Skip to main content
Log in

Genetics of Dyslipidemia and Ischemic Heart Disease

  • Ischemic Heart Disease (D Mukherjee, Section Editor)
  • Published:
Current Cardiology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Genetic dyslipidemias contribute to the prevalence of ischemic heart disease. The field of genetic dyslipidemias and their influence on atherosclerotic heart disease is rapidly developing and accumulating increasing evidence. The purpose of this review is to describe the current state of knowledge in regard to inherited atherogenic dyslipidemias. The disorders of familial hypercholesterolemia (FH) and elevated lipoprotein(a) will be detailed. Genetic technology has made rapid advancements, leading to new discoveries in inherited atherogenic dyslipidemias, which will be explored in this review, as well as a description of possible future developments. Increasing attention has come upon the genetic disorders of familial hypercholesterolemia and elevated lipoprotein(a).

Recent Findings

This review includes new knowledge of these disorders including description of these disorders, their method of diagnosis, their prevalence, their genetic underpinnings, and their effect on the development of cardiovascular disease. In addition, it discusses major advances in genetic technology, including the completion of the human genome sequence, next-generation sequencing, and genome-wide association studies. Also discussed are rare variant studies with specific genetic mechanisms involved in inherited dyslipidemias, such as in the proprotein convertase subtilisin/kexin type 9 (PCSK9) enzyme.

Summary

The field of genetics of dyslipidemia and cardiovascular disease is rapidly growing, which will result in a bright future of novel mechanisms of action and new therapeutics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: •Of importance •• Of major importance

  1. •• Yusuf S, Hawken S, Ounpuu S, et al. Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study): case-control study. Lancet. 2004;364(9438):937–52. This global study has identified 9 easily measured risk factors (smoking, lipids, hypertension, diabetes, obesity, diet, physical activity, alcohol consumption, and psychosocial factors) that account for over 90% of the risk of acute myocardial infarction (AMI).

    Article  PubMed  Google Scholar 

  2. • Baliga RR. HDL-cholesterol: perfection is the enemy of good? Med Clin North Am. 2012;96(1):27–37. Review discusses role of HDL-cholesterol as a risk factor for coronary artery disease

    Article  CAS  PubMed  Google Scholar 

  3. Carlberg C, Ulven SM, Molnár F, eds. Hypertension, atherosclerosis and dyslipidemia, In Nutrigenomics. New York, NY: Springer Berlin Heidelberg; 2016:195–208.

  4. Goldberg AC, Hopkins PN, Toth PP, et al. Familial hypercholesterolemia: screening, diagnosis and management of pediatric and adult patients: clinical guidance from the National Lipid Association Expert Panel on familial hypercholesterolemia. J Clin Lipidol. 2011;5(3 Suppl):S1–8.

    Article  PubMed  Google Scholar 

  5. •• Nordestgaard BG, Chapman MJ, Humphries SE, et al. Familial hypercholesterolaemia is underdiagnosed and undertreated in the general population: guidance for clinicians to prevent coronary heart disease: consensus statement of the European atherosclerosis society. Eur Heart J. 2013;34(45):3478–90a. This consensus statement provides guidance for clinicians to prevent coronary heart disease in patients with familial hypercholesterolaemia.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. •• Watts GF, Gidding S, Wierzbicki AS, et al. Integrated guidance on the care of familial hypercholesterolemia from the international FH foundation. J Clin Lipidol. 2014;8(2):148–72. Perspective on management of familial hypercholesterolemia.

    Article  PubMed  Google Scholar 

  7. Cicero AFG, ed. Clinical case 3: patient with essential hypertension and familial hypercholesterolaemia. In Hypertension and Metabolic Cardiovascular Risk Factors. Series Title: Practical Case Studies in Hypertension Management. Springer International Publishing Switzerland; 2016:33–50. DOI 10.1007/978-3-319-39504-3_3

  8. Goldstein JL, Brown MS. The LDL receptor. Arterioscler Thromb Vasc Biol. 2009;29(4):431–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Guardamagna O, Restagno G, Rolfo E, et al. The type of LDLR gene mutation predicts cardiovascular risk in children with familial hypercholesterolemia. J Pediatr. 2009;155(2):199–204. e2

    Article  CAS  PubMed  Google Scholar 

  10. Hobbs HH, Russell DW, Brown MS, Goldstein JL. The LDL receptor locus in familial hypercholesterolemia: mutational analysis of a membrane protein. Annu Rev Genet. 1990;24:133–70.

    Article  CAS  PubMed  Google Scholar 

  11. Koivisto UM, Hubbard AL, Mellman I. A novel cellular phenotype for familial hypercholesterolemia due to a defect in polarized targeting of LDL receptor. Cell. 2001;105(5):575–85.

    Article  CAS  PubMed  Google Scholar 

  12. Schneider WJ, Beisiegel U, Goldstein JL, Brown MS. Purification of the low density lipoprotein receptor, an acidic glycoprotein of 164,000 molecular weight. J Biol Chem. 1982;257(5):2664–73.

    CAS  PubMed  Google Scholar 

  13. Stone NJ, Levy RI, Fredrickson DS, Verter J. Coronary artery disease in 116 kindred with familial type II hyperlipoproteinemia. Circulation. 1974;49(3):476–88.

    Article  CAS  PubMed  Google Scholar 

  14. Jansen AC, van Wissen S, Defesche JC, Kastelein JJ. Phenotypic variability in familial hypercholesterolaemia: an update. Curr Opin Lipidol. 2002;13(2):165–71.

    Article  CAS  PubMed  Google Scholar 

  15. •• Seed M, Hoppichler F, Reaveley D, et al. Relation of serum lipoprotein(a) concentration and apolipoprotein(a) phenotype to coronary heart disease in patients with familial hypercholesterolemia. N Engl J Med. 1990;322(21):1494–9. This paper discusses role of lp(a) as a risk factor in patients with familial hypercholesterolemia.

    Article  CAS  PubMed  Google Scholar 

  16. Sijbrands EJ, Westendorp RG, Defesche JC, de Meier PH, Smelt AH, Kastelein JJ. Mortality over two centuries in large pedigree with familial hypercholesterolaemia: family tree mortality study. BMJ. 2001;322(7293):1019–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Umans-Eckenhausen MA, Sijbrands EJ, Kastelein JJ, Defesche JC. Low-density lipoprotein receptor gene mutations and cardiovascular risk in a large genetic cascade screening population. Circulation. 2002;106(24):3031–6.

    Article  PubMed  Google Scholar 

  18. Naoumova RP, Thompson GR, Soutar AK. Current management of severe homozygous hypercholesterolaemias. Curr Opin Lipidol. 2004;15(4):413–22.

    Article  CAS  PubMed  Google Scholar 

  19. Goldstein JLB,MS. Familal hypercholesterolemia. Berlin: Springer.

  20. Hughes DP, Viljoen A, Wierzbicki AS. Familial hypercholesterolaemia in the era of genetic testing. Curr Cardiol Rep. 2016;18(5):42.

    Article  CAS  PubMed  Google Scholar 

  21. Sniderman AD, Tsimikas S, Fazio S. The severe hypercholesterolemia phenotype: clinical diagnosis, management, and emerging therapies. J Am Coll Cardiol. 2014;63(19):1935–47.

    Article  CAS  PubMed  Google Scholar 

  22. •• Khera AV, Won HH, Peloso GM, et al. Diagnostic yield and clinical utility of sequencing familial hypercholesterolemia genes in patients with severe hypercholesterolemia. J Am Coll Cardiol. 2016;67(22):2578–89. This paper discusses the utility of sequencing genes in patients with familial hypercholesterolemia.

    Article  CAS  PubMed  Google Scholar 

  23. Gidding SS, Champagne MA, de Ferranti SD, et al. The agenda for familial hypercholesterolemia: a scientific statement from the American Heart Association. Circulation. 2015;132(22):2167–92.

    Article  PubMed  Google Scholar 

  24. Morris JK, Wald DS, Wald NJ. The evaluation of cascade testing for familial hypercholesterolemia. Am J Med Genet A. 2012;158A(1):78–84.

    Article  PubMed  Google Scholar 

  25. •• Lloyd-Jones DM, Morris PB, Ballantyne CM, et al. 2016 ACC expert consensus decision pathway on the role of non-statin therapies for LDL-cholesterol lowering in the management of atherosclerotic cardiovascular disease risk: a report of the American College of Cardiology Task Force on clinical expert consensus documents. J Am Coll Cardiol. 2016;68(1):92–125. This review discusses the role of non-statin therapies in the management of dyslipidemias.

    Article  PubMed  Google Scholar 

  26. • Baliga RR. Statin prescribing guide. Oxford New York: Oxford University Press; 2010. This handbook provides information on the statin therapies in dyslipidemas.

    Google Scholar 

  27. Parizo J, Sarraju A, Knowles JW. Novel therapies for familial hypercholesterolemia. Curr Treat Options Cardiovasc Med. 2016;18(11):64.

    Article  PubMed  Google Scholar 

  28. Latimer J, Batty JA, Neely RD, Kunadian V. PCSK9 inhibitors in the prevention of cardiovascular disease. J Thromb Thrombolysis. 2016;42(3):405–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Raal F, Scott R, Somaratne R, et al. Low-density lipoprotein cholesterol-lowering effects of AMG 145, a monoclonal antibody to proprotein convertase subtilisin/kexin type 9 serine protease in patients with heterozygous familial hypercholesterolemia: the reduction of LDL-C with PCSK9 inhibition in heterozygous familial hypercholesterolemia disorder (RUTHERFORD) randomized trial. Circulation. 2012;126(20):2408–17.

    Article  CAS  PubMed  Google Scholar 

  30. Sabatine MS, Giugliano RP, Keech AC, et al. Evolocumab and Clinical Outcomes in Patients with Cardiovascular Disease. New England Journal of Medicine.0(0):null.

  31. Cuchel M, Bruckert E, Ginsberg HN, et al. Homozygous familial hypercholesterolaemia: new insights and guidance for clinicians to improve detection and clinical management. A position paper from the consensus panel on familial hypercholesterolaemia of the European atherosclerosis society. Eur Heart J. 2014;35(32):2146–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Baliga RR, Cannon CP. Dyslipidemia. Oxford. New York: Oxford University Press; 2012.

    Google Scholar 

  33. Ooi EM, Barrett PH, Watts GF. The extended abnormalities in lipoprotein metabolism in familial hypercholesterolemia: developing a new framework for future therapies. Int J Cardiol. 2013;168(3):1811–8.

    Article  PubMed  Google Scholar 

  34. Raal FJ, Santos RD, Blom DJ, et al. Mipomersen, an apolipoprotein B synthesis inhibitor, for lowering of LDL cholesterol concentrations in patients with homozygous familial hypercholesterolaemia: a randomised, double-blind, placebo-controlled trial. Lancet. 2010;375(9719):998–1006.

    Article  CAS  PubMed  Google Scholar 

  35. Cuchel M, Meagher EA, du Toit TH, et al. Efficacy and safety of a microsomal triglyceride transfer protein inhibitor in patients with homozygous familial hypercholesterolaemia: a single-arm, open-label, phase 3 study. Lancet. 2013;381(9860):40–6.

    Article  CAS  PubMed  Google Scholar 

  36. Marais AD, Blom DJ. Recent advances in the treatment of homozygous familial hypercholesterolaemia. Curr Opin Lipidol. 2013;24(4):288–94.

    Article  CAS  PubMed  Google Scholar 

  37. Stein EA, Honarpour N, Wasserman SM, Xu F, Scott R, Raal FJ. Effect of the proprotein convertase subtilisin/kexin 9 monoclonal antibody, AMG 145, in homozygous familial hypercholesterolemia. Circulation. 2013;128(19):2113–20.

    Article  CAS  PubMed  Google Scholar 

  38. Maiorana A, Nobili V, Calandra S, et al. Preemptive liver transplantation in a child with familial hypercholesterolemia. Pediatr Transplant. 2011;15(2):E25–9.

    PubMed  Google Scholar 

  39. Moyle M, Tate B. Homozygous familial hypercholesterolaemia presenting with cutaneous xanthomas: response to liver transplantation. Australas J Dermatol. 2004;45(4):226–8.

    Article  PubMed  Google Scholar 

  40. Kronenberg F, Utermann G. Lipoprotein(a): resurrected by genetics. J Intern Med. 2013;273(1):6–30.

    Article  CAS  PubMed  Google Scholar 

  41. Thanassoulis G, O'Donnell CJ. Mendelian randomization: nature's randomized trial in the post-genome era. JAMA. 2009;301(22):2386–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ellis KL, Hooper AJ, Burnett JR, Watts GF. Progress in the care of common inherited atherogenic disorders of apolipoprotein B metabolism. Nat Rev Endocrinol. 2016;12(8):467–84.

    Article  CAS  PubMed  Google Scholar 

  43. Schmidt K, Noureen A, Kronenberg F, Utermann G. Structure, function, and genetics of lipoprotein (a). J Lipid Res. 2016;57(8):1339–59.

    Article  CAS  PubMed  Google Scholar 

  44. Clarke R, Peden JF, Hopewell JC, et al. Genetic variants associated with lp(a) lipoprotein level and coronary disease. N Engl J Med. 2009;361(26):2518–28.

    Article  CAS  PubMed  Google Scholar 

  45. Erqou S, Thompson A, Di Angelantonio E, et al. Apolipoprotein(a) isoforms and the risk of vascular disease: systematic review of 40 studies involving 58,000 participants. J Am Coll Cardiol. 2010;55(19):2160–7.

    Article  CAS  PubMed  Google Scholar 

  46. Kamstrup PR, Tybjaerg-Hansen A, Steffensen R, Nordestgaard BG. Genetically elevated lipoprotein(a) and increased risk of myocardial infarction. JAMA. 2009;301(22):2331–9.

    Article  CAS  PubMed  Google Scholar 

  47. Kraft HG, Lingenhel A, Kochl S, et al. Apolipoprotein(a) kringle IV repeat number predicts risk for coronary heart disease. Arterioscler Thromb Vasc Biol. 1996;16(6):713–9.

    Article  CAS  PubMed  Google Scholar 

  48. Argraves KM, Kozarsky KF, Fallon JT, Harpel PC, Strickland DK. The atherogenic lipoprotein lp(a) is internalized and degraded in a process mediated by the VLDL receptor. J Clin Invest. 1997;100(9):2170–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Deb A, Caplice NM. Lipoprotein(a): new insights into mechanisms of atherogenesis and thrombosis. Clin Cardiol. 2004;27(5):258–64.

    Article  PubMed  Google Scholar 

  50. Haberland ME, Fless GM, Scanu AM, Fogelman AM. Malondialdehyde modification of lipoprotein(a) produces avid uptake by human monocyte-macrophages. J Biol Chem. 1992;267(6):4143–51.

    CAS  PubMed  Google Scholar 

  51. Riis Hansen P, Kharazmi A, Jauhiainen M, Ehnholm C. Induction of oxygen free radical generation in human monocytes by lipoprotein(a). Eur J Clin Investig. 1994;24(7):497–9.

    Article  CAS  Google Scholar 

  52. Salonen EM, Jauhiainen M, Zardi L, Vaheri A, Ehnholm C. Lipoprotein(a) binds to fibronectin and has serine proteinase activity capable of cleaving it. EMBO J. 1989;8(13):4035–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Albers JJ, Slee A, O'Brien KD, et al. Relationship of apolipoproteins A-1 and B, and lipoprotein(a) to cardiovascular outcomes: the AIM-HIGH trial (atherothrombosis intervention in metabolic syndrome with low HDL/high triglyceride and impact on global health outcomes). J Am Coll Cardiol. 2013;62(17):1575–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. •• Khera AV, Everett BM, Caulfield MP, et al. Lipoprotein(a) concentrations, rosuvastatin therapy, and residual vascular risk: an analysis from the JUPITER trial (justification for the use of statins in prevention: an intervention trial evaluating rosuvastatin). Circulation. 2014;129(6):635–42. This article discusses the role of lp(a) and rosuvastatin in the management of cardiovascular risk.

    Article  CAS  PubMed  Google Scholar 

  55. Nordestgaard BG, Chapman MJ, Ray K, et al. Lipoprotein(a) as a cardiovascular risk factor: current status. Eur Heart J. 2010;31(23):2844–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Willeit P, Kiechl S, Kronenberg F, et al. Discrimination and net reclassification of cardiovascular risk with lipoprotein(a): prospective 15-year outcomes in the Bruneck study. J Am Coll Cardiol. 2014;64(9):851–60.

    Article  PubMed  Google Scholar 

  57. •• Stone NJ, Robinson JG, Lichtenstein AH, et al. 2013 ACC/AHA guideline on the treatment of blood cholesterol to reduce atherosclerotic cardiovascular risk in adults: a report of the American College of Cardiology/American Heart Association task force on practice guidelines. J Am Coll Cardiol. 2014;63(25 Pt B):2889–934. This consensus document is a comprehensive review on the treatment of dyslipidemia to reduce the risk of coronary artery disease.

    Article  PubMed  Google Scholar 

  58. Jacobson TA, Ito MK, Maki KC, et al. National lipid association recommendations for patient-centered management of dyslipidemia: part 1—full report. J Clin Lipidol. 2015;9(2):129–69.

    Article  PubMed  Google Scholar 

  59. Davidson MH, Ballantyne CM, Jacobson TA, et al. Clinical utility of inflammatory markers and advanced lipoprotein testing: advice from an expert panel of lipid specialists. J Clin Lipidol. 2011;5(5):338–67.

    Article  PubMed  Google Scholar 

  60. Brown WV, Ballantyne CM, Jones PH, Marcovina S. Management of Lp(a). J Clin Lipidol. 2010;4(4):240–7.

    Article  PubMed  Google Scholar 

  61. Bos S, Yayha R, van Lennep JE. Latest developments in the treatment of lipoprotein (a). Curr Opin Lipidol. 2014;25(6):452–60.

    Article  CAS  PubMed  Google Scholar 

  62. Roeseler E, Julius U, Heigl F, et al. Lipoprotein apheresis for lipoprotein(a)-associated cardiovascular disease: prospective 5 years of follow-up and Apo(a) characterization. Arterioscler Thromb Vasc Biol 2016.

  63. Kolski B, Tsimikas S. Emerging therapeutic agents to lower lipoprotein (a) levels. Curr Opin Lipidol. 2012;23(6):560–8.

    Article  CAS  PubMed  Google Scholar 

  64. Guyton JR, Slee AE, Anderson T, et al. Relationship of lipoproteins to cardiovascular events: the AIM-HIGH trial (atherothrombosis intervention in metabolic syndrome with low HDL/high triglycerides and impact on global health outcomes). J Am Coll Cardiol. 2013;62(17):1580–4.

    Article  CAS  PubMed  Google Scholar 

  65. Talmud PJ, Futema M, Humphries SE. The genetic architecture of the familial hyperlipidaemia syndromes: rare mutations and common variants in multiple genes. Curr Opin Lipidol. 2014;25(4):274–81.

    Article  CAS  PubMed  Google Scholar 

  66. Carr MC, Brunzell JD. Abdominal obesity and dyslipidemia in the metabolic syndrome: importance of type 2 diabetes and familial combined hyperlipidemia in coronary artery disease risk. J Clin Endocrinol Metab. 2004;89(6):2601–7.

    Article  CAS  PubMed  Google Scholar 

  67. Brahm AJ, Hegele RA. Combined hyperlipidemia: familial but not (usually) monogenic. Curr Opin Lipidol. 2016;27(2):131–40.

    Article  CAS  PubMed  Google Scholar 

  68. Bays HE, Jones PH, Orringer CE, Brown WV, Jacobson TA. National Lipid Association Annual Summary of Clinical Lipidology 2016. J Clin Lipidol. 2016;10(1 Suppl):S1–43.

    Article  PubMed  Google Scholar 

  69. Merkens LS, Myrie SB, Steiner RD, Mymin D. Sitosterolemia. 1993.

  70. Jeff JM, Peloso GM, Do R. What can we learn about lipoprotein metabolism and coronary heart disease from studying rare variants? Curr Opin Lipidol. 2016;27(2):99–104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Abifadel M, Varret M, Rabes JP, et al. Mutations in PCSK9 cause autosomal dominant hypercholesterolemia. Nat Genet. 2003;34(2):154–6.

    Article  CAS  PubMed  Google Scholar 

  72. Cohen J, Pertsemlidis A, Kotowski IK, Graham R, Garcia CK, Hobbs HH. Low LDL cholesterol in individuals of African descent resulting from frequent nonsense mutations in PCSK9. Nat Genet. 2005;37(2):161–5.

    Article  CAS  PubMed  Google Scholar 

  73. Crosby J, Peloso GM, Auer PL, et al. Loss-of-function mutations in APOC3, triglycerides, and coronary disease. N Engl J Med. 2014;371(1):22–31.

    Article  PubMed  Google Scholar 

  74. Sarwar N, Danesh J, Eiriksdottir G, et al. Triglycerides and the risk of coronary heart disease: 10,158 incident cases among 262,525 participants in 29 western prospective studies. Circulation. 2007;115(4):450–8.

    Article  CAS  PubMed  Google Scholar 

  75. Do R, Willer CJ, Schmidt EM, et al. Common variants associated with plasma triglycerides and risk for coronary artery disease. Nat Genet. 2013;45(11):1345–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Varbo A, Benn M, Tybjaerg-Hansen A, Jorgensen AB, Frikke-Schmidt R, Nordestgaard BG. Remnant cholesterol as a causal risk factor for ischemic heart disease. J Am Coll Cardiol. 2013;61(4):427–36.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ragavendra R. Baliga.

Ethics declarations

Conflict of Interest

Kavita Sharma and Ragavendra R. Baliga declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Ischemic Heart Disease

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, K., Baliga, R.R. Genetics of Dyslipidemia and Ischemic Heart Disease. Curr Cardiol Rep 19, 46 (2017). https://doi.org/10.1007/s11886-017-0855-9

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11886-017-0855-9

Keywords

Navigation