Skip to main content
Log in

Beyond Pulmonary Vein Isolation: the Role of Additional Sites in Catheter Ablation of Atrial Fibrillation

  • Invasive Electrophysiology and Pacing (EK Heist, Section Editor)
  • Published:
Current Cardiology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Pulmonary vein (PV) isolation is the cornerstone of atrial fibrillation (AF) ablation. However, the long-term procedural outcome remains suboptimal and there is a frequent need for repeat ablation procedure, especially in patients with non-paroxysmal AF. The review article summarizes the rationales, recent evidences, and strategies of ablation of extra-PV sites and its clinical outcomes.

Recent Findings

It is a consensus that durable PV isolations are a definite therapy in patients with paroxysmal AF. In non-paroxysmal AF, many laboratories still believe that adequate substrate ablation outside PVs is definitely required. Empirical linear ablation is not recommended because of difficulty in achieving complete linear block, unless macro-reentry atrial tachycardia developed during procedure. Most of laboratories applied complex fractionated atrial electrogram (CFAE) ablation after PV isolation in non-paroxysmal AF, but the efficacy is limited in the long-term follow-up studies. A combined approach using CFAE, non-linear similarity, and phase mapping strategy to identify rotors or focal sources for substrate modification increases the ablation outcome, when compared to CFAE ablation alone. Provocative test with mapping of non-PV triggers is also recommended in all patients to improve long-term ablation success.

Summary

Ablation beyond PV isolation is important, especially in non-paroxysmal AF patients, to modify the diseased atrial substrate and eliminate the non-PV triggers, which in turn improve the ablation outcome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Haissaguerre M, Jais P, Shah DC, Takashashi A, Hocini M, Quiniou G, et al. Spontaneous initiation of atrial fibrillation by ectopic beats originating in the pulmonary veins. N Engl J Med. 1998;339:659–66.

    Article  CAS  PubMed  Google Scholar 

  2. Chen SA, Hsieh MH, Tai CT, Tsai CF, Prakash VS, Yu WC, et al. Initiation of atrial fibrillation by ectopic beats originating from the pulmonary veins: electrophysiological characteristics, pharmacological responses, and effects of radiofrequency ablation. Circulation. 1999;100:1879–86.

    Article  CAS  PubMed  Google Scholar 

  3. •• Calkins H, Hindricks G, Cappato R, Kim YH, Saad EB, Aguinaga L, et al. Heart rhythm society task force on catheter and surgical ablation of atrial fibrillation. Heart Rhythm. 2017; doi:10.1016/j.hrthm.2017.05.012. This article provided the updated consensus of atrial fibrillation ablation in clinical practice

  4. Parkash R, Verma A, Tang AS. Persistent atrial fibrillation: current approach and controversies. Curr Opin Cardiol. 2010;25:1–7.

    Article  PubMed  Google Scholar 

  5. Brooks AG, Stiles MK, Laborderie J, Lau DH, Kuklik P, Shipp NJ, et al. Outcomes of long-standing persistent atrial fibrillation ablation: a systematic review. Heart Rhythm. 2010;7:835–46.

    Article  PubMed  Google Scholar 

  6. • Verma A, Jiang CY, Betts TR, Chen J, Deisenhofer I, Mantovan R, et al. Approaches to catheter ablation for persistent atrial fibrillation. N Engl J Med. 2015;372:1812–22. This study demonstrated the importance of pulmonary vein isolation, even in the patients with persistent atrial fibrillation, but also opened the dispute whether additional ablation beyond pulmonary vein is required or not

    Article  PubMed  Google Scholar 

  7. Jalife J, Berenfeld O, Mansour M. Mother rotors and fibrillatory conduction: a mechanism of atrial fibrillation. Cardiovasc Res. 2002;54:204–16.

    Article  CAS  PubMed  Google Scholar 

  8. Nattel S. New ideas about atrial fibrillation 50 years on. Nature. 2002;415:219–26.

    Article  CAS  PubMed  Google Scholar 

  9. Schotten U, Verheule S, Kirchhof P, Goette A. Pathophysiological mechanisms of atrial fibrillation: a translational appraisal. Physiol Rev. 2011;91:265–325.

    Article  PubMed  Google Scholar 

  10. Moe GK, Abildskov JA. Atrial fibrillation as a self-sustaining arrhythmia independent of focal discharge. Am Heart J. 1959;58:59–70.

    Article  CAS  PubMed  Google Scholar 

  11. Allessie MA, Lammers WJEP, Bonke FIM, Hollen J. Experimental evaluation of Moe's multiple wavelet hypothesis of atrial fibrillation. In: Zipes DJ, Jalife J, editors. Cardiac electrophysiology and arrhythmias. New York: Grune & Stratton; 1985. p. 265–75.

    Google Scholar 

  12. Scherf D. Studies on auricular tachycardia caused by aconitine administration. Proc Expt Biol Med. 1947;64:233–9.

    Article  CAS  Google Scholar 

  13. Goto M, Sakamoto Y, Imanaga I. Aconitine-induced fibrillation of the different muscle tissues of the heart and the action of acetylcholine. In: Sano T, Matsuda K, Mizuhira B, editors. Electrophysiology and Ul-trastructure of the heart. New York: Grune & Stratton; 1967. p. 190–209.

    Google Scholar 

  14. Azuma K, Iwane H, Ibukiyama C, Watabe Y, Shih-Mura H, Iwaoka M, et al. Experimental studies on aconitine-induced atrial fibrillation with microelectrodes. Isr J Med Sci. 1969;8:177–92.

    Google Scholar 

  15. Chang HY, Lo LW, Lin YJ, Chang SL, Hu YF, Li CH, et al. Long-term outcome of catheter ablation in patients with atrial fibrillation originating from nonpulmonary vein ectopy. J Cardiovasc Electrophysiol. 2013;24:250–8.

    Article  PubMed  Google Scholar 

  16. January CT, Wann LS, Alpert JS, Calkins H, Cigarroa JE, Cleveland JC Jr, et al. 2014 AHA/ACC/HRS guideline for the management of patients with atrial fibrillation: executive summary: a report of the American College of Cardiology/American Heart Association Task Force on practice guidelines and the Heart Rhythm Society. Circulation. 2014;130:2071–104.

    Article  PubMed  Google Scholar 

  17. Kirchhof P, Benussi S, Kotecha D, Ahlsson A, Atar D, Casadei B, et al. 2016 ESC guidelines for the management of atrial fibrillation developed in collaboration with EACTS. Eur Heart J. 2016;37:2893–962.

    Article  PubMed  Google Scholar 

  18. Rolf S, Kircher S, Arya A, Eitel C, Sommer P, Richter S, et al. Tailored atrial substrate modification based on low-voltage areas in catheter ablation of atrial fibrillation. Circ Arrhythm Electrophysiol. 2014;7:825–33.

    Article  PubMed  Google Scholar 

  19. Kottkamp H, Bender R, Berg J. Catheter ablation of atrial fibrillation: how to modify the substrate? J Am Coll Cardiol. 2015;65:196–206.

    Article  PubMed  Google Scholar 

  20. Narayan SM, Krummen DE, Shivkumar K, Clopton P, Rappel WJ, Miller JM. Treatment of atrial fibrillation by the ablation of localized sources: CONFIRM (conventional ablation for atrial fibrillation with or without focal impulse and rotor modulation) trial. J Am Coll Cardiol. 2012;60:628–36.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Narayan SM, Baykaner T, Clopton P, Schricker A, Lalani GG, Krummen DE, et al. Ablation of rotor and focal sources reduces late recurrence of atrial fibrillation compared with trigger ablation alone: extended follow-up of the CONFIRM trial (conventional ablation for atrial fibrillation with or without focal impulse and rotor modulation). J Am Coll Cardiol. 2014;63:1761–8.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Lo LW, Lin YJ, Chang SL, Hu YF, Chung FP, Chen SA. Pearls and pitfalls in catheter ablaton of persistent atrial fibrillation. Circ J. 2016;80:306–13.

    Article  PubMed  Google Scholar 

  23. • Lin YJ, Lo MT, Chang SL, Lo LW, Hu YF, Chao TF, et al. Benefits of atrial substrate modification guided by electrogram similarity and phase mapping techniques to eliminate rotors and focal sources versus conventional defragmentation in persistent atrial fibrillation. J Am Coll Cardiol EP. 2016;2:667–78. This manuscript describe a new substrate modification method in patients with persistent atrial fibrillation, guided by nonlinear phase mapping methods for rotor detection

    Google Scholar 

  24. Willems S, Klemm H, Rostock T, Brandstrup B, Ventura R, Steven D, et al. Substrate modification combined with pulmonary vein isolation improves outcome of catheter ablation in patients with persistent atrial fibrillation: a prospective randomized comparison. Eur Heart J. 2006;27:2871–8.

    Article  PubMed  Google Scholar 

  25. Miyazaki S, Taniguchi H, Komatsu Y, Uchiyama T, Kusa S, Nakamura H, et al. Sequential biatrial linear defragmentation approach for persistent atrial fibrillation. Heart Rhythm. 2013;10:338–46.

    Article  PubMed  Google Scholar 

  26. Miyazaki S, Taniguchi H, Kusa S, Uchiyama T, Nakamura H, Hachiya H, et al. Impact of atrial fibrillation termination site and termination mode in catheter ablation on arrhythmia recurrence. Circ J. 2014;78:78–84.

    Article  PubMed  Google Scholar 

  27. Miyazaki S, Taniguchi H, Kusa S, Nakamura H, Hachiya H, Hirao K, et al. Five-year follow-up outcome after catheter ablation of persistent atrial fibrillation using a sequential biatrial linear defragmentation approach: what does atrial fibrillation termination during the procedure imply? Heart Rhythm. 2017;14:34–40.

    Article  PubMed  Google Scholar 

  28. Pak HN, Oh YS, Lim HE, Kim YH, Hwang C. Comparison of voltage map-guided left atrial anterior wall ablation versus left lateral mitral isthmus ablation in patients with persistent atrial fibrillation. Heart Rhythm. 2011;8:199–206.

    Article  PubMed  Google Scholar 

  29. Hu X, Jiang J, Ma Y, Tang A. Is there still a rle for additional linear ablation in addition to pulmonary vein isolation in patents with paroxysmal atrial fibrillation? An updated meta-analysis of randomized controlled trials. Int J Cardiol. 2016;209:266–74.

    Article  PubMed  Google Scholar 

  30. Chae S, Oral H, Good E, Dey S, Wimmer A, Crawford T, et al. Atrial tachycardia after circumferential pulmonary vein ablation of atrial fibrillation: mechanistic insights, results of catheter ablation, and risk factors for recurrence. J Am Coll Cardiol. 2007;50:1781–7.

    Article  PubMed  Google Scholar 

  31. Sawhney N, Anousheh R, Chen W, Feld GK. Circumferential pulmonary vein ablation with additional linear ablation results in an increased incidence of left atrial flutter compared with segmental pulmonary vein isolation as an initial approach to ablation of paroxysmal atrial fibrillation. Circ Arrhythm Electrophysiol. 2010;3:243–8.

    Article  PubMed  Google Scholar 

  32. Lo LW, Lin YJ, Chang SL, Hu YF, Chao TF, Chung FP, et al. Predictors and characteristics of multiple (more than 2) catheter ablation procedures for atrial fibrillation. J Cardiovasc Elecrophysiol. 2015;26:1048–56.

    Article  Google Scholar 

  33. Li WJ, Bai YY, Zhang HY, Tang RB, Miao CL, Sang CH, et al. Additional ablation of complex fractionated atrial electrograms after pulmonary vein isolation in patients with atrial fibrillation: a meta-analysis. Circ Arrhythm Electrophysiol. 2011;4:143–8.

    Article  PubMed  Google Scholar 

  34. Lo LW, Higa S, Lin YJ, Chang SL, Tuan TC, Hu YF, et al. The novel electrophysiology of complex fractionated atrial electrograms: insight from noncontact unipolar electrograms. J Cardiovasc Electrophysiol. 2010;21:640–8.

    Article  PubMed  Google Scholar 

  35. Lo LW, Lin YJ, Tsao HM, Chang SL, Hu YF, Tsai WC, et al. Characteristics of complex fractionated electrograms in nonpulmonary vein ectopy initiating atrial fibrillation/atrial tachycardia. J Cardiovasc Electrophysiol. 2009;20:1305–12.

    Article  PubMed  Google Scholar 

  36. Elayi CS, Di Biase L, Bai R, Burhardt JD, Mohanty P, Sanchez J, et al. Identifying the relationship between the non-PV triggers and the critical CFAE sites post-PVAI to curtail the extent of atrial ablation in longstanding persistent AF. J Cardiovasc Electrophsyiol. 2011;22:1199–205.

    Article  Google Scholar 

  37. Choi EK, Shen MJ, Han S, Kim D, Hwang S, Sayfo S, et al. Intrinsic cardiac nerve activity and paroxysmal atrial tachyarrhythmia in ambulatory dogs. Circulation. 2010;121:2615–23.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Lu Z, Scherlag BJ, Lin J, Niu G, Ghias M, Jackman WM, et al. Autonomic mechanism for complex fractionated atrial electrograms: evidence by fast fourier transform analysis. J Cardiovasc Electrophysiol. 2008;19:835–42.

    Article  PubMed  Google Scholar 

  39. Singh SM, D'Avila A, Kim SJ, Houghtaling C, Dukkipati SR, Reddy VY. Intraprocedural use of ibutilide to organize and guide ablation of complex fractionated atrial electrograms: preliminary assessment of a modified step-wise approach to ablation of persistent atrial fibrillation. J Cardiovasc Electrophysiol. 2010;21:608–16.

    Article  PubMed  Google Scholar 

  40. Narayan SM, Wright M, Derval N, Jadidi A, Forclaz A, Nault I, et al. Classifying fractionated electrograms in human atrial fibrillation using monophasic action potentials and activation mapping: evidence for localized drivers, rate acceleration, and nonlocal signal etiologies. Heart Rhythm. 2011;8:244–53.

    Article  PubMed  Google Scholar 

  41. Lin YJ, Chang SL, Lo LW, Hu YF, Chong E, Chao TF, et al. A prospective and randomized comparison of limited versus extensive atrial substrate modification after circumferential pulmonary vein isolation in nonparoxysmal atrial fibrillation. J Cardiovasc Electrophysiol. 2014;25:803–12.

    Article  PubMed  Google Scholar 

  42. Lin WS, Tai CT, Hsieh MH, Tsai CF, Lin YK, Tsao HM, et al. Catheter ablation of paroxysmal atrial fibrillation initiated by non-pulmonary vein ectopy. Circulation. 2003;107:3176–83.

    Article  PubMed  Google Scholar 

  43. Tsai CF, Tai CT, Hsieh MH, Lin WS, Yu WC, Ueng KC, et al. Initiation of atrial fibrillation by ectopic beats originating from the superior vena cava: electrophysiological characteristics and results of radiofrequency ablation. Circulation. 2000;102:67–74.

    Article  CAS  PubMed  Google Scholar 

  44. Hwang C, Wu TJ, Doshi RN, Peter CT, Chen PS. Vein of Marshall cannulation for the analysis of electrical activity in patients with focal atrial fibrillation. Circulation. 2000;101:1503–8.

    Article  CAS  PubMed  Google Scholar 

  45. Chang HY, Lo LW, Lin YJ, Chang SL, Hu YF, Feng AN, et al. Long-term outcome of catheter ablation in patients with atrial fibrillation originating from the superior vena cava. J Cardiovasc Electrophysiol. 2012;23:955–61.

    Article  PubMed  Google Scholar 

  46. Lin D, Frankel DS, Zado ES, Gerstenfeld E, Dixit S, Callans DJ, et al. Pulmonary vein antral isolation and nonpulmonary vein trigger ablation without additional substrate modification for treating longstanding persistent atrial fibrilation. J Cardiovasc Electrophysiol. 2012;23:806–13.

    Article  PubMed  Google Scholar 

  47. Liang JJ, Elafros MA, Muser D, Pathak RK, Santangeli P, Zado ES, et al. Pulmonary vein antral isolation and nonpulmonar vein trigger ablation are sufficient to achieve favorable long-term outcomes including transformation to paroxysmal arrhythmias in patients with persistent and long-staning persistent atrial fibrillation. Circ Arrhythm Electrophysiol. 2016;9:e004239.

    Article  CAS  PubMed  Google Scholar 

  48. Higa S, Tai CT, Chen SA. Catheter ablation of atrial fibrillation originating from extrapulmonary vein areas. Taipei approach. Heart Rhythm. 2006;3:1386–90.

    Article  PubMed  Google Scholar 

  49. Allamsetty S, Lo LW, Lin YJ, Chang SL, Chung FP, Hu YF, et al. Impact of aortic encroachment to left atrium on non-pulmonary vein triggers of atrial fibrillation. Int J Cardiol. 2017;227:650–5.

    Article  PubMed  Google Scholar 

  50. Lo LW, Chiou CW, Lin YJ, Lee SH, Chen SA. Neural mechanism of atrial fibrillation: insight from global high density frequency mapping. J Cardiovasc Electrophysiol. 2011;22:1049–56.

    Article  PubMed  Google Scholar 

  51. Katritsis DG, Pokushalov E, Romanov A, Giazitzoglou E, Siontis GC, Po SS, et al. Autonomic denervation added to pulmonary vein isolation for paroxysmal atrial fibrillation: a randomized clinical trial. J Am Coll Cardiol. 2013;62:2318–25.

    Article  PubMed  Google Scholar 

  52. Pokushalov E, Romanov A, Katritsis DG, Artyomenko S, Shirokova N, Karaskov A, et al. Ganglionated plexus ablation vs linear ablation in patients undergoing pulmonary vein isolation for persistent/long-standing persistent atrial fibrillation: a randomized comparison. Heart Rhythm. 2013;10:1280–6.

    Article  PubMed  Google Scholar 

  53. Driessen AH, Berger WR, Krul SP, van den Berg NW, Neefs J, Piersma FR, et al. Ganglion plexus ablation in advanced atrial fibrillation: the AFACT study. J Am Coll Cardiol. 2016;68:1155–65.

    Article  PubMed  Google Scholar 

  54. Davidenko JM, Kent PF, Chialvo DR, Michaels DC, Jalife J. Sustained vortex-like waves in normal isolated ventricular muscle. Proc Natl Acad Sci U S A. 1990;87:8785–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Gray RA, Pertsov AM, Jalife J. Spatial and temporal organization during cardiac fibrillation. Nature. 1998;392:75–8.

    Article  CAS  PubMed  Google Scholar 

  56. Benharash P, Buch E, Frank P, Share M, Tung R, Shivkumar K, et al. Quantitative analysis of localized sources identified by focal impulse and rotor modulation mapping in atrial fibrillation. Circ Arrhythm Electrophysiol. 2015;8:554–61.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Buch E, Share M, Tung R, Benharash P, Sharma P, Koneru J, et al. Long-term clinical outcomes of focal impulse and rotor modulation for treatment of atrial fibrillation: a multicenter experience. Heart Rhythm. 2016;13:636–41.

    Article  PubMed  Google Scholar 

  58. Gianni C, Mohanty S, Di Biase L, Metz T, Trivedi C, Gökoğlan Y, et al. Acute and early outcomes of focal impulse and rotor modulation (FIRM)-guided rotors-only ablation in patients with nonparoxysmal atrial fibrillation. Heart Rhythm. 2016;13:830–5.

    Article  PubMed  Google Scholar 

  59. Ghoraani B, Dalvi R, Gizurarson S, Das M, Ha A, Suszko A, et al. Localized rotational activation in the left atrium during human atrial fibrillation: relationship to complex fractionated atrial electrograms and low-voltage zones. Heart Rhythm. 2013;10:1830–8.

    Article  CAS  PubMed  Google Scholar 

  60. Lee G, Kumar S, Teh A, Madry A, Spence S, Larobina M, et al. Epicardial wave mapping in human long-lasting persistent atrial fibrillation: transient rotational circuits, complex wavefronts, and disorganized activity. Eur Heart J. 2014;35:86–97.

    Article  PubMed  Google Scholar 

  61. Haissaguerre M, Hocini M, Denis A, Shah AJ, Komatsu Y, Yamashita S, et al. Driver domains in persistent atrial fibrillation. Circulation. 2014;130:530–8.

    Article  PubMed  Google Scholar 

  62. Lin YJ, Lo MT, Lin C, Chang SL, Lo LW, Hu YF, et al. Prevalence, characteristics, mapping, and catheter ablation of potential rotors in nonparoxysmal atrial fibrillation. Circ Arrhythm Electrophysiol. 2013;6:851–8.

    Article  PubMed  Google Scholar 

  63. Higa S, Tai CT, Lin YJ, Liu TY, Lee PC, Huang JL, et al. Focal atrial tachycardia: new insight from noncontact mapping and catheter ablation. Circulation. 2004;109:84–91.

    Article  PubMed  Google Scholar 

  64. Jadidi AS, Lehrmann H, Keyl C, Sorrel J, Markstein V, Minners J, et al. Ablation of persistent atrial fibrillation targeting low-voltage areas with selective activation characteristics. Circ Arrhythm Electrophysiol. 2016;9:e002962.

    Article  PubMed  Google Scholar 

  65. Yang G, Yang B, Wei Y, Chang F, Ju W, Chen H, et al. Catheter ablation of nonparoxysmal atrial fibrillation using electrophysiologically guided substrate modification during sinus rhythm after pulmonary vein isolation. Circ Arrhythm Electrophysiol. 2016;9:e003382.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shih-Ann Chen.

Ethics declarations

Conflict of Interest

Li-Wei Lo, Yenn-Jiang Lin, Shih-Lin Chang, Yu-Feng Hu, Fa-Po Chung, and Shih-Ann Chen declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Funding

The present work was supported by the Taipei Veterans General Hospital (V102B-002, V102E7-003, V103C-042, V103C-126, V103E7-002, VGHUST103-G1-3-1, V104C-131, V104E7-003, VA105C-60), Ministry of Science and Technology (NSC 101-2911-I-008-001, NSC 102-2325-B-010-005, MOST 103-2314-B-075-062-MY3, MOST 104-2314-B-075-065-MY2), and Research Foundation of Cardiovascular Medicine (RFCM 100-02-011, 101-01-001, 104-01-009-01).

Additional information

This article is part of the Topical Collection on Invasive Electrophysiology and Pacing

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lo, LW., Lin, YJ., Chang, SL. et al. Beyond Pulmonary Vein Isolation: the Role of Additional Sites in Catheter Ablation of Atrial Fibrillation. Curr Cardiol Rep 19, 86 (2017). https://doi.org/10.1007/s11886-017-0884-4

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11886-017-0884-4

Keywords

Navigation