Skip to main content
Log in

Bioresorbable Scaffolds for Coronary Artery Disease

  • Ischemic Heart Disease (D Mukherjee, Section Editor)
  • Published:
Current Cardiology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

The purpose of this review is to present an overview of the recent evidence regarding the use of bioresorbable scaffolds in percutaneous coronary intervention.

Recent Findings

Bioresorbable scaffolds represent a potentially unique engineering solution to the problems associated with metallic stents. The Absorb everolimus-eluting bioresorbable scaffold has been the most extensively tested of this class and is currently Food and Drug Administration-approved for use in the USA. While early studies suggested that it has comparable overall efficacy as compared to drug-eluting metallic stents, they also demonstrated a significantly increased risk of stent thrombosis.

Summary

Bioresorbable scaffolds may be comparable to drug-eluting stents, though associated with an increased risk of stent thrombosis. They are a nascent technology with several competitive product designs in development and continued iterative technological improvements are expected over the next several years.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Gruntzig A. Transluminal dilatation of coronary-artery stenosis. Lancet. 1978;1:263.

    Article  CAS  PubMed  Google Scholar 

  2. Gruntzig AR, Senning Å, Siegenthaler WE. Nonoperative dilatation of coronary-artery stenosis. N Engl J Med. 1979;301:61–8.

    Article  CAS  PubMed  Google Scholar 

  3. Lincoff AM, Popma JJ, Ellis SG, Hacker JA, Topol EJ. Abrupt vessel closure complicating coronary angioplasty: clinical, angiographic and therapeutic profile. J Am Coll Cardiol. 1992;19:926–35.

    Article  CAS  PubMed  Google Scholar 

  4. Sigwart U, Urban P, Golf S, et al. Emergency stenting for acute occlusion after coronary balloon angioplasty. Circulation. 1988;78:1121–7.

    Article  CAS  PubMed  Google Scholar 

  5. Sigwart U, Puel J, Mirkovitch V, Joffre F, Kappenberger L. Intravascular stents to prevent occlusion and restenosis after transluminal angioplasty. N Engl J Med. 1987;316:701–6.

    Article  CAS  PubMed  Google Scholar 

  6. Serruys PW, Strauss BH, Beatt KJ, et al. Angiographic follow-up after placement of a self-expanding coronary-artery stent. N Engl J Med. 1991;324:13–7.

    Article  CAS  PubMed  Google Scholar 

  7. Serruys PW, de Jaegere P, Kiemeneij F, et al. A comparison of balloon-expandable-stent implantation with balloon angioplasty in patients with coronary artery disease. Benestent Study Group. N Engl J Med. 1994;331:489–95.

    Article  CAS  PubMed  Google Scholar 

  8. Fischman DL, Leon MB, Baim DS, et al. A randomized comparison of coronary-stent placement and balloon angioplasty in the treatment of coronary artery disease. Stent Restenosis Study Investigators. N Engl J Med. 1994;331:496–501.

    Article  CAS  PubMed  Google Scholar 

  9. Hoffmann R, Mintz GS, Dussaillant GR, et al. Patterns and mechanisms of in-stent restenosis. A serial intravascular ultrasound study. Circulation. 1996;94:1247–54.

    Article  CAS  PubMed  Google Scholar 

  10. Cutlip DE, Chauhan MS, Baim DS, et al. Clinical restenosis after coronary stenting: perspectives from multicenter clinical trials. J Am Coll Cardiol. 2002;40:2082–9.

    Article  PubMed  Google Scholar 

  11. Gallo R, Padurean A, Jayaraman T, et al. Inhibition of intimal thickening after balloon angioplasty in porcine coronary arteries by targeting regulators of the cell cycle. Circulation. 1999;99:2164–70.

    Article  CAS  PubMed  Google Scholar 

  12. Burke SE, Lubbers NL, Chen YW, et al. Neointimal formation after balloon-induced vascular injury in Yucatan minipigs is reduced by oral rapamycin. J Cardiovasc Pharmacol. 1999;33:829–35.

    Article  CAS  PubMed  Google Scholar 

  13. Morice MC, Serruys PW, Sousa JE, et al. A randomized comparison of a sirolimus-eluting stent with a standard stent for coronary revascularization. N Engl J Med. 2002;346:1773–80.

    Article  CAS  PubMed  Google Scholar 

  14. Moses JW, Leon MB, Popma JJ, et al. Sirolimus-eluting stents versus standard stents in patients with stenosis in a native coronary artery. N Engl J Med. 2003;349:1315–23.

    Article  CAS  PubMed  Google Scholar 

  15. Stone GW, Ellis SG, Cox DA, et al. A polymer-based, paclitaxel-eluting stent in patients with coronary artery disease. N Engl J Med. 2004;350:221–31.

    Article  CAS  PubMed  Google Scholar 

  16. Kirtane AJ, Gupta A, Iyengar S, et al. Safety and efficacy of drug-eluting and bare metal stents: comprehensive meta-analysis of randomized trials and observational studies. Circulation. 2009;119:3198–206.

    Article  CAS  PubMed  Google Scholar 

  17. Bonaa KH, Mannsverk J, Wiseth R, et al. Drug-eluting or bare-metal stents for coronary artery disease. N Engl J Med 2016.

  18. Lagerqvist B, James SK, Stenestrand U, et al. Long-term outcomes with drug-eluting stents versus bare-metal stents in Sweden. N Engl J Med. 2007;356:1009–19.

    Article  CAS  PubMed  Google Scholar 

  19. Daemen J, Wenaweser P, Tsuchida K, et al. Early and late coronary stent thrombosis of sirolimus-eluting and paclitaxel-eluting stents in routine clinical practice: data from a large two-institutional cohort study. Lancet. 2007;369:667–78.

    Article  CAS  PubMed  Google Scholar 

  20. Park SJ, Kang SJ, Virmani R, Nakano M, Ueda Y. In-stent neoatherosclerosis: a final common pathway of late stent failure. J Am Coll Cardiol. 2012;59:2051–7.

    Article  PubMed  Google Scholar 

  21. Cheneau E, Leborgne L, Mintz GS, et al. Predictors of subacute stent thrombosis: results of a systematic intravascular ultrasound study. Circulation. 2003;108:43–7.

    Article  PubMed  Google Scholar 

  22. Cutlip DE, Chhabra AG, Baim DS, et al. Beyond restenosis: five-year clinical outcomes from second-generation coronary stent trials. Circulation. 2004;110:1226–30.

    Article  PubMed  Google Scholar 

  23. Palmerini T, Kirtane AJ, Serruys PW, et al. Stent thrombosis with everolimus-eluting stents: meta-analysis of comparative randomized controlled trials. Circ Cardiovasc Interv. 2012;5:357–64.

    Article  CAS  PubMed  Google Scholar 

  24. van der Giessen WJ, Lincoff AM, Schwartz RS, et al. Marked inflammatory sequelae to implantation of biodegradable and nonbiodegradable polymers in porcine coronary arteries. Circulation. 1996;94:1690–7.

    Article  PubMed  Google Scholar 

  25. Virmani R, Guagliumi G, Farb A, et al. Localized hypersensitivity and late coronary thrombosis secondary to a sirolimus-eluting stent: should we be cautious? Circulation. 2004;109:701–5.

    Article  PubMed  Google Scholar 

  26. Joner M, Finn AV, Farb A, et al. Pathology of drug-eluting stents in humans: delayed healing and late thrombotic risk. J Am Coll Cardiol. 2006;48:193–202.

    Article  PubMed  Google Scholar 

  27. Kadakia MB, Epps KC, Julien ME, et al. Early aneurysm formation after everolimus-eluting stent implantation. Circ Cardiovasc Interv. 2014;7:266–7.

    Article  PubMed  Google Scholar 

  28. Stefanini GG, Kalesan B, Serruys PW, et al. Long-term clinical outcomes of biodegradable polymer biolimus-eluting stents versus durable polymer sirolimus-eluting stents in patients with coronary artery disease (LEADERS): 4 year follow-up of a randomised non-inferiority trial. Lancet. 2011;378:1940–8.

    Article  CAS  PubMed  Google Scholar 

  29. Stefanini GG, Byrne RA, Serruys PW, et al. Biodegradable polymer drug-eluting stents reduce the risk of stent thrombosis at 4 years in patients undergoing percutaneous coronary intervention: a pooled analysis of individual patient data from the ISAR-TEST 3, ISAR-TEST 4, and LEADERS randomized trials. Eur Heart J. 2012;33:1214–22.

    Article  CAS  PubMed  Google Scholar 

  30. de Waha A, Stefanini GG, King LA, et al. Long-term outcomes of biodegradable polymer versus durable polymer drug-eluting stents in patients with diabetes a pooled analysis of individual patient data from 3 randomized trials. Int J Cardiol. 2013;168:5162–6.

    Article  PubMed  Google Scholar 

  31. Bangalore S, Toklu B, Amoroso N, et al. Bare metal stents, durable polymer drug eluting stents, and biodegradable polymer drug eluting stents for coronary artery disease: mixed treatment comparison meta-analysis. BMJ. 2013;347:f6625.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Navarese EP, Tandjung K, Claessen B, et al. Safety and efficacy outcomes of first and second generation durable polymer drug eluting stents and biodegradable polymer biolimus eluting stents in clinical practice: comprehensive network meta-analysis. BMJ. 2013;347:f6530.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Kereiakes DJ, Meredith IT, Windecker S, et al. Efficacy and safety of a novel bioabsorbable polymer-coated, everolimus-eluting coronary stent: the EVOLVE II Randomized Trial. Circ Cardiovasc Interv. 2015;8.

  34. Hofma SH, van der Giessen WJ, van Dalen BM, et al. Indication of long-term endothelial dysfunction after sirolimus-eluting stent implantation. Eur Heart J. 2006;27:166–70.

    Article  PubMed  Google Scholar 

  35. Lee SY, Hur SH, Lee SG, et al. Optical coherence tomographic observation of in-stent neoatherosclerosis in lesions with more than 50% neointimal area stenosis after second-generation drug-eluting stent implantation. Circ Cardiovasc Interv. 2015;8:e001878.

    Article  PubMed  Google Scholar 

  36. Guagliumi G, Musumeci G, Sirbu V, et al. Optical coherence tomography assessment of in vivo vascular response after implantation of overlapping bare-metal and drug-eluting stents. JACC Cardiovasc Interv. 2010;3:531–9.

    Article  PubMed  Google Scholar 

  37. Kan J, Ge Z, Zhang JJ, et al. Incidence and clinical outcomes of stent fractures on the basis of 6,555 patients and 16,482 drug-eluting stents from 4 centers. JACC Cardiovasc Interv. 2016;9:1115–23.

    Article  PubMed  Google Scholar 

  38. Giri J, Saybolt MD. Coronary stent fracture: a new form of patient-prosthesis mismatch? JACC Cardiovasc Interv. 2016;9:1124–6.

    Article  PubMed  Google Scholar 

  39. Aliabadi D, Tilli FV, Bowers TR, et al. Incidence and angiographic predictors of side branch occlusion following high-pressure intracoronary stenting. Am J Cardiol. 1997;80:994–7.

    Article  CAS  PubMed  Google Scholar 

  40. Ormiston JA, Webster MW, Armstrong G. First-in-human implantation of a fully bioabsorbable drug-eluting stent: the BVS poly-L-lactic acid everolimus-eluting coronary stent. Catheter Cardiovasc Interv. 2007;69:128–31.

    Article  PubMed  Google Scholar 

  41. Serruys PW, Chevalier B, Dudek D, et al. A bioresorbable everolimus-eluting scaffold versus a metallic everolimus-eluting stent for ischaemic heart disease caused by de-novo native coronary artery lesions (ABSORB II): an interim 1-year analysis of clinical and procedural secondary outcomes from a randomised controlled trial. Lancet. 2015;385:43–54.

    Article  CAS  PubMed  Google Scholar 

  42. Gao R, Yang Y, Han Y, et al. Bioresorbable vascular scaffolds versus metallic stents in patients with coronary artery disease: ABSORB China trial. J Am Coll Cardiol. 2015;66:2298–309.

    Article  CAS  PubMed  Google Scholar 

  43. Puricel S, Arroyo D, Corpataux N, et al. Comparison of everolimus- and biolimus-eluting coronary stents with everolimus-eluting bioresorbable vascular scaffolds. J Am Coll Cardiol. 2015;65:791–801.

    Article  CAS  PubMed  Google Scholar 

  44. Sabate M, Windecker S, Iniguez A, et al. Everolimus-eluting bioresorbable stent vs. durable polymer everolimus-eluting metallic stent in patients with ST-segment elevation myocardial infarction: results of the randomized ABSORB ST-segment elevation myocardial infarction-TROFI II trial. Eur Heart J. 2016;37:229–40.

    Article  PubMed  Google Scholar 

  45. • Ellis SG, Kereiakes DJ, Metzger DC, et al. Everolimus-eluting bioresorbable scaffolds for coronary artery disease. N Engl J Med. 2015;373:1905–15. Large, multicenter, randomized trial of 2008 patients that demonstrated non-inferiority of everolimus-eluting bioresorable scaffolds compared to everolimus-eluting metallic stents.

    Article  CAS  PubMed  Google Scholar 

  46. Kimura T, Kozuma K, Tanabe K, et al. A randomized trial evaluating everolimus-eluting Absorb bioresorbable scaffolds vs. everolimus-eluting metallic stents in patients with coronary artery disease: ABSORB Japan. Eur Heart J. 2015;36:3332–42.

    Article  PubMed  Google Scholar 

  47. • Cassese S, Byrne RA, Ndrepepa G, et al. Everolimus-eluting bioresorbable vascular scaffolds versus everolimus-eluting metallic stents: a meta-analysis of randomised controlled trials. Lancet. 2016;387:537–44. Meta-analysis of six clinical trials comprising 3728 patients randomized to receive percutaneous coronary intervention with everolimus-eluting bioresorable scaffolds or everolimus-eluting metallic stents, which demonstrated significantly increased risk of stent thrombosis.

    Article  CAS  PubMed  Google Scholar 

  48. Capodanno D, Joner M, Zimarino M. What about the risk of thrombosis with bioresorbable scaffolds? EuroIntervention. 2015;11(Suppl V):V181–4.

    Article  PubMed  Google Scholar 

  49. Kraak RP, Hassell ME, Grundeken MJ, et al. Initial experience and clinical evaluation of the Absorb bioresorbable vascular scaffold (BVS) in real-world practice: the AMC Single Centre Real World PCI Registry. EuroIntervention. 2015;10:1160–8.

    Article  PubMed  Google Scholar 

  50. Trobs M, Achenbach S, Rother J, Klinghammer L, Schlundt C. Bioresorbable vascular scaffold thrombosis in a consecutive cohort of 550 patients. Catheter Cardiovasc Interv. 2016.

  51. •• Lipinski MJ, Escarcega RO, Baker NC, et al. Scaffold thrombosis after percutaneous coronary intervention with ABSORB Bioresorbable vascular scaffold: a systematic review and meta-analysis. JACC Cardiovasc Interv. 2016;9:12–24. Meta-analysis of 10,510 patients who received bioresorbable scaffolds or drug-eluting metallic stenst that demonstrated an increased risk of definite or probable stent thrombosis or myocardial infarction.

    Article  PubMed  Google Scholar 

  52. Gomez-Lara J, Radu M, Brugaletta S, et al. Serial analysis of the malapposed and uncovered struts of the new generation of everolimus-eluting bioresorbable scaffold with optical coherence tomography. JACC Cardiovasc Interv. 2011;4:992–1001.

    Article  PubMed  Google Scholar 

  53. Arroyo D, Cook S, Puricel S. Bioresorbable vascular scaffolds—time to vanish? J Thorac Dis. 2016;8:E431–6.

    Article  PubMed  PubMed Central  Google Scholar 

  54. ABSORB GT1 Bioresorbable Vascular Scaffold System: Sponsor Executive Summary for the Circulatory Systems Device Panel Advisory Committee. 2016.

  55. Luscher TF, Steffel J, Eberli FR, et al. Drug-eluting stent and coronary thrombosis: biological mechanisms and clinical implications. Circulation. 2007;115:1051–8.

    Article  PubMed  Google Scholar 

  56. Shah R. Optimum technique to reduce risk of stent thrombosis. Lancet. 2016;388:127.

    Article  PubMed  Google Scholar 

  57. Raber L, Brugaletta S, Yamaji K, et al. Very late scaffold thrombosis: intracoronary imaging and histopathological and spectroscopic findings. J Am Coll Cardiol. 2015;66:1901–14.

    Article  CAS  PubMed  Google Scholar 

  58. Wiebe J, Nef HM, Hamm CW. Current status of bioresorbable scaffolds in the treatment of coronary artery disease. J Am Coll Cardiol. 2014;64:2541–51.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jay Giri.

Ethics declarations

Conflict of Interest

Jay Giri reports research funding from St. Jude Medical. Ashwin Nathan, Taisei Kobayashi, Daniel M. Kolansky, and Robert L. Wilensky declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Ischemic Heart Disease

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nathan, A., Kobayashi, T., Kolansky, D.M. et al. Bioresorbable Scaffolds for Coronary Artery Disease. Curr Cardiol Rep 19, 5 (2017). https://doi.org/10.1007/s11886-017-0812-7

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11886-017-0812-7

Keywords

Navigation