterol transport. Arterioscler Thromb Vasc Biol. 2016;36:285–94.

    Article  PubMed  CAS  Google Scholar 

  157. Nanjee MN, Cooke CJ, Garvin R, et al. Intravenous apoA-I/lecithin discs increase pre-beta-HDL concentration in tissue fluid and stimulate reverse cholesterol transport in humans. J Lipid Res. 2001;42:1586–93.

    CAS  PubMed  Google Scholar 

  158. Shaw JA, Bobik A, Murphy A, et al. Infusion of reconstituted high-density lipoprotein leads to acute changes in human atherosclerotic plaque. Circ Res. 2008;103:1084–91.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants HL055323, HL111398, and HL133502 from the National Institutes of Health. Additionally, SAK has been supported by a fellowship 5F30HL124967 from the National Institutes of Health and the Medical Scientist Training Program of the Perelman School of Medicine, University of Pennsylvania. The content is solely the responsibility of the authors and does not necessarily represent the official viewpoints of the NIH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel J. Rader.

Ethics declarations

Conflict of Interest

Cecilia Vitali and Sumeet A. Khetarpal declare that they have no conflict of interest. Daniel J. Rader serves as consultant to the following companies: Alnylam, CSL-Behring, DalCor, Eli Lilly, Novartis, and Pfizer.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Cardiovascular Genomics

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vitali, C., Khetarpal, S.A. & Rader, D.J. HDL Cholesterol Metabolism and the Risk of CHD: New Insights from Human Genetics. Curr Cardiol Rep 19, 132 (2017). https://doi.org/10.1007/s11886-017-0940-0

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11886-017-0940-0

Keywords

Navigation