Skip to main content

Advertisement

Log in

New Cardiac Imaging Algorithms to Diagnose Constrictive Pericarditis Versus Restrictive Cardiomyopathy

  • Pericardial Disease (AL Klein, Section Editor)
  • Published:
Current Cardiology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Echocardiography is the mainstay in the diagnostic evaluation of constrictive pericarditis (CP) and restrictive cardiomyopathy (RCM), but no single echocardiographic parameter is sufficiently robust to accurately distinguish between the two conditions. The present review summarizes the recent advances in echocardiography that promise to improve its diagnostic performance for this purpose. The role of other imaging modalities such as cardiac computed tomography, magnetic resonance imaging, and invasive hemodynamic assessment in the overall diagnostic approach is also discussed briefly.

Recent Findings

A recent study has demonstrated improved diagnostic accuracy of echocardiography with integration of multiple conventional echocardiographic parameters in to a step-wise algorithm. Concurrently, the studies using speckle-tracking echocardiography have revealed distinct and disparate patterns of myocardial mechanical abnormalities in CP and RCM with their ability to distinguish between the two conditions. The incorporation of machine-learning algorithms into echocardiography workflow permits easy integration of the wealth of the diagnostic data available and promises to further enhance the diagnostic accuracy of echocardiography.

Summary

New imaging algorithms are continuously being evolved to permit accurate distinction between CP and RCM. Further research is needed to validate the accuracy of these newer algorithms and to define their place in the overall diagnostic approach for this purpose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: •Of importance ••Of major importance

  1. •• Dal-Bianco JP, Sengupta PP, Mookadam F, Chandrasekaran K, Tajik AJ, Khandheria BK. Role of echocardiography in the diagnosis of constrictive pericarditis. J Am Soc Echocardiogr. 2009;22(1):24–33. doi:10.1016/j.echo.2008.11.004. Quiz 103-4. An excellent review article summarizing various conventional echocardiographic criteria, along with their diagnostic accuracies, for distinguishing between restrictive cardiomyopathy and constrictive pericarditis

    Article  PubMed  Google Scholar 

  2. •• Geske JB, Anavekar NS, Nishimura RA, Oh JK, Gersh BJ. Differentiation of constriction and restriction: complex cardiovascular hemodynamics. J Am Coll Cardiol. 2016;68(21):2329–47. doi:10.1016/j.jacc.2016.08.050. An excellent review article describing pathophysiological differences between restrictive cardiomyopathy and constrictive pericarditis and approach to the differential diagnosis of the two conditions

    Article  PubMed  Google Scholar 

  3. •• Klein AL, Abbara S, Agler DA, Appleton CP, Asher CR, Hoit B et al. American Society of Echocardiography clinical recommendations for multimodality cardiovascular imaging of patients with pericardial disease: endorsed by the Society for Cardiovascular Magnetic Resonance and Society of Cardiovascular Computed Tomography. J Am Soc Echocardiogr. 2013;26(9):965–1012 e15. doi:10.1016/j.echo.2013.06.023. The American Society of Echocardiography guideline for multimodality imaging in pericardial diseases

  4. • Welch TD, Ling LH, Espinosa RE, Anavekar NS, Wiste HJ, Lahr BD, et al. Echocardiographic diagnosis of constrictive pericarditis: Mayo Clinic criteria. Circ Cardiovasc Imaging. 2014;7(3):526–34. The original study that formed the basis for the Mayo Clinic criteria for differentiating constrictive pericarditis from restrictive cardiomyopathy

    Article  PubMed  Google Scholar 

  5. Himelman RB, Lee E, Schiller NB. Septal bounce, vena cava plethora, and pericardial adhesion: informative two-dimensional echocardiographic signs in the diagnosis of pericardial constriction. J Am Soc Echocardiogr. 1988;1(5):333–40.

    Article  CAS  PubMed  Google Scholar 

  6. Engel PJ, Fowler NO, Tei CW, Shah PM, Driedger HJ, Shabetai R, et al. M-mode echocardiography in constrictive pericarditis. J Am Coll Cardiol. 1985;6(2):471–4.

    Article  CAS  PubMed  Google Scholar 

  7. Candell-Riera J, Garcia del Castillo H, Permanyer-Miralda G, Soler-Soler J. Echocardiographic features of the interventricular septum in chronic constrictive pericarditis. Circulation. 1978;57(6):1154–8.

    Article  CAS  PubMed  Google Scholar 

  8. Sengupta PP, Mohan JC, Mehta V, Arora R, Khandheria BK, Pandian NG. Doppler tissue imaging improves assessment of abnormal interventricular septal and posterior wall motion in constrictive pericarditis. J Am Soc Echocardiogr. 2005;18(3):226–30. doi:10.1016/j.echo.2004.11.017.

    Article  PubMed  Google Scholar 

  9. Oki T, Tabata T, Yamada H, Abe M, Onose Y, Wakatsuki T, et al. Right and left ventricular wall motion velocities as diagnostic indicators of constrictive pericarditis. Am J Cardiol. 1998;81(4):465–70.

    Article  CAS  PubMed  Google Scholar 

  10. Tei C, Child JS, Tanaka H, Shah PM. Atrial systolic notch on the interventricular septal echogram: an echocardiographic sign of constrictive pericarditis. J Am Coll Cardiol. 1983;1(3):907–12. doi:10.1016/s0735-1097(83)80207-1.

    Article  CAS  PubMed  Google Scholar 

  11. Coylewright M, Welch TD, Nishimura RA. Mechanism of septal bounce in constrictive pericarditis: a simultaneous cardiac catheterisation and echocardiographic study. Heart. 2013;99(18):1376. doi:10.1136/heartjnl-2013-304070.

    Article  PubMed  Google Scholar 

  12. Voelkel AG, Pietro DA, Folland ED, Fisher ML, Parisi AF. Echocardiographic features of constrictive pericarditis. Circulation. 1978;58(5):871–5.

    Article  CAS  PubMed  Google Scholar 

  13. Oh JK, Hatle LK, Seward JB, Danielson GK, Schaff HV, Reeder GS, et al. Diagnostic role of Doppler echocardiography in constrictive pericarditis. J Am Coll Cardiol. 1994;23(1):154–62.

    Article  CAS  PubMed  Google Scholar 

  14. Hatle LK, Appleton CP, Popp RL. Differentiation of constrictive pericarditis and restrictive cardiomyopathy by Doppler echocardiography. Circulation. 1989;79(2):357–70.

    Article  CAS  PubMed  Google Scholar 

  15. Rajagopalan N, Garcia MJ, Rodriguez L, Murray RD, Apperson-Hansen C, Stugaard M, et al. Comparison of new Doppler echocardiographic methods to differentiate constrictive pericardial heart disease and restrictive cardiomyopathy. Am J Cardiol. 2001;87(1):86–94.

    Article  CAS  PubMed  Google Scholar 

  16. Oh JK, Tajik AJ, Appleton CP, Hatle LK, Nishimura RA, Seward JB. Preload reduction to unmask the characteristic Doppler features of constrictive pericarditis. A new observation Circulation. 1997;95(4):796–9.

    Article  CAS  PubMed  Google Scholar 

  17. Ha JW, Oh JK, Ommen SR, Ling LH, Tajik AJ. Diagnostic value of mitral annular velocity for constrictive pericarditis in the absence of respiratory variation in mitral inflow velocity. J Am Soc Echocardiogr. 2002;15(12):1468–71. doi:10.1067/mje.2002.127452.

    Article  PubMed  Google Scholar 

  18. Cosyns B, Plein S, Nihoyanopoulos P, Smiseth O, Achenbach S, Andrade MJ, et al. European Association of Cardiovascular Imaging (EACVI) position paper: multimodality imaging in pericardial disease. Eur Heart J Cardiovasc Imaging. 2015;16(1):12–31. doi:10.1093/ehjci/jeu128.

    Article  PubMed  Google Scholar 

  19. Boonyaratavej S, Oh JK, Tajik AJ, Appleton CP, Seward JB. Comparison of mitral inflow and superior vena cava Doppler velocities in chronic obstructive pulmonary disease and constrictive pericarditis. J Am Coll Cardiol. 1998;32(7):2043–8.

    Article  CAS  PubMed  Google Scholar 

  20. Ha JW, Ommen SR, Tajik AJ, Barnes ME, Ammash NM, Gertz MA, et al. Differentiation of constrictive pericarditis from restrictive cardiomyopathy using mitral annular velocity by tissue Doppler echocardiography. Am J Cardiol. 2004;94(3):316–9.

    Article  PubMed  Google Scholar 

  21. Sengupta PP, Mohan JC, Mehta V, Arora R, Pandian NG, Khandheria BK. Accuracy and pitfalls of early diastolic motion of the mitral annulus for diagnosing constrictive pericarditis by tissue Doppler imaging. Am J Cardiol. 2004;93(7):886–90. doi:10.1016/j.amjcard.2003.12.029.

    Article  PubMed  Google Scholar 

  22. Choi EY, Ha JW, Kim JM, Ahn JA, Seo HS, Lee JH, et al. Incremental value of combining systolic mitral annular velocity and time difference between mitral inflow and diastolic mitral annular velocity to early diastolic annular velocity for differentiating constrictive pericarditis from restrictive cardiomyopathy. J Am Soc Echocardiogr. 2007;20(6):738–43. doi:10.1016/j.echo.2006.11.005.

    Article  PubMed  Google Scholar 

  23. Nagueh SF, Smiseth OA, Appleton CP, Byrd III BF, Dokainish H, Edvardsen T, et al. Recommendations for the evaluation of left ventricular diastolic function by echocardiography: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr. 2016;29(4):277–314. doi:10.1016/j.echo.2016.01.011.

    Article  PubMed  Google Scholar 

  24. Ha JW, Oh JK, Ling LH, Nishimura RA, Seward JB, Tajik AJ. Annulus paradoxus: transmitral flow velocity to mitral annular velocity ratio is inversely proportional to pulmonary capillary wedge pressure in patients with constrictive pericarditis. Circulation. 2001;104(9):976–8.

    Article  CAS  PubMed  Google Scholar 

  25. Klein AL, Dahiya A. Annular velocities in constrictive pericarditis. J Am Coll Cardiol Img. 2011;4(6):576.

    Article  Google Scholar 

  26. Reuss CS, Wilansky SM, Lester SJ, Lusk JL, Grill DE, Oh JK, et al. Using mitral 'annulus reversus' to diagnose constrictive pericarditis. Eur J Echocardiogr. 2009;10(3):372–5. doi:10.1093/ejechocard/jen258.

    Article  PubMed  Google Scholar 

  27. Veress G, Ling LH, Kim KH, Dal-Bianco JP, Schaff HV, Espinosa RE, et al. Mitral and tricuspid annular velocities before and after pericardiectomy in patients with constrictive pericarditis. Circ Cardiovasc Imaging. 2011;4(4):399–407. doi:10.1161/CIRCIMAGING.110.959619.

    Article  PubMed  Google Scholar 

  28. Choi JH, Choi JO, Ryu DR, Lee SC, Park SW, Choe YH, et al. Mitral and tricuspid annular velocities in constrictive pericarditis and restrictive cardiomyopathy: correlation with pericardial thickness on computed tomography. JACC Cardiovasc Imaging. 2011;4(6):567–75. doi:10.1016/j.jcmg.2011.01.018.

    Article  PubMed  Google Scholar 

  29. • Sengupta PP, Krishnamoorthy VK, Abhayaratna WP, Korinek J, Belohlavek M, Sundt 3rd TM, et al. Disparate patterns of left ventricular mechanics differentiate constrictive pericarditis from restrictive cardiomyopathy. JACC Cardiovasc Imaging. 2008a;1(1):29–38. doi:10.1016/j.jcmg.2007.10.006. One of the earliest studies to use two-dimensional speckle tracking echocardiography to characterize changes in myocardial mechanics in patients with constricve pericarditis and restricive cardiomyopathy

    Article  PubMed  Google Scholar 

  30. Leitman M, Bachner-Hinenzon N, Adam D, Fuchs T, Theodorovich N, Peleg E, et al. Speckle tracking imaging in acute inflammatory pericardial diseases. Echocardiography. 2011;28(5):548–55. doi:10.1111/j.1540-8175.2010.01371.x.

    Article  PubMed  Google Scholar 

  31. Ling LH, Oh JK, Tei C, Click RL, Breen JF, Seward JB, et al. Pericardial thickness measured with transesophageal echocardiography: feasibility and potential clinical usefulness. J Am Coll Cardiol. 1997;29(6):1317–23.

    Article  CAS  PubMed  Google Scholar 

  32. Talreja DR, Edwards WD, Danielson GK, Schaff HV, Tajik AJ, Tazelaar HD, et al. Constrictive pericarditis in 26 patients with histologically normal pericardial thickness. Circulation. 2003;108(15):1852–7. doi:10.1161/01.CIR.0000087606.18453.FD.

    Article  PubMed  Google Scholar 

  33. Garcia MJ. Constrictive pericarditis versus restrictive cardiomyopathy? J Am Coll Cardiol. 2016;67(17):2061–76. doi:10.1016/j.jacc.2016.01.076.

    Article  PubMed  Google Scholar 

  34. •• Madeira M, Teixeira R, Costa M, Goncalves L, Klein AL. Two-dimensional speckle tracking cardiac mechanics and constrictive pericarditis: systematic review. Echocardiography. 2016;33(10):1589–99. doi:10.1111/echo.13293. An excellent review article describing the role of speckle tracking echocardiography in the evaluation of constrictive pericarditis

    Article  PubMed  Google Scholar 

  35. Sengupta PP, Korinek J, Belohlavek M, Narula J, Vannan MA, Jahangir A, et al. Left ventricular structure and function: basic science for cardiac imaging. J Am Coll Cardiol. 2006;48(10):1988–2001. doi:10.1016/j.jacc.2006.08.030.

    Article  PubMed  Google Scholar 

  36. Sengupta PP, Tajik AJ, Chandrasekaran K, Khandheria BK. Twist mechanics of the left ventricle: principles and application. JACC Cardiovasc Imaging. 2008b;1(3):366–76. doi:10.1016/j.jcmg.2008.02.006.

    Article  PubMed  Google Scholar 

  37. Sengupta PP, Khandheria BK, Narula J. Twist and untwist mechanics of the left ventricle. Heart Fail Clin. 2008c;4(3):315–24. doi:10.1016/j.hfc.2008.03.001.

    Article  PubMed  Google Scholar 

  38. Sengupta PP, Krishnamoorthy VK, Korinek J, Narula J, Vannan MA, Lester SJ, et al. Left ventricular form and function revisited: applied translational science to cardiovascular ultrasound imaging. J Am Soc Echocardiogr. 2007;20(5):539–51.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Geyer H, Caracciolo G, Abe H, Wilansky S, Carerj S, Gentile F, et al. Assessment of myocardial mechanics using speckle tracking echocardiography: fundamentals and clinical applications. J Am Soc Echocardiogr. 2010;23(4):351–69. quiz 453-5 doi:10.1016/j.echo.2010.02.015.

    Article  PubMed  Google Scholar 

  40. Omar AM, Bansal M, Sengupta PP. Advances in echocardiographic imaging in heart failure with reduced and preserved ejection fraction. Circ Res. 2016;119(2):357–74. doi:10.1161/CIRCRESAHA.116.309128.

    Article  CAS  PubMed  Google Scholar 

  41. Claus P, Omar AM, Pedrizzetti G, Sengupta PP, Nagel E. Tissue tracking technology for assessing cardiac mechanics: principles, normal values, and clinical applications. JACC Cardiovasc Imaging. 2015;8(12):1444–60. doi:10.1016/j.jcmg.2015.11.001.

    Article  PubMed  Google Scholar 

  42. Bansal M, Mehrotra R, Kasliwal RR. Loss of left ventricular torsion as the predominant mechanism of left ventricular systolic dysfunction in a patient with tubercular cardiomyopathy. Echocardiography. 2012;29(9):E221–5. doi:10.1111/j.1540-8175.2012.01768.x.

    Article  PubMed  Google Scholar 

  43. Garcia MJ, Rodriguez L, Ares M, Griffin BP, Thomas JD, Klein AL. Differentiation of constrictive pericarditis from restrictive cardiomyopathy: assessment of left ventricular diastolic velocities in longitudinal axis by Doppler tissue imaging. J Am Coll Cardiol. 1996;27(1):108–14. doi:10.1016/0735-1097(95)00434-3.

    Article  CAS  PubMed  Google Scholar 

  44. • Kusunose K, Dahiya A, Popovic ZB, Motoki H, Alraies MC, Zurick AO, et al. Biventricular mechanics in constrictive pericarditis comparison with restrictive cardiomyopathy and impact of pericardiectomy. Circ Cardiovasc Imaging. 2013;6(3):399–406. doi:10.1161/CIRCIMAGING.112.000078. Another important study to describe changes in myocardial mechanics in patients with constrictive pericarditis and restrictive cardiomyopathy and the impact of pericardiectomy on myocardial mechanics

    Article  PubMed  Google Scholar 

  45. Phelan D, Collier P, Thavendiranathan P, Popovic ZB, Hanna M, Plana JC, et al. Relative apical sparing of longitudinal strain using two-dimensional speckle-tracking echocardiography is both sensitive and specific for the diagnosis of cardiac amyloidosis. Heart. 2012;98(19):1442–8. doi:10.1136/heartjnl-2012-302353.

    Article  PubMed  Google Scholar 

  46. Baccouche H, Maunz M, Beck T, Gaa E, Banzhaf M, Knayer U, et al. Differentiating cardiac amyloidosis and hypertrophic cardiomyopathy by use of three-dimensional speckle tracking echocardiography. Echocardiography. 2012;29(6):668–77. doi:10.1111/j.1540-8175.2012.01680.x.

    Article  PubMed  Google Scholar 

  47. Negishi K, Popovic ZB, Negishi T, Motoki H, Alraies MC, Chirakarnjanakorn S, et al. Pericardiectomy is associated with improvement in longitudinal displacement of left ventricular free wall due to increased counterclockwise septal-to-lateral rotational displacement. J Am Soc Echocardiogr. 2015;28(10):1204–13.e2. doi:10.1016/j.echo.2015.05.011.

    Article  PubMed  Google Scholar 

  48. Amaki M, Savino J, Ain DL, Sanz J, Pedrizzetti G, Kulkarni H, et al. Diagnostic concordance of echocardiography and cardiac magnetic resonance-based tissue tracking for differentiating constrictive pericarditis from restrictive cardiomyopathy. Circ Cardiovasc Imaging. 2014;7(5):819–27. doi:10.1161/CIRCIMAGING.114.002103.

    Article  PubMed  Google Scholar 

  49. Vogel JH, Horgan JA, Strahl CL. Left ventricular dysfunction in chronic constrictive pericarditis. Chest. 1971;59(5):484–92.

    Article  CAS  PubMed  Google Scholar 

  50. Motoki H, Alraies MC, Dahiya A, Saraiva RM, Hanna M, Marwick TH, et al. Changes in left atrial mechanics following pericardiectomy for pericardial constriction. J Am Soc Echocardiogr. 2013;26(6):640–8. doi:10.1016/j.echo.2013.02.014.

    Article  PubMed  Google Scholar 

  51. Liu S, Ma C, Ren W, Zhang J, Li N, Yang J, et al. Regional left atrial function differentiation in patients with constrictive pericarditis and restrictive cardiomyopathy: a study using speckle tracking echocardiography. Int J Cardiovasc Imaging. 2015;31(8):1529–36. doi:10.1007/s10554-015-0726-7.

    Article  PubMed  Google Scholar 

  52. • Sengupta PP, Huang YM, Bansal M, Ashrafi A, Fisher M, Shameer K et al. Cognitive machine-learning algorithm for cardiac imaging: a pilot study for differentiating constrictive pericarditis from restrictive cardiomyopathy. Circ Cardiovasc Imaging. 2016;9(6). doi:10.1161/CIRCIMAGING.115.004330. The first study to evaluate the role of automated machine-learning algorithms in differential diagnosis of constrictive pericarditis and restrictive cardiomyopathy.

  53. Narula S, Shameer K, Salem Omar AM, Dudley JT, Sengupta PP. Machine-learning algorithms to automate morphological and functional assessments in 2D echocardiography. J Am Coll Cardiol. 2016;68(21):2287–95. doi:10.1016/j.jacc.2016.08.062.

    Article  PubMed  Google Scholar 

  54. Dilsizian SE, Siegel EL. Artificial intelligence in medicine and cardiac imaging: harnessing big data and advanced computing to provide personalized medical diagnosis and treatment. Curr Cardiol Rep. 2014;16(1):441. doi:10.1007/s11886-013-0441-8.

    Article  PubMed  Google Scholar 

  55. Bull RK, Edwards PD, Dixon AK. CT dimensions of the normal pericardium. Br J Radiol. 1998;71(849):923–5. doi:10.1259/bjr.71.849.10195005.

    Article  CAS  PubMed  Google Scholar 

  56. Verhaert D, Gabriel RS, Johnston D, Lytle BW, Desai MY, Klein AL. The role of multimodality imaging in the management of pericardial disease. Circ Cardiovasc Imaging. 2010;3(3):333–43. doi:10.1161/CIRCIMAGING.109.921791.

    Article  PubMed  Google Scholar 

  57. Ghersin E, Lessick J, Litmanovich D, Ofer A, Elhasid R, Lorber A, et al. Septal bounce in constrictive pericarditis. Diagnosis and dynamic evaluation with multidetector CT. J Comput Assist Tomogr. 2004;28(5):676–8.

    Article  PubMed  Google Scholar 

  58. Soulen RL, Stark DD, Higgins CB. Magnetic resonance imaging of constrictive pericardial disease. Am J Cardiol. 1985;55(4):480–4.

    Article  CAS  PubMed  Google Scholar 

  59. Masui T, Finck S, Higgins CB. Constrictive pericarditis and restrictive cardiomyopathy: evaluation with MR imaging. Radiology. 1992;182(2):369–73. doi:10.1148/radiology.182.2.1732952.

    Article  CAS  PubMed  Google Scholar 

  60. Alter P, Figiel JH, Rupp TP, Bachmann GF, Maisch B, Rominger MB. MR, CT, and PET imaging in pericardial disease. Heart Fail Rev. 2013;18(3):289–306. doi:10.1007/s10741-012-9309-z.

    Article  CAS  PubMed  Google Scholar 

  61. Zurick AO, Bolen MA, Kwon DH, Tan CD, Popovic ZB, Rajeswaran J, et al. Pericardial delayed hyperenhancement with CMR imaging in patients with constrictive pericarditis undergoing surgical pericardiectomy: a case series with histopathological correlation. JACC Cardiovasc Imaging. 2011;4(11):1180–91. doi:10.1016/j.jcmg.2011.08.011.

    Article  PubMed  Google Scholar 

  62. Feng D, Glockner J, Kim K, Martinez M, Syed IS, Araoz P, et al. Cardiac magnetic resonance imaging pericardial late gadolinium enhancement and elevated inflammatory markers can predict the reversibility of constrictive pericarditis after antiinflammatory medical therapy: a pilot study. Circulation. 2011;124(17):1830–7. doi:10.1161/CIRCULATIONAHA.111.026070.

    Article  CAS  PubMed  Google Scholar 

  63. Cremer PC, Kumar A, Kontzias A, Tan CD, Rodriguez ER, Imazio M, et al. Complicated pericarditis: understanding risk factors and pathophysiology to inform imaging and treatment. J Am Coll Cardiol. 2016;68(21):2311–28. doi:10.1016/j.jacc.2016.07.785.

    Article  PubMed  Google Scholar 

  64. Cremer PC, Tariq MU, Karwa A, Alraies MC, Benatti R, Schuster A et al. Quantitative assessment of pericardial delayed hyperenhancement predicts clinical improvement in patients with constrictive pericarditis treated with anti-inflammatory therapy. Circ Cardiovasc Imaging. 2015;8(5). doi: 10.1161/CIRCIMAGING.114..

  65. Giorgi B, Mollet NR, Dymarkowski S, Rademakers FE, Bogaert J. Clinically suspected constrictive pericarditis: MR imaging assessment of ventricular septal motion and configuration in patients and healthy subjects. Radiology. 2003;228(2):417–24.

    Article  PubMed  Google Scholar 

  66. Anavekar NS, Wong BF, Foley TA, Bishu K, Kolipaka A, Koo CW, et al. Index of biventricular interdependence calculated using cardiac MRI: a proof of concept study in patients with and without constrictive pericarditis. Int J Cardiovasc Imaging. 2013;29(2):363–9. doi:10.1007/s10554-012-0101-x.

    Article  PubMed  Google Scholar 

  67. Francone M, Dymarkowski S, Kalantzi M, Rademakers FE, Bogaert J. Assessment of ventricular coupling with real-time cine MRI and its value to differentiate constrictive pericarditis from restrictive cardiomyopathy. Eur Radiol. 2006;16(4):944–51.

    Article  PubMed  Google Scholar 

  68. Thavendiranathan P, Verhaert D, Walls MC, Bender JA, Rajagopalan S, Chung YC, et al. Simultaneous right and left heart real-time, free-breathing CMR flow quantification identifies constrictive physiology. JACC Cardiovasc Imaging. 2012;5(1):15–24. doi:10.1016/j.jcmg.2011.07.010.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Kojima S, Yamada N, Goto Y. Diagnosis of constrictive pericarditis by tagged cine magnetic resonance imaging. N Engl J Med. 1999;341(5):373–4. doi:10.1056/NEJM199907293410515.

    Article  CAS  PubMed  Google Scholar 

  70. Bogabathina H, Biederman RW. Lack of slippage by cardiovascular magnetic resonance imaging is sine qua non for constrictive pericarditis. Circulation. 2011;123(16):e418–9. doi:10.1161/CIRCULATIONAHA.110.955229.

    Article  PubMed  Google Scholar 

  71. Cheng H, Zhao S, Jiang S, Lu M, Yan C, Ling J, et al. The relative atrial volume ratio and late gadolinium enhancement provide additive information to differentiate constrictive pericarditis from restrictive cardiomyopathy. J Cardiovasc Magn Reson. 2011;13:15. doi:10.1186/1532-429X-13-15.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Syed IS, Glockner JF, Feng D, Araoz PA, Martinez MW, Edwards WD, et al. Role of cardiac magnetic resonance imaging in the detection of cardiac amyloidosis. JACC Cardiovasc Imaging. 2010;3(2):155–64. doi:10.1016/j.jcmg.2009.09.023.

    Article  PubMed  Google Scholar 

  73. Muehlberg F, Toepper A, Fritschi S, Prothmann M, Schulz-Menger J. Magnetic resonance imaging applications on infiltrative cardiomyopathies. J Thorac Imaging. 2016;31(6):336–47. doi:10.1097/RTI.0000000000000199.

    Article  PubMed  Google Scholar 

  74. Boynton SJ, Geske JB, Dispenzieri A, Syed IS, Hanson TJ, Grogan M, et al. LGE provides incremental prognostic information over serum biomarkers in AL cardiac amyloidosis. JACC Cardiovasc Imaging. 2016;9(6):680–6. doi:10.1016/j.jcmg.2015.10.027.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Partho P. Sengupta.

Ethics declarations

Conflict of Interest

Ahmad Mahmoud, Manish Bansal, and Partho P. Sengupta declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Pericardial Disease

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahmoud, A., Bansal, M. & Sengupta, P.P. New Cardiac Imaging Algorithms to Diagnose Constrictive Pericarditis Versus Restrictive Cardiomyopathy. Curr Cardiol Rep 19, 43 (2017). https://doi.org/10.1007/s11886-017-0851-0

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11886-017-0851-0

Keywords

Navigation