Skip to main content

Advertisement

Log in

Cardiac Applications of PET-MR

  • Nuclear Cardiology (V Dilsizian, Section Editor)
  • Published:
Current Cardiology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

The purpose of this study was to provide an overview of the clinical applications of PET-MR in the setting of cardiac imaging with emphasis on specific scenarios where both techniques together provided added information.

Recent Findings

Synergy of cardiac PET and MR fusion may hold similar promise eliminating ionizing radiation and improving tissue contrast. Future development of new hybrid scanners, use of new imaging tracers, and clinical applications are significant factors which will influence its use.

Summary

Both positron emission tomography (PET) and cardiac magnetic resonance imaging (CMR) provide important anatomic and physiologic information with regard to the heart. Being able to combine the data from these two examinations in a hybrid technique allows for a more complete evaluation of cardiac pathology. While hybrid PET-CT has already established the utility of a combined imaging approach, the use of CMR in lieu of CT allows for elimination of ionizing radiation and for improved tissue contrast.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

Papers of Particular Interest, Published recently, Have Been Highlighted as: • of Importance •• of Major Importance

  1. Zaidi H, Montandon M-L, Alavi A. The clinical role of fusion imaging using PET, CT, and MR imaging. Magn Reson Imaging Clin N Am. 2010-2;18:133–49.

    Article  PubMed  Google Scholar 

  2. Ripa RS, Knudsen A, Hag AMF, Lebech A-M, Loft A, Keller SH, Hansen AE, von Benzon E, Højgaard L, Kjær A. Feasibility of simultaneous PET/MR of the carotid artery: first clinical experience and comparison to PET/CT. Am J Nucl Med Mol Imaging. 2013;3:361–71.

    PubMed  PubMed Central  Google Scholar 

  3. Li X, Heber D, Rausch I, et al. Quantitative assessment of atherosclerotic plaques on (18)F-FDG PET/MRI: comparison with a PET/CT hybrid system. Eur J Nucl Med Mol Imaging. 2016;43:1503–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hyafil F, Schindler A, Sepp D, et al. High-risk plaque features can be detected in non-stenotic carotid plaques of patients with ischaemic stroke classified as cryptogenic using combined (18)F-FDG PET/MR imaging. Eur J Nucl Med Mol Imaging. 2016;43:270–9.

    Article  PubMed  Google Scholar 

  5. Durrani AK, Lau JM, Laforest R, Zheng J, Priatna A, Gropler RJ, Woodard PK (2015) 13N–ammonia PET/MR Myocardial Stress Perfusion Imaging Early Experience. Radiological Society of North America, 2015 Scientific Assembly and Annual Meeting; 2015 Dec 3; Chicago, IL. Available from: http://archive.rsna.org/2015/15012463.html.

  6. Lau JMC, Laforest R, Priatna A, Sharma S, Zheng J, Gropler RJ, Woodard PK. Demonstration of intermittent ischemia and stunning in hibernating myocardium. J Nucl Cardiol. 2013;20:908–12.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Schindler TH. Positron-emitting myocardial blood flow tracers and clinical potential. Prog Cardiovasc Dis. 2015;57:588–606.

    Article  PubMed  Google Scholar 

  8. Schiebler ML, Nagle SK, François CJ, Repplinger MD, Hamedani AG, Vigen KK, Yarlagadda R, Grist TM, Reeder SB. Effectiveness of MR angiography for the primary diagnosis of acute pulmonary embolism: clinical outcomes at 3 months and 1 year. J Magn Reson Imaging. 2013;38:914–25.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Xie Y, Pang J, Kim YJ, et al. Coronary atherosclerosis T1-weighed characterization with integrated anatomical reference (CATCH). J Cardiovasc Magn Reson. 2016;18:1–3.

    Article  Google Scholar 

  10. Catana C. Motion correction options in PET/MRI. Semin Nucl Med. 2015;45:212–23.

    Article  PubMed  PubMed Central  Google Scholar 

  11. •• Turkbey EB, Nacif MS, Guo M, et al. Prevalence and correlates of myocardial scar in a US cohort. JAMA. 2015;314:1945–54. Using the cohort of Multi-Ethnic Study of Atherosclerosis (MESA) study, the authors determined the prevalence of unrecognized myocardial scar in 6.2% of the study population.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Flotats A, Bravo PE, Fukushima K, Chaudhry MA, Merrill J, Bengel FM. 82Rb PET myocardial perfusion imaging is superior to 99mTc-labelled agent SPECT in patients with known or suspected coronary artery disease. Eur J Nucl Med Mol Imaging. 2012;39:1233–9.

    Article  PubMed  Google Scholar 

  13. Parker MW, Iskandar A, Limone B, Perugini A, Kim H, Jones C, Calamari B, Coleman CI, Heller GV. Diagnostic accuracy of cardiac positron emission tomography versus single photon emission computed tomography for coronary artery disease: a bivariate meta-analysis. Circ Cardiovasc Imaging. 2012;5:700–7.

    Article  PubMed  Google Scholar 

  14. Klocke FJ, Baird MG, Lorell BH, et al. ACC/AHA/ASNC guidelines for the clinical use of cardiac radionuclide imaging--executive summary: a report of the American College of Cardiology/American Heart Association task force on practice guidelines (ACC/AHA/ASNC Committee to revise the 1995 guidelines for the clinical use of cardiac radionuclide imaging). J Am Coll Cardiol. 2003;42:1318–33.

    Article  PubMed  Google Scholar 

  15. •• Rischpler C, Nekolla SG, Kunze KP, Schwaiger M. PET/MRI of the heart. Semin Nucl Med. 2015;45:234–47. An excellent review of the technical challenges and potential clinical applications of PET/MR.

    Article  PubMed  Google Scholar 

  16. Schwitter J, Nanz D, Kneifel S, Bertschinger K, Büchi M, Knüsel PR, Marincek B, Lüscher TF, von Schulthess GK. Assessment of myocardial perfusion in coronary artery disease by magnetic resonance: a comparison with positron emission tomography and coronary angiography. Circulation. 2001;103:2230–5.

    Article  CAS  PubMed  Google Scholar 

  17. Nandalur KR, Dwamena BA, Choudhri AF, Nandalur MR, Carlos RC. Diagnostic performance of stress cardiac magnetic resonance imaging in the detection of coronary artery disease: a meta-analysis. J Am Coll Cardiol. 2007;50:1343–53.

    Article  PubMed  Google Scholar 

  18. Greenwood JP, Maredia N, Younger JF, et al. Cardiovascular magnetic resonance and single-photon emission computed tomography for diagnosis of coronary heart disease (CE-MARC): a prospective trial. Lancet. 2012;379:453–60.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Morton G, Chiribiri A, Ishida M, et al. Quantification of absolute myocardial perfusion in patients with coronary artery disease: comparison between cardiovascular magnetic resonance and positron emission tomography. J Am Coll Cardiol. 2012;60:1546–55.

    Article  PubMed  Google Scholar 

  20. Tillisch J, Brunken R, Marshall R, Schwaiger M, Mandelkern M, Phelps M, Schelbert H. Reversibility of cardiac wall-motion abnormalities predicted by positron tomography. N Engl J Med. 1986;314:884–8.

    Article  CAS  PubMed  Google Scholar 

  21. Schinkel AFL, Poldermans D, Elhendy A, Bax JJ. Assessment of myocardial viability in patients with heart failure. J Nucl Med. 2007;48:1135–46.

    Article  PubMed  Google Scholar 

  22. Dickfeld T, Tian J, Ahmad G, et al. MRI-guided ventricular tachycardia ablation: integration of late gadolinium-enhanced 3D scar in patients with implantable cardioverter-defibrillators. Circ Arrhythm Electrophysiol. 2011;4:172–84.

    Article  PubMed  Google Scholar 

  23. Cummings KW, Bhalla S, Javidan-Nejad C, Bierhals AJ, Gutierrez FR, Woodard PK. A pattern-based approach to assessment of delayed enhancement in nonischemic cardiomyopathy at MR Imaging1. Radiographics. 2009;29:89–103.

    Article  PubMed  Google Scholar 

  24. Friedrich MG, Sechtem U, Schulz-Menger J, et al. Cardiovascular magnetic resonance in myocarditis: a JACC white paper. J Am Coll Cardiol. 2009;53:1475–87.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Takano H, Nakagawa K, Ishio N, Daimon M, Daimon M, Kobayashi Y, Hiroshima K, Komuro I. Active myocarditis in a patient with chronic active Epstein–Barr virus infection. Int J Cardiol. 2008;130:e11–3.

    Article  PubMed  Google Scholar 

  26. von Olshausen G, Hyafil F, Langwieser N, Laugwitz K-L, Schwaiger M, Ibrahim T. Detection of acute inflammatory myocarditis in Epstein Barr virus infection using hybrid 18F-fluoro-deoxyglucose-positron emission tomography/magnetic resonance imaging. Circulation. 2014;130:925–6.

    Article  Google Scholar 

  27. Piriou N, Sassier J, Pallardy A, Serfaty J-M, Trochu J-N. Utility of cardiac FDG-PET imaging coupled to magnetic resonance for the management of an acute myocarditis with non-informative endomyocardial biopsy. Eur Heart J Cardiovasc Imaging. 2015;16:574.

    Article  PubMed  Google Scholar 

  28. Vignaux O, Dhote R, Duboc D, Blanche P, Devaux J-Y, Weber S, Legmann P. Detection of myocardial involvement in patients with sarcoidosis applying T2-weighted, contrast-enhanced, and cine magnetic resonance imaging: initial results of a prospective study. J Comput Assist Tomogr. 2002;26:762–7.

    Article  PubMed  Google Scholar 

  29. Patel MR, Cawley PJ, Heitner JF, et al. Detection of myocardial damage in patients with sarcoidosis. Circulation. 2009;120:1969–77.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Greulich S, Deluigi CC, Gloekler S, et al. CMR imaging predicts death and other adverse events in suspected cardiac sarcoidosis. JACC Cardiovasc Imaging. 2013;6:501–11.

    Article  PubMed  Google Scholar 

  31. Skali H, Schulman AR, Dorbala S. 18F-FDG PET/CT for the assessment of myocardial sarcoidosis. Curr Cardiol Rep. 2013; doi:10.1007/s11886-013-0352-8.

    PubMed Central  Google Scholar 

  32. Blankstein R, Osborne M, Naya M, et al. Cardiac positron emission tomography enhances prognostic assessments of patients with suspected cardiac sarcoidosis. J Am Coll Cardiol. 2014;63:329–36.

    Article  PubMed  Google Scholar 

  33. Youssef G, Leung E, Mylonas I, et al. The use of 18F-FDG PET in the diagnosis of cardiac sarcoidosis: a systematic review and Metaanalysis including the Ontario experience. J Nucl Med. 2012;53:241–8.

    Article  CAS  PubMed  Google Scholar 

  34. Takeda N, Yokoyama I, Hiroi Y, Sakata M, Harada T, Nakamura F, Murakawa Y, Nagai R. Positron emission tomography predicted recovery of complete A-V nodal dysfunction in a patient with cardiac sarcoidosis. Circulation. 2002;105:1144–5.

    Article  CAS  PubMed  Google Scholar 

  35. White JA, Rajchl M, Butler J, Thompson RT, Prato FS, Wisenberg G. Active cardiac sarcoidosis: first clinical experience of simultaneous positron emission tomography-magnetic resonance imaging for the diagnosis of cardiac disease. Circulation. 2013;127:e639–41.

    Article  PubMed  Google Scholar 

  36. Rischpler C, Nekolla SG, Dregely I, Schwaiger M. Hybrid PET/MR imaging of the heart: potential, initial experiences, and future prospects. J Nucl Med. 2013;54:402–15.

    Article  CAS  PubMed  Google Scholar 

  37. O’Meara C, Menezes LJ, White SK, Wicks E, Elliott P. Inital experience of imaging cardiac sarcoidosis using hybrid PET-MR - a technologist’s case study. J Cardiovasc Magn Reson. 2013;15:T1.

    PubMed Central  Google Scholar 

  38. Rubinshtein R, Glockner JF, Ommen SR, et al. Characteristics and clinical significance of late gadolinium enhancement by contrast-enhanced magnetic resonance imaging in patients with hypertrophic cardiomyopathy. Circ Heart Fail. 2010;3:51–8.

    Article  PubMed  Google Scholar 

  39. Chan RH, Maron BJ, Olivotto I, et al. Prognostic value of quantitative contrast-enhanced cardiovascular magnetic resonance for the evaluation of sudden death risk in patients with hypertrophic cardiomyopathy. Circulation. 2014;130:484–95.

    Article  PubMed  Google Scholar 

  40. Maron MS, Appelbaum E, Harrigan CJ, Buros J, Gibson CM, Hanna C, Lesser JR, Udelson JE, Manning WJ, Maron BJ. Clinical profile and significance of delayed enhancement in hypertrophic cardiomyopathy. Circ Heart Fail. 2008;1:184–91.

    Article  PubMed  Google Scholar 

  41. Kong E-J, Lee S-H, Cho I-H. Myocardial fibrosis in hypertrophic cardiomyopathy demonstrated by integrated cardiac F-18 FDG PET/MR. Nucl Med Mol Imaging. 2013;47:196–200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Aoyama R, Takano H, Kobayashi Y, Kitamura M, Asai K, Kumita S-I, Shimizu W. Evaluation of myocardial glucose metabolism in hypertrophic cardiomyopathy by 18F-Fluorodeoxyglucose positron emission tomography: impact of alcohol septal ablation therapy. J Am Coll Cardiol. 2016;67:1520.

    Article  Google Scholar 

  43. Burke A, Jeudy J Jr, Virmani R (2007) Cardiac Tumors. In: Topol EJ, Califf RM (eds) Textbook of Cardiovascular Medicine, Third. Lippincott Williams & Wilkins, pp 710–18.

  44. • Nensa F, Tezgah E, Poeppel TD, Jensen CJ, Schelhorn J, Köhler J, Heusch P, Bruder O, Schlosser T, Nassenstein K. Integrated 18F-FDG PET/MR imaging in the assessment of cardiac masses: a pilot study. J Nucl Med. 2015;56:255–60. This article demonstrates the utility of PET-MR with the assessment of malignancy in diagnostic workup of cardiac tumors.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean Jeudy.

Ethics declarations

Conflict of Interest

Peter J. Bergquist, Michael S. Chung, Anja Jones, Mark A. Ahlman, Charles S. White, and Jean Jeudy declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Nuclear Cardiology

Electronic supplementary material

Suppl Figure 1

Patient with 3 vessel coronary disease and transmural infarct. (A) Gradient echo sequence demonstrating a transmural perfusion abnormality of the apical left ventricle. (B) Fused FDG PET demonstrates absence of myocardial metabolism in the same territory consistent with infarcted tissue. Additional correlation with LGE confirms the location and severity of injury. (C) MR images and presence of late gadolinium enhancement confirms the location and severity of injury. (TIFF 2269 kb)

Suppl Figure 2

Patient with pulmonary sarcoidosis and decreased ventricular function. (A-D) Steady state free precession MR and PET images demonstrate FDG activity in multiple mediastinal lymph nodes. No evidence of cardiac involvement was observed. (TIFF 2622 kb)

Suppl Figure 3

Patient with cervical carcinoma with cardiac metastases. (A) Echocardiography demonstrates thickening of the lateral wall of the left ventricle but otherwise no characterizing findings. (B,C) The same lateral wall abnormality on MR appears isointense on T1 weighted images but hyperintense on T2-weighted images suggesting central necrosis. (D) Gradient echo perfusion sequence shows significantly decreased signal. (E,F) Steady state free precession and fused PET MR also suggest an infiltrative mass with central necrosis and increased metabolic activity. (TIFF 2564 kb)

Suppl Figure 4

Patient with metastatic adrenocortical carcinoma. (A,B) Axial SSFP and fused FDG PET demonstrates a metabolically active chest wall nodule and right hilar adenopathy. Limited view of the right ventricle also reveals an intracavitary soft tissue mass. (C,D) Fused FDG PET and unfused SSFP images demonstrate in the mass in the right ventricle and extending into the right ventricular outflow tract. (TIFF 2413 kb)

Suppl Figure 5

Right adrenal pheochromocytoma. (A,B) Sagittal T2 and FDG-PET images demonstrate a large right adrenal mass extending up the inferior vena cava and into the right atrium. (C,D) Oblique T1 weighted image and fused FDG-PET images further illustrate the extent of metastases and its metabolic activity. (TIFF 2066 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bergquist, P.J., Chung, M.S., Jones, A. et al. Cardiac Applications of PET-MR. Curr Cardiol Rep 19, 42 (2017). https://doi.org/10.1007/s11886-017-0847-9

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11886-017-0847-9

Keywords

Navigation