Current Cardiology Reports

, 19:13 | Cite as

Mechanisms of Cardiomyocyte Proliferation and Differentiation in Development and Regeneration

  • Jessie Wettig Yester
  • Bernhard KühnEmail author
Regenerative Medicine (SM Wu, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Regenerative Medicine


Purpose of Review

Congenital heart disease is the most common birth defect and acquired heart disease is the leading cause of death in adults. Understanding the mechanisms that drive cardiomyocyte proliferation and differentiation has the potential to advance the understanding and potentially the treatment of different cardiac pathologies, ranging from myopathies and heart failure to myocardial infarction. This review focuses on studies aimed at elucidating signal transduction pathways and molecular mechanisms that promote proliferation, differentiation, and regeneration of differentiated heart muscle cells, cardiomyocytes.

Recent Findings

There is now significant evidence that demonstrates cardiomyocytes continue to proliferate into adulthood. Potential regulators have been identified, including cell cycle regulators, extracellular ligands such as neuregulin, epigenetic targets, reactive oxygen species, and microRNA.


The necessary steps should involve validating and applying the new knowledge about cardiomyocyte regeneration towards the development of therapeutic targets for patients. This will be facilitated by the application of standardized pre-clinical models to study cardiomyocyte regeneration.


Cardiomyocyte Proliferation Differentiation Regeneration Cell cycle 



This research was supported by the Richard King Mellon Foundation Institute for Pediatric Research (Children’s Hospital of Pittsburgh of UPMC), by a Transatlantic Network of Excellence grant by Fondation Leducq (15CVD03), Children’s Cardiomyopathy Foundation, and NIH grants R01HL106302 and U01MH098953 (to BK). We apologize for the researchers whose publications we were not able to discuss and cite due to space constraints.

Compliance with Ethical Standards

Conflict of Interest

Jessie Wettig Yester and Bernhard Kühn declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.


Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Zhang Y, Mignone J, MacLellan WR. Cardiac regeneration and stem cells. Physiol Rev. 2015;95(4):1189–204.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Garbern JC, Lee RT. Cardiac stem cell therapy and the promise of heart regeneration. Cell Stem Cell. 2013;12(6):689–98.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Wong ND. Epidemiological studies of CHD and the evolution of preventive cardiology. Nat Rev Cardiol. 2014;11(5):276–89.PubMedCrossRefGoogle Scholar
  4. 4.
    van der Bom T, Zomer AC, Zwinderman AH, Meijboom FJ, Bouma BJ, Mulder BJ. The changing epidemiology of congenital heart disease. Nat Rev Cardiol. 2011;8(1):50–60.PubMedCrossRefGoogle Scholar
  5. 5.
    van der Linde D, Konings EE, Slager MA, Witsenburg M, Helbing WA, Takkenberg JJ, et al. Birth prevalence of congenital heart disease worldwide: a systematic review and meta-analysis. J Am Coll Cardiol. 2011;58(21):2241–7.PubMedCrossRefGoogle Scholar
  6. 6.
    Linzbach AJ. Heart failure from the point of view of quantitative anatomy. Am J Cardiol. 1960;5:370–82.PubMedCrossRefGoogle Scholar
  7. 7.
    Rumyantsev PP. Reproduction of cardiac myocytes developing in vivo and its relation to processes of differentiation. In: Carlson BM, editor. Reproduction of growth and hyperplasia of cardiac muscle cells. 3. Chur, Switzerland: Harwood Academic Publishers; 1991. p. 70–157.Google Scholar
  8. 8.
    Borisov AB, Claycomb WC. Proliferative potential and differentiated characteristics of cultured cardiac muscle cells expressing the SV40 T oncogene. Ann N Y Acad Sci. 1995;752:80–91.PubMedCrossRefGoogle Scholar
  9. 9.
    • Bergmann O, Zdunek S, Felker A, Salehpour M, Alkass K, Bernard S, et al. Dynamics of cell generation and turnover in the human heart. Cell. 2015;161(7):1566–75. This paper presents a growth model of the human heart. Determined that the number of cardiomyocytes is established at birth and remains stable throughout the human lifespan. Carbon dating and population modeling was used to determine that turnover was highest in infants and declined gradually throughout life span. The same hearts were examined by both Bergmann et al. and Mollova et al. PubMedCrossRefGoogle Scholar
  10. 10.
    • Mollova M, Bersell K, Walsh S, Savla J, Das LT, Park SY, et al. Cardiomyocyte proliferation contributes to heart growth in young humans. Proc Natl Acad Sci U S A. 2013;110(4):1446–51. This paper presents a growth model of the human heart. Determined that the number of cardiomyocytes increases in infants and children. The percentages of cardiomyocytes in mitosis and cytokinesis were highest in infants and children; percentages of mitosis decreased to low levels and cytokinesis to zero by adulthood. PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Lal S, Li A, Allen D, Allen PD, Bannon P, Cartmill T, et al. Best practice biobanking of human heart tissue. Biophys Rev. 2015;7(4):399–406.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Bergmann O, Bhardwaj RD, Bernard S, Zdunek S, Barnabe-Heider F, Walsh S, et al. Evidence for cardiomyocyte renewal in humans. Science. 2009;324(5923):98–102.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Bergmann O, Zdunek S, Alkass K, Druid H, Bernard S, Frisen J. Identification of cardiomyocyte nuclei and assessment of ploidy for the analysis of cell turnover. Exp Cell Res. 2011;317(2):188–94. doi: 10.1016/j.yexcr.2010.08.017.
  14. 14.
    Soonpaa MH, Kim KK, Pajak L, Franklin M, Field LJ. Cardiomyocyte DNA synthesis and binucleation during murine development. Am J Physiol. 1996;271(5 Pt 2):H2183–9.PubMedGoogle Scholar
  15. 15.
    Li F, Wang X, Capasso JM, Gerdes AM. Rapid transition of cardiac myocytes from hyperplasia to hypertrophy during postnatal development. J Mol Cell Cardiol. 1996;28(8):1737–46.PubMedCrossRefGoogle Scholar
  16. 16.
    Naqvi N, Li M, Calvert JW, Tejada T, Lambert JP, Wu J, et al. A proliferative burst during preadolescence establishes the final cardiomyocyte number. Cell. 2014;157(4):795–807.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Alkass K, Panula J, Westman M, Wu TD, Guerquin-Kern JL, Bergmann O. No evidence for cardiomyocyte number expansion in preadolescent mice. Cell. 2015;163(4):1026–36.PubMedCrossRefGoogle Scholar
  18. 18.
    Porrello ER, Mahmoud AI, Simpson E, Hill JA, Richardson JA, Olson EN, et al. Transient regenerative potential of the neonatal mouse heart. Science. 2011;331(6020):1078–80.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Poss KD, Wilson LG, Keating MT. Heart regeneration in zebrafish. Science. 2002;298(5601):2188–90.PubMedCrossRefGoogle Scholar
  20. 20.
    Jopling C, Sleep E, Raya M, Marti M, Raya A, Izpisua Belmonte JC. Zebrafish heart regeneration occurs by cardiomyocyte dedifferentiation and proliferation. Nature. 2010;464(7288):606–9.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Kikuchi K, Holdway JE, Werdich AA, Anderson RM, Fang Y, Egnaczyk GF, et al. Primary contribution to zebrafish heart regeneration by gata4(+) cardiomyocytes. Nature. 2010;464(7288):601–5.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Oberpriller JO, Oberpriller JC. Response of the adult newt ventricle to injury. J Exp Zool. 1974;187(2):249–53.PubMedCrossRefGoogle Scholar
  23. 23.
    Lin Z, Pu WT. Strategies for cardiac regeneration and repair. Sci Transl Med. 2014;6(239):239rv1.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Sedmera D, Thompson RP. Myocyte proliferation in the developing heart. Dev Dyn. 2011;240(6):1322–34.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Soufan AT, van den Berg G, Moerland PD, Massink MM, van den Hoff MJ, Moorman AF, et al. Three-dimensional measurement and visualization of morphogenesis applied to cardiac embryology. J Microsc. 2007;225(Pt 3):269–74.PubMedCrossRefGoogle Scholar
  26. 26.
    Busk PK, Bartkova J, Strom CC, Wulf-Andersen L, Hinrichsen R, Christoffersen TE, et al. Involvement of cyclin D activity in left ventricle hypertrophy in vivo and in vitro. Cardiovasc Res. 2002;56(1):64–75.PubMedCrossRefGoogle Scholar
  27. 27.
    Pasumarthi KB, Nakajima H, Nakajima HO, Soonpaa MH, Field LJ. Targeted expression of cyclin D2 results in cardiomyocyte DNA synthesis and infarct regression in transgenic mice. Circ Res. 2005;96(1):110–8.PubMedCrossRefGoogle Scholar
  28. 28.
    Zhong W, Mao S, Tobis S, Angelis E, Jordan MC, Roos KP, et al. Hypertrophic growth in cardiac myocytes is mediated by Myc through a cyclin D2-dependent pathway. EMBO J. 2006;25(16):3869–79.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Chaudhry HW, Dashoush NH, Tang H, Zhang L, Wang X, Wu EX, et al. Cyclin A2 mediates cardiomyocyte mitosis in the postmitotic myocardium. J Biol Chem. 2004;279(34):35858–66.PubMedCrossRefGoogle Scholar
  30. 30.
    Cheng RK, Asai T, Tang H, Dashoush NH, Kara RJ, Costa KD, et al. Cyclin A2 induces cardiac regeneration after myocardial infarction and prevents heart failure. Circ Res. 2007;100(12):1741–8.PubMedCrossRefGoogle Scholar
  31. 31.
    Shapiro SD, Ranjan AK, Kawase Y, Cheng RK, Kara RJ, Bhattacharya R, et al. Cyclin A2 induces cardiac regeneration after myocardial infarction through cytokinesis of adult cardiomyocytes. Sci Transl Med. 2014;6(224):224ra27.PubMedCrossRefGoogle Scholar
  32. 32.
    Weinberg RA. E2F and cell proliferation: a world turned upside down. Cell. 1996;85(4):457–9.PubMedCrossRefGoogle Scholar
  33. 33.
    Kirshenbaum LA, Abdellatif M, Chakraborty S, Schneider MD. Human E2F-1 reactivates cell cycle progression in ventricular myocytes and represses cardiac gene transcription. Dev Biol. 1996;179(2):402–11.PubMedCrossRefGoogle Scholar
  34. 34.
    Liu Y, Kitsis RN. Induction of DNA synthesis and apoptosis in cardiac myocytes by E1A oncoprotein. J Cell Biol. 1996;133(2):325–34.PubMedCrossRefGoogle Scholar
  35. 35.
    Ebelt H, Zhang Y, Kampke A, Xu J, Schlitt A, Buerke M, et al. E2F2 expression induces proliferation of terminally differentiated cardiomyocytes in vivo. Cardiovasc Res. 2008;80(2):219–26.PubMedCrossRefGoogle Scholar
  36. 36.
    Pasumarthi KB, Field LJ. Cardiomyocyte cell cycle regulation. Circ Res. 2002;90(10):1044–54.PubMedCrossRefGoogle Scholar
  37. 37.
    Senyo SE, Lee RT, Kuhn B. Cardiac regeneration based on mechanisms of cardiomyocyte proliferation and differentiation. Stem Cell Res. 2014;13(3 Pt B):532–41.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Niessen K, Karsan A. Notch signaling in cardiac development. Circ Res. 2008;102(10):1169–81.PubMedCrossRefGoogle Scholar
  39. 39.
    Nemir M, Pedrazzini T. Functional role of Notch signaling in the developing and postnatal heart. J Mol Cell Cardiol. 2008;45(4):495–504.PubMedCrossRefGoogle Scholar
  40. 40.
    Luxan G, D’Amato G, MacGrogan D, de la Pompa JL. Endocardial Notch signaling in cardiac development and disease. Circ Res. 2016;118(1):e1–e18.PubMedCrossRefGoogle Scholar
  41. 41.
    Collesi C, Zentilin L, Sinagra G, Giacca M. Notch1 signaling stimulates proliferation of immature cardiomyocytes. J Cell Biol. 2008;183(1):117–28.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Felician G, Collesi C, Lusic M, Martinelli V, Ferro MD, Zentilin L, et al. Epigenetic modification at Notch responsive promoters blunts efficacy of inducing notch pathway reactivation after myocardial infarction. Circ Res. 2014;115(7):636–49.PubMedCrossRefGoogle Scholar
  43. 43.
    Bersell K, Arab S, Haring B, Kuhn B. Neuregulin1/ErbB4 signaling induces cardiomyocyte proliferation and repair of heart injury. Cell. 2009;138(2):257–70.PubMedCrossRefGoogle Scholar
  44. 44.
    • Polizzotti BD, Ganapathy B, Walsh S, Choudhury S, Ammanamanchi N, Bennett DG, et al. Neuregulin stimulation of cardiomyocyte regeneration in mice and human myocardium reveals a therapeutic window. Sci Transl Med. 2015;7(281):281ra45. Application of recombinant NRG1 was sufficient to induce proliferation of cardiomyocyte in neonatal mice and infant myocardium. PubMedCrossRefGoogle Scholar
  45. 45.
    Ganapathy B, Nandhagopal N, Polizzotti BD, Bennett D, Asan A, Wu Y, et al. Neuregulin-1 administration protocols sufficient for stimulating cardiac regeneration in young mice do not induce somatic, organ, or neoplastic growth. PLoS One. 2016;11(5), e0155456.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Wadugu B, Kuhn B. The role of neuregulin/ErbB2/ErbB4 signaling in the heart with special focus on effects on cardiomyocyte proliferation. Am J Physiol Heart Circ Physiol. 2012;302(11):H2139–47.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Parodi EM, Kuhn B. Signalling between microvascular endothelium and cardiomyocytes through neuregulin. Cardiovasc Res. 2014;102(2):194–204.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Citri A, Yarden Y. EGF-ERBB signalling: towards the systems level. Nat Rev Mol Cell Biol. 2006;7(7):505–16.PubMedCrossRefGoogle Scholar
  49. 49.
    Telli ML, Hunt SA, Carlson RW, Guardino AE. Trastuzumab-related cardiotoxicity: calling into question the concept of reversibility. J Clin Oncol. 2007;25(23):3525–33.PubMedCrossRefGoogle Scholar
  50. 50.
    Lee KF, Simon H, Chen H, Bates B, Hung MC, Hauser C. Requirement for neuregulin receptor erbB2 in neural and cardiac development. Nature. 1995;378(6555):394–8.PubMedCrossRefGoogle Scholar
  51. 51.
    Gassmann M, Casagranda F, Orioli D, Simon H, Lai C, Klein R, et al. Aberrant neural and cardiac development in mice lacking the ErbB4 neuregulin receptor. Nature. 1995;378(6555):390–4.PubMedCrossRefGoogle Scholar
  52. 52.
    Meyer D, Birchmeier C. Multiple essential functions of neuregulin in development. Nature. 1995;378(6555):386–90.PubMedCrossRefGoogle Scholar
  53. 53.
    Tidcombe H, Jackson-Fisher A, Mathers K, Stern DF, Gassmann M, Golding JP. Neural and mammary gland defects in ErbB4 knockout mice genetically rescued from embryonic lethality. Proc Natl Acad Sci U S A. 2003;100(14):8281–6.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    • D’Uva G, Aharonov A, Lauriola M, Kain D, Yahalom-Ronen Y, Carvalho S, et al. ERBB2 triggers mammalian heart regeneration by promoting cardiomyocyte dedifferentiation and proliferation. Nat Cell Biol. 2015;17(5):627–38. NRG1 co-receptor ErbB2 enhances cardiomyocyte proliferation stimulated with recombinant neuregulin 1. Constitutively active ErbB2 is sufficient to reactivate proliferation in adult cardiomyocytes. PubMedCrossRefGoogle Scholar
  55. 55.
    Belmonte F, Das S, Sysa-Shah P, Sivakumaran V, Stanley B, Guo X, et al. ErbB2 overexpression upregulates antioxidant enzymes, reduces basal levels of reactive oxygen species, and protects against doxorubicin cardiotoxicity. Am J Physiol Heart Circ Physiol. 2015;309(8):H1271–80.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Engel FB, Schebesta M, Duong MT, Lu G, Ren S, Madwed JB, et al. p38 MAP kinase inhibition enables proliferation of adult mammalian cardiomyocytes. Genes Dev. 2005;19(10):1175–87.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Gemberling M, Karra R, Dickson AL, Poss KD. Nrg1 is an injury-induced cardiomyocyte mitogen for the endogenous heart regeneration program in zebrafish. Elife. 2015;4, e05871.PubMedCentralCrossRefGoogle Scholar
  58. 58.
    Gemberling M, Bailey TJ, Hyde DR, Poss KD. The zebrafish as a model for complex tissue regeneration. Trends Genet. 2013;29(11):611–20.PubMedCrossRefGoogle Scholar
  59. 59.
    Gao R, Zhang J, Cheng L, Wu X, Dong W, Yang X, et al. A phase II, randomized, double-blind, multicenter, based on standard therapy, placebo-controlled study of th efficacy and safety of recombinant human neuregulin-1 in patients with chronic heart failure. J Am Coll Cardiol. 2010;55(18):1907–14.PubMedCrossRefGoogle Scholar
  60. 60.
    Jabbour A, Gao L, Kwan J, Watson A, Sun L, Qiu MR, et al. A recombinant human neuregulin-1 peptide improves preservation of the rodent heart after prolonged hypothermic storage. Transplantation. 2011;91(9):961–7.PubMedCrossRefGoogle Scholar
  61. 61.
    Lockhart ST, Turrigiano GG, Birren SJ. Nerve growth factor modulates synaptic transmission between sympathetic neurons and cardiac myocytes. J Neurosci. 1997;17(24):9573–82.PubMedGoogle Scholar
  62. 62.
    Mahmoud AI, O’Meara CC, Gemberling M, Zhao L, Bryant DM, Zheng R, et al. Nerves regulate cardiomyocyte proliferation and heart regeneration. Dev Cell. 2015;34(4):387–99.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Matsukawa R, Hirooka Y, Ito K, Honda N, Sunagawa K. Central neuregulin-1/ErbB signaling modulates cardiac function via sympathetic activity in pressure overload-induced heart failure. J Hypertens. 2014;32(4):817–25.PubMedCrossRefGoogle Scholar
  64. 64.
    Kubin T, Poling J, Kostin S, Gajawada P, Hein S, Rees W, et al. Oncostatin M is a major mediator of cardiomyocyte dedifferentiation and remodeling. Cell Stem Cell. 2011;9(5):420–32.PubMedCrossRefGoogle Scholar
  65. 65.
    Aurora AB, Porrello ER, Tan W, Mahmoud AI, Hill JA, Bassel-Duby R, et al. Macrophages are required for neonatal heart regeneration. J Clin Invest. 2014;124(3):1382–92.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Lavine KJ, Epelman S, Uchida K, Weber KJ, Nichols CG, Schilling JD, et al. Distinct macrophage lineages contribute to disparate patterns of cardiac recovery and remodeling in the neonatal and adult heart. Proc Natl Acad Sci U S A. 2014;111(45):16029–34.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Wei K, Serpooshan V, Hurtado C, Diez-Cunado M, Zhao M, Maruyama S, et al. Epicardial FSTL1 reconstitution regenerates the adult mammalian heart. Nature. 2015;525(7570):479–85.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Li P, Cavallero S, Gu Y, Chen TH, Hughes J, Hassan AB, et al. IGF signaling directs ventricular cardiomyocyte proliferation during embryonic heart development. Development. 2011;138(9):1795–805.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Shen H, Cavallero S, Estrada KD, Sandovici I, Kumar SR, Makita T, et al. Extracardiac control of embryonic cardiomyocyte proliferation and ventricular wall expansion. Cardiovasc Res. 2015;105(3):271–8.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Pentassuglia L, Sawyer DB. The role of neuregulin-1beta/ErbB signaling in the heart. Exp Cell Res. 2009;315(4):627–37.PubMedCrossRefGoogle Scholar
  71. 71.
    Gu A, Jie Y, Sun L, Zhao SEM, You Q. RhNRG-1beta protects the myocardium against irradiation-induced damage via the ErbB2-ERK-SIRT1 signaling pathway. PLoS One. 2015;10(9), e0137337.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Arias-Romero LE, Villamar-Cruz O, Huang M, Hoeflich KP, Chernoff J. Pak1 kinase links ErbB2 to beta-catenin in transformation of breast epithelial cells. Cancer Res. 2013;73(12):3671–82.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Lopez-Haber C, Barrio-Real L, Casado-Medrano V, Kazanietz MG. Heregulin/ErbB3 signaling enhances CXCR4-driven Rac1 activation and breast cancer cell motility via hypoxia-inducible factor 1alpha. Mol Cell Biol. 2016;36(15):2011–26.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Ebi H, Costa C, Faber AC, Nishtala M, Kotani H, Juric D, et al. PI3K regulates MEK/ERK signaling in breast cancer via the Rac-GEF, P-Rex1. Proc Natl Acad Sci U S A. 2013;110(52):21124–9.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Peng X, He Q, Li G, Ma J, Zhong TP. Rac1-PAK2 pathway is essential for zebrafish heart regeneration. Biochem Biophys Res Commun. 2016;472(4):637–42.PubMedCrossRefGoogle Scholar
  76. 76.
    Eriksson M, Leppa S. Mitogen-activated protein kinases and activator protein 1 are required for proliferation and cardiomyocyte differentiation of P19 embryonal carcinoma cells. J Biol Chem. 2002;277(18):15992–6001.PubMedCrossRefGoogle Scholar
  77. 77.
    Liang Q, Molkentin JD. Redefining the roles of p38 and JNK signaling in cardiac hypertrophy: dichotomy between cultured myocytes and animal models. J Mol Cell Cardiol. 2003;35(12):1385–94.PubMedCrossRefGoogle Scholar
  78. 78.
    Pan D. The hippo signaling pathway in development and cancer. Dev Cell. 2010;19(4):491–505.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Xin M, Olson EN, Bassel-Duby R. Mending broken hearts: cardiac development as a basis for adult heart regeneration and repair. Nat Rev Mol Cell Biol. 2013;14(8):529–41.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    von Gise A, Lin Z, Schlegelmilch K, Honor LB, Pan GM, Buck JN, et al. YAP1, the nuclear target of Hippo signaling, stimulates heart growth through cardiomyocyte proliferation but not hypertrophy. Proc Natl Acad Sci U S A. 2012;109(7):2394–9.CrossRefGoogle Scholar
  81. 81.
    Heallen T, Zhang M, Wang J, Bonilla-Claudio M, Klysik E, Johnson RL, et al. Hippo pathway inhibits Wnt signaling to restrain cardiomyocyte proliferation and heart size. Science. 2011;332(6028):458–61.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Tian Y, Liu Y, Wang T, Zhou N, Kong J, Chen L, et al. A microRNA-Hippo pathway that promotes cardiomyocyte proliferation and cardiac regeneration in mice. Sci Transl Med. 2015;7(279):279ra38.PubMedCrossRefGoogle Scholar
  83. 83.
    Heintzman ND, Hon GC, Hawkins RD, Kheradpour P, Stark A, Harp LF, et al. Histone modifications at human enhancers reflect global cell-type-specific gene expression. Nature. 2009;459(7243):108–12.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Creyghton MP, Cheng AW, Welstead GG, Kooistra T, Carey BW, Steine EJ, et al. Histone H3K27ac separates active from poised enhancers and predicts developmental state. Proc Natl Acad Sci U S A. 2010;107(50):21931–6.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Wamstad JA, Alexander JM, Truty RM, Shrikumar A, Li F, Eilertson KE, et al. Dynamic and coordinated epigenetic regulation of developmental transitions in the cardiac lineage. Cell. 2012;151(1):206–20.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Paige SL, Thomas S, Stoick-Cooper CL, Wang H, Maves L, Sandstrom R, et al. A temporal chromatin signature in human embryonic stem cells identifies regulators of cardiac development. Cell. 2012;151(1):221–32.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Hang CT, Yang J, Han P, Cheng HL, Shang C, Ashley E, et al. Chromatin regulation by Brg1 underlies heart muscle development and disease. Nature. 2010;466(7302):62–7.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Anand P, Brown JD, Lin CY, Qi J, Zhang R, Artero PC, et al. BET bromodomains mediate transcriptional pause release in heart failure. Cell. 2013;154(3):569–82.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Abbey D, Seshagiri PB. Aza-induced cardiomyocyte differentiation of P19 EC-cells by epigenetic co-regulation and ERK signaling. Gene. 2013;526(2):364–73.PubMedCrossRefGoogle Scholar
  90. 90.
    •• Kang J, Hu J, Karra R, Dickson AL, Tornini VA, Nachtrab G, et al. Modulation of tissue repair by regeneration enhancer elements. Nature. 2016;532(7598):201–6. Identified a common regeneration enhancer mechanism for the regulation of genes in regenerating tissue. The mechanism has the potential to active clusters of genes, which will likely be necessary for meaningful proliferation. PubMedCrossRefGoogle Scholar
  91. 91.
    Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman JM. Positional cloning of the mouse obese gene and its human homologue. Nature. 1994;372(6505):425–32.PubMedCrossRefGoogle Scholar
  92. 92.
    Fang Y, Gupta V, Karra R, Holdway JE, Kikuchi K, Poss KD. Translational profiling of cardiomyocytes identifies an early Jak1/Stat3 injury response required for zebrafish heart regeneration. Proc Natl Acad Sci U S A. 2013;110(33):13416–21.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Bodnar AG, Ouellette M, Frolkis M, Holt SE, Chiu CP, Morin GB, et al. Extension of life-span by introduction of telomerase into normal human cells. Science. 1998;279(5349):349–52.PubMedCrossRefGoogle Scholar
  94. 94.
    Hahn WC, Stewart SA, Brooks MW, York SG, Eaton E, Kurachi A, et al. Inhibition of telomerase limits the growth of human cancer cells. Nat Med. 1999;5(10):1164–70.PubMedCrossRefGoogle Scholar
  95. 95.
    Oh H, Taffet GE, Youker KA, Entman ML, Overbeek PA, Michael LH, et al. Telomerase reverse transcriptase promotes cardiac muscle cell proliferation, hypertrophy, and survival. Proc Natl Acad Sci U S A. 2001;98(18):10308–13.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Di Stefano V, Giacca M, Capogrossi MC, Crescenzi M, Martelli F. Knockdown of cyclin-dependent kinase inhibitors induces cardiomyocyte re-entry in the cell cycle. J Biol Chem. 2011;286(10):8644–54.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Puente BN, Kimura W, Muralidhar SA, Moon J, Amatruda JF, Phelps KL, et al. The oxygen-rich postnatal environment induces cardiomyocyte cell-cycle arrest through DNA damage response. Cell. 2014;157(3):565–79.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Kimura W, Xiao F, Canseco DC, Muralidhar S, Thet S, Zhang HM, et al. Hypoxia fate mapping identifies cycling cardiomyocytes in the adult heart. Nature. 2015;523(7559):226–30.PubMedCrossRefGoogle Scholar
  99. 99.
    Lipshultz SE, Lipsitz SR, Sallan SE, Simbre 2nd VC, Shaikh SL, Mone SM, et al. Long-term enalapril therapy for left ventricular dysfunction in doxorubicin-treated survivors of childhood cancer. J Clin Oncol. 2002;20(23):4517–22.PubMedCrossRefGoogle Scholar
  100. 100.
    van Dalen EC, Caron HN, Dickinson HO, Kremer LC. Cardioprotective interventions for cancer patients receiving anthracyclines. Cochrane Database Syst Rev. 2005;1, CD003917.Google Scholar
  101. 101.
    Myers C. The role of iron in doxorubicin-induced cardiomyopathy. Semin Oncol. 1998;25(4 Suppl 10):10–4.PubMedGoogle Scholar
  102. 102.
    Lebrecht D, Geist A, Ketelsen UP, Haberstroh J, Setzer B, Walker UA. Dexrazoxane prevents doxorubicin-induced long-term cardiotoxicity and protects myocardial mitochondria from genetic and functional lesions in rats. Br J Pharmacol. 2007;151(6):771–8.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Lyu YL, Kerrigan JE, Lin CP, Azarova AM, Tsai YC, Ban Y, et al. Topoisomerase IIbeta mediated DNA double-strand breaks: implications in doxorubicin cardiotoxicity and prevention by dexrazoxane. Cancer Res. 2007;67(18):8839–46.PubMedCrossRefGoogle Scholar
  104. 104.
    Zhang S, Liu X, Bawa-Khalfe T, Lu LS, Lyu YL, Liu LF, et al. Identification of the molecular basis of doxorubicin-induced cardiotoxicity. Nat Med. 2012;18(11):1639–42.PubMedCrossRefGoogle Scholar
  105. 105.
    Pasquinelli AE. MicroRNAs and their targets: recognition, regulation and an emerging reciprocal relationship. Nat Rev Genet. 2012;13(4):271–82.PubMedGoogle Scholar
  106. 106.
    Chen JF, Murchison EP, Tang R, Callis TE, Tatsuguchi M, Deng Z, et al. Targeted deletion of Dicer in the heart leads to dilated cardiomyopathy and heart failure. Proc Natl Acad Sci U S A. 2008;105(6):2111–6.PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Rao PK, Toyama Y, Chiang HR, Gupta S, Bauer M, Medvid R, et al. Loss of cardiac microRNA-mediated regulation leads to dilated cardiomyopathy and heart failure. Circ Res. 2009;105(6):585–94.PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Matkovich SJ, Van Booven DJ, Youker KA, Torre-Amione G, Diwan A, Eschenbacher WH, et al. Reciprocal regulation of myocardial microRNAs and messenger RNA in human cardiomyopathy and reversal of the microRNA signature by biomechanical support. Circulation. 2009;119(9):1263–71.PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Ikeda S, Kong SW, Lu J, Bisping E, Zhang H, Allen PD, et al. Altered microRNA expression in human heart disease. Physiol Genomics. 2007;31(3):367–73.PubMedCrossRefGoogle Scholar
  110. 110.
    Thum T, Gross C, Fiedler J, Fischer T, Kissler S, Bussen M, et al. MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts. Nature. 2008;456(7224):980–4.PubMedCrossRefGoogle Scholar
  111. 111.
    Eulalio A, Mano M, Dal Ferro M, Zentilin L, Sinagra G, Zacchigna S, et al. Functional screening identifies miRNAs inducing cardiac regeneration. Nature. 2012;492(7429):376–81.PubMedCrossRefGoogle Scholar
  112. 112.
    Liu N, Bezprozvannaya S, Williams AH, Qi X, Richardson JA, Bassel-Duby R, et al. microRNA-133a regulates cardiomyocyte proliferation and suppresses smooth muscle gene expression in the heart. Genes Dev. 2008;22(23):3242–54.PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Zhao Y, Samal E, Srivastava D. Serum response factor regulates a muscle-specific microRNA that targets Hand2 during cardiogenesis. Nature. 2005;436(7048):214–20.PubMedCrossRefGoogle Scholar
  114. 114.
    Zhao Y, Ransom JF, Li A, Vedantham V, von Drehle M, Muth AN, et al. Dysregulation of cardiogenesis, cardiac conduction, and cell cycle in mice lacking miRNA-1-2. Cell. 2007;129(2):303–17.PubMedCrossRefGoogle Scholar
  115. 115.
    Porrello ER, Johnson BA, Aurora AB, Simpson E, Nam YJ, Matkovich SJ, et al. MiR-15 family regulates postnatal mitotic arrest of cardiomyocytes. Circ Res. 2011;109(6):670–9.PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Liang D, Li J, Wu Y, Zhen L, Li C, Qi M, et al. miRNA-204 drives cardiomyocyte proliferation via targeting Jarid2. Int J Cardiol. 2015;201:38–48.PubMedCrossRefGoogle Scholar
  117. 117.
    Andersen DC, Ganesalingam S, Jensen CH, Sheikh SP. Do neonatal mouse hearts regenerate following heart apex resection? Stem cell reports. 2014;2(4):406–13.PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Sadek HA, Martin JF, Takeuchi JK, Leor J, Nie Y, Giacca M, et al. Multi-investigator letter on reproducibility of neonatal heart regeneration following apical resection. Stem Cell Reports. 2014;3(1):1.PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Darehzereshki A, Rubin N, Gamba L, Kim J, Fraser J, Huang Y, et al. Differential regenerative capacity of neonatal mouse hearts after cryoinjury. Dev Biol. 2015;399(1):91–9.PubMedCrossRefGoogle Scholar
  120. 120.
    Bryant DM, O’Meara CC, Ho NN, Gannon J, Cai L, Lee RT. A systematic analysis of neonatal mouse heart regeneration after apical resection. J Mol Cell Cardiol. 2015;79:315–8.PubMedCrossRefGoogle Scholar
  121. 121.
    Mahmoud AI, Porrello ER, Kimura W, Olson EN, Sadek HA. Surgical models for cardiac regeneration in neonatal mice. Nat Protoc. 2014;9(2):305–11.PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Polizzotti BD, Ganapathy B, Haubner BJ, Penninger JM, Kuhn B. A cryoinjury model in neonatal mice for cardiac translational and regeneration research. Nat Protoc. 2016;11(3):542–52.PubMedCrossRefGoogle Scholar
  123. 123.
    Haubner BJ, Schuetz T, Penninger JM. A reproducible protocol for neonatal ischemic injury and cardiac regeneration in neonatal mice. Basic Res Cardiol. 2016;111(6):64.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Children’s Hospital of Pittsburgh of UPMC, Department of PediatricsUniversity of Pittsburgh School of MedicinePittsburghUSA
  2. 2.Richard King Mellon Foundation Institute for Pediatric Research and Division of Cardiology, Children’s Hospital of Pittsburgh of UPMC, and Department of PediatricsUniversity of Pittsburgh School of MedicinePittsburghUSA

Personalised recommendations