Skip to main content

Advertisement

Log in

Revascularization Strategies in Patients with Diabetes Mellitus and Acute Coronary Syndrome

  • Management of Acute Coronary Syndromes (AS Jaffe, Section Editor)
  • Published:
Current Cardiology Reports Aims and scope Submit manuscript

Abstract

Patients with diabetes mellitus (DM) have more severe CAD and higher mortality in acute coronary syndrome (ACS) than patients without DM. The optimal mode of revascularization—coronary artery bypass grafting (CABG) or percutaneous coronary intervention (PCI)—remains controversial in this setting. For patients with DM and ST-segment elevation myocardial infarction, prompt revascularization of the culprit artery via PCI is generally preferable. In non-ST-elevation ACS, the decision on mode of revascularization is more challenging. Trials comparing CABG with percutaneous transluminal coronary angioplasty, bare metal stents, and first-generation drug-eluting stents in DM patients with multivessel have demonstrated decreased mortality in those receiving CABG. On the other hand, trials and retrospective analyses comparing CABG to PCI with second-generation drug-eluting stents have not shown a statistically significant mortality benefit favoring CABG. This potentially narrowed that gap between CABG and PCI requires further investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. The Bypass Angioplasty Revascularization Investigation (BARI) Investigators. Comparison of coronary bypass surgery with angioplasty in patients with multivessel disease. N Engl J Med. 1996;335(4):217–25.

    Article  Google Scholar 

  2. Farkouh ME, Domanski M, Sleeper LA, et al. Strategies for multivessel revascularization in patients with diabetes. N Engl J Med. 2012;367(25):2375–84. The FREEDOM study is a landmark randomized trial in patients with DM and multivessel CAD, which showed mortality benefit at long-term follow-up favoring CABG over PCI with 1st-generation drug-eluting stents.

    Article  CAS  PubMed  Google Scholar 

  3. Kapur A, Hall RJ, Malik IS, et al. Randomized comparison of percutaneous coronary intervention with coronary artery bypass grafting in diabetic patients. 1-year results of the CARDia (coronary artery revascularization in diabetes) trial. J Am Coll Cardiol. 2010;55(5):432–40.

    Article  PubMed  Google Scholar 

  4. Serruys PW, Morice MC, Kappetein AP, et al. Percutaneous coronary intervention versus coronary-artery bypass grafting for severe coronary artery disease. N Engl J Med. 2009;360(10):961–72.

    Article  CAS  PubMed  Google Scholar 

  5. Ben-Gal Y, Mohr R, Feit F, et al. Surgical versus percutaneous coronary revascularization for multivessel disease in diabetic patients with non-ST-segment-elevation acute coronary syndrome: analysis from the acute catheterization and early intervention triage strategy trial. Circ Cardiovasc Interv, 2015. 8(6). This is an analysis of the patients with DM previously enrolled in the ACUITY trial with ACS. After propensity matching CABG and PCI groups, there was no statistically significant difference in mortality at 1-year follow-up.

  6. Bangalore S, Guo Y, Samadashvili Z, et al. Everolimus eluting stents versus coronary artery bypass graft surgery for patients with diabetes mellitus and multivessel disease. Circ Cardiovasc Interv. 2015;8(7):e002626. This is a retrospective analysis of patients drawn from NY State registries who underwent either CABG or PCI with 2nd generation drug eluting stents. After propensity matching of the groups, the authors found no statistically significant difference in 5-year mortality between the groups.

    Article  PubMed  Google Scholar 

  7. Grundy SM, Benjamin IJ, Burke GL, et al. Diabetes and cardiovascular disease: a statement for healthcare professionals from the american heart association. Circulation. 1999;100(10):1134–46.

    Article  CAS  PubMed  Google Scholar 

  8. National diabetes statistics report, 2014. 2014.

  9. Haffner SM, Lehto S, Ronnemaa T, et al. Mortality from coronary heart disease in subjects with type 2 diabetes and in nondiabetic subjects with and without prior myocardial infarction. N Engl J Med. 1998;339(4):229–34.

    Article  CAS  PubMed  Google Scholar 

  10. Malmberg K, Yusuf S, Gerstein HC, et al. Impact of diabetes on long-term prognosis in patients with unstable angina and non-Q-wave myocardial infarction: results of the OASIS (organization to assess strategies for ischemic syndromes) registry. Circulation. 2000;102(9):1014–9.

    Article  CAS  PubMed  Google Scholar 

  11. Yusuf S, Sleight P, Pogue J, et al. Effects of an angiotensin-converting-enzyme inhibitor, Ramipril, on cardiovascular events in high-risk patients. The heart outcomes prevention evaluation study investigators. N Engl J Med. 2000;342(3):145–53.

    Article  CAS  PubMed  Google Scholar 

  12. National Cholesterol Education Program Expert Panel on Detection E and Treatment of High Blood Cholesterol in A. Third report of the national cholesterol education program (NCEP) expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (adult treatment panel III) final report. Circulation. 2002;106(25):3143–421.

    Google Scholar 

  13. Emerging Risk Factors C, Sarwar N, Gao P, et al. Diabetes mellitus, fasting blood glucose concentration, and risk of vascular disease: a collaborative meta-analysis of 102 prospective studies. Lancet. 2010;375(9733):2215–22.

    Article  Google Scholar 

  14. Waller BF, Palumbo PJ, Lie JT, et al. Status of the coronary arteries at necropsy in diabetes mellitus with onset after age 30 years. Analysis of 229 diabetic patients with and without clinical evidence of coronary heart disease and comparison to 183 control subjects. Am J Med. 1980;69(4):498–506.

    Article  CAS  PubMed  Google Scholar 

  15. Pajunen P, Taskinen MR, Nieminen MS, et al. Angiographic severity and extent of coronary artery disease in patients with type 1 diabetes mellitus. Am J Cardiol. 2000;86(10):1080–5.

    Article  CAS  PubMed  Google Scholar 

  16. Stein B, Weintraub WS, Gebhart SP, et al. Influence of diabetes mellitus on early and late outcome after percutaneous transluminal coronary angioplasty. Circulation. 1995;91(4):979–89.

    Article  CAS  PubMed  Google Scholar 

  17. Granger CB, Califf RM, Young S, et al. Outcome of patients with diabetes mellitus and acute myocardial infarction treated with thrombolytic agents. The thrombolysis and angioplasty in myocardial infarction (TAMI) study group. J Am Coll Cardiol. 1993;21(4):920–5.

    Article  CAS  PubMed  Google Scholar 

  18. Mueller HS, Cohen LS, Braunwald E, et al. Predictors of early morbidity and mortality after thrombolytic therapy of acute myocardial infarction. Analyses of patient subgroups in the thrombolysis in myocardial infarction (TIMI) trial, phase II. Circulation. 1992;85(4):1254–64.

    Article  CAS  PubMed  Google Scholar 

  19. Natali A, Vichi S, Landi P, et al. Coronary atherosclerosis in type II diabetes: angiographic findings and clinical outcome. Diabetologia. 2000;43(5):632–41.

    Article  CAS  PubMed  Google Scholar 

  20. Robertson WB, Strong JP. Atherosclerosis in persons with hypertension and diabetes mellitus. Lab Investig. 1968;18(5):538–51.

    CAS  PubMed  Google Scholar 

  21. Nicholls SJ, Tuzcu EM, Crowe T, et al. Relationship between cardiovascular risk factors and atherosclerotic disease burden measured by intravascular ultrasound. J Am Coll Cardiol. 2006;47(10):1967–75.

    Article  PubMed  Google Scholar 

  22. Uddin SN, Malik F, Bari MA, et al. Angiographic severity and extent of coronary artery disease in patients with type 2 diabetes mellitus. Mymensingh Med J. 2005;14(1):32–7.

    CAS  PubMed  Google Scholar 

  23. Scognamiglio R, Negut C, Ramondo A, et al. Detection of coronary artery disease in asymptomatic patients with type 2 diabetes mellitus. J Am Coll Cardiol. 2006;47(1):65–71.

    Article  PubMed  Google Scholar 

  24. Piga R, Naito Y, Kokura S, et al. Short-term high glucose exposure induces monocyte-endothelial cells adhesion and transmigration by increasing VCAM-1 and MCP-1 expression in human aortic endothelial cells. Atherosclerosis. 2007;193(2):328–34.

    Article  CAS  PubMed  Google Scholar 

  25. Otsuka A, Azuma K, Iesaki T, et al. Temporary hyperglycaemia provokes monocyte adhesion to endothelial cells in rat thoracic aorta. Diabetologia. 2005;48(12):2667–74.

    Article  CAS  PubMed  Google Scholar 

  26. Quagliaro L, Piconi L, Assaloni R, et al. Intermittent high glucose enhances ICAM-1, VCAM-1 and E-selectin expression in human umbilical vein endothelial cells in culture: the distinct role of protein kinase C and mitochondrial superoxide production. Atherosclerosis. 2005;183(2):259–67.

    Article  CAS  PubMed  Google Scholar 

  27. Kilhovd BK, Berg TJ, Birkeland KI, et al. Serum levels of advanced glycation end products are increased in patients with type 2 diabetes and coronary heart disease. Diabetes Care. 1999;22(9):1543–8.

    Article  CAS  PubMed  Google Scholar 

  28. Guzzardi MA, Hodson L, Guiducci L, et al. Independent effects of circulating glucose, insulin and NEFA on cardiac triacylglycerol accumulation and myocardial insulin resistance in a swine model. Diabetologia. 2014;57(9):1937–46.

    Article  CAS  PubMed  Google Scholar 

  29. Shoelson SE, Lee J, Yuan M. Inflammation and the IKK beta/I kappa B/NF-kappa B axis in obesity- and diet-induced insulin resistance. Int J Obes Relat Metab Disord. 2003;27(3):S49–52.

    Article  CAS  PubMed  Google Scholar 

  30. Shah B, Sha D, Xie D, et al. The relationship between diabetes, metabolic syndrome, and platelet activity as measured by mean platelet volume: the national health and nutrition examination survey, 1999–2004. Diabetes Care. 2012;35(5):1074–8.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Vinik AI, Erbas T, Park TS, et al. Platelet dysfunction in type 2 diabetes. Diabetes Care. 2001;24(8):1476–85.

    Article  CAS  PubMed  Google Scholar 

  32. Cortigiani L, Rigo F, Gherardi S, et al. Prognostic meaning of coronary microvascular disease in type 2 diabetes mellitus: a transthoracic doppler echocardiographic study. J Am Soc Echocardiogr. 2014;27(7):742–8.

    Article  PubMed  Google Scholar 

  33. Kiviniemi AM, Hautala AJ, Karjalainen JJ, et al. Impact of type 2 diabetes on cardiac autonomic responses to sympathetic stimuli in patients with coronary artery disease. Auton Neurosci. 2013;179(1–2):142–7.

    Article  PubMed  Google Scholar 

  34. Su X, Han X, Mancuso DJ, et al. Accumulation of long-chain acylcarnitine and 3-hydroxy acylcarnitine molecular species in diabetic myocardium: identification of alterations in mitochondrial fatty acid processing in diabetic myocardium by shotgun lipidomics. Biochemistry. 2005;44(13):5234–45.

    Article  CAS  PubMed  Google Scholar 

  35. Harris IS, Treskov I, Rowley MW, et al. G-protein signaling participates in the development of diabetic cardiomyopathy. Diabetes. 2004;53(12):3082–90.

    Article  CAS  PubMed  Google Scholar 

  36. Vaccarino V, Parsons L, Every NR, et al. Impact of history of diabetes mellitus on hospital mortality in men and women with first acute myocardial infarction. The national registry of myocardial infarction 2 participants. Am J Cardiol. 2000;85(12):1486–9. A7.

    Article  CAS  PubMed  Google Scholar 

  37. Ulvenstam G, Aberg A, Bergstrand R, et al. Long-term prognosis after myocardial infarction in men with diabetes. Diabetes. 1985;34(8):787–92.

    Article  CAS  PubMed  Google Scholar 

  38. Miettinen H, Lehto S, Salomaa V, et al. Impact of diabetes on mortality after the first myocardial infarction. The FINMONICA myocardial infarction register study group. Diabetes Care. 1998;21(1):69–75.

    Article  CAS  PubMed  Google Scholar 

  39. Donahue RP, Goldberg RJ, Chen Z, et al. The influence of sex and diabetes mellitus on survival following acute myocardial infarction: a community-wide perspective. J Clin Epidemiol. 1993;46(3):245–52.

    Article  CAS  PubMed  Google Scholar 

  40. Chun BY, Dobson AJ, Heller RF. The impact of diabetes on survival among patients with first myocardial infarction. Diabetes Care. 1997;20(5):704–8.

    Article  CAS  PubMed  Google Scholar 

  41. Behar S, Boyko V, Reicher-Reiss H, et al. Ten-year survival after acute myocardial infarction: comparison of patients with and without diabetes. SPRINT study group. Secondary prevention reinfarction Israeli nifedipine trial. Am Heart J. 1997;133(3):290–6.

    Article  CAS  PubMed  Google Scholar 

  42. Abbott RD, Donahue RP, Kannel WB, et al. The impact of diabetes on survival following myocardial infarction in men vs women. The Framingham study. JAMA. 1988;260(23):3456–60.

    Article  CAS  PubMed  Google Scholar 

  43. Banks AD, Dracup K. Factors associated with prolonged prehospital delay of African americans with acute myocardial infarction. Am J Crit Care. 2006;15(2):149–57.

    PubMed  Google Scholar 

  44. Sari I, Acar Z, Ozer O, et al. Factors associated with prolonged prehospital delay in patients with acute myocardial infarction. Turk Kardiyol Dern Ars. 2008;36(3):156–62.

    PubMed  Google Scholar 

  45. Jaffe AS, Spadaro JJ, Schechtman K, et al. Increased congestive heart failure after myocardial infarction of modest extent in patients with diabetes mellitus. Am Heart J. 1984;108(1):31–7.

    Article  CAS  PubMed  Google Scholar 

  46. Stone PH, Muller JE, Hartwell T, et al. The effect of diabetes mellitus on prognosis and serial left ventricular function after acute myocardial infarction: contribution of both coronary disease and diastolic left ventricular dysfunction to the adverse prognosis. The MILIS study group. J Am Coll Cardiol. 1989;14(1):49–57.

    Article  CAS  PubMed  Google Scholar 

  47. Melchior T, Rask-Madsen C, Torp-Pedersen C, et al. The impact of heart failure on prognosis of diabetic and non-diabetic patients with myocardial infarction: a 15-year follow-up study. Eur J Heart Fail. 2001;3(1):83–90.

    Article  CAS  PubMed  Google Scholar 

  48. The GUSTO investigators. An international randomized trial comparing four thrombolytic strategies for acute myocardial infarction. N Engl J Med. 1993;329(10):673–82.

    Article  Google Scholar 

  49. Mak KH, Moliterno DJ, Granger CB, et al. Influence of diabetes mellitus on clinical outcome in the thrombolytic era of acute myocardial infarction. GUSTO-I investigators. Global utilization of streptokinase and tissue plasminogen activator for occluded coronary arteries. J Am Coll Cardiol. 1997;30(1):171–9.

    Article  CAS  PubMed  Google Scholar 

  50. Jensen LO, Thayssen P, Junker A, et al. Comparison of outcomes in patients with versus without diabetes mellitus after revascularization with everolimus- and sirolimus-eluting stents (from the SORT OUT IV trial). Am J Cardiol. 2012;110(11):1585–91.

    Article  CAS  PubMed  Google Scholar 

  51. Calvin JE, Klein LW, VandenBerg BJ, et al. Risk stratification in unstable angina. Prospective validation of the braunwald classification. JAMA. 1995;273(2):136–41.

    Article  CAS  PubMed  Google Scholar 

  52. Fava S, Azzopardi J, Agius-Muscat H. Outcome of unstable angina in patients with diabetes mellitus. Diabet Med. 1997;14(3):209–13.

    Article  CAS  PubMed  Google Scholar 

  53. Muller C, Neumann FJ, Ferenc M, et al. Impact of diabetes mellitus on long-term outcome after unstable angina and non-ST-segment elevation myocardial infarction treated with a very early invasive strategy. Diabetologia. 2004;47(7):1188–95.

    Article  CAS  PubMed  Google Scholar 

  54. Boden WE, O’Rourke RA, Teo KK, et al. Optimal medical therapy with or without PCI for stable coronary disease. N Engl J Med. 2007;356(15):1503–16.

    Article  CAS  PubMed  Google Scholar 

  55. Group BDS, Frye RL, August P, et al. A randomized trial of therapies for type 2 diabetes and coronary artery disease. N Engl J Med. 2009;360(24):2503–15.

    Article  Google Scholar 

  56. Amsterdam EA, Wenger NK, Brindis RG, et al. 2014 AHA/ACC guideline for the management of patients with Non-ST-elevation acute coronary syndromes: a report of the american college of cardiology/american heart association task force on practice guidelines. J Am Coll Cardiol. 2014;64(24):e139–228.

    Article  PubMed  Google Scholar 

  57. O’Gara PT, Kushner FG, Ascheim DD, et al. 2013 ACCF/AHA guideline for the management of ST-elevation myocardial infarction: a report of the american college of cardiology foundation/american heart association task force on practice guidelines. J Am Coll Cardiol. 2013;61(4):e78–140.

    Article  PubMed  Google Scholar 

  58. Hochman JS, Sleeper LA, Webb JG, et al. Early revascularization in acute myocardial infarction complicated by cardiogenic shock. SHOCK investigators. Should we emergently revascularize occluded coronaries for cardiogenic shock. N Engl J Med. 1999;341(9):625–34.

    Article  CAS  PubMed  Google Scholar 

  59. Farkouh ME, Ramanathan K, Aymong ED, et al. An early revascularization strategy is associated with a survival benefit for diabetic patients in cardiogenic shock after acute myocardial infarction. Clin Cardiol. 2006;29(5):204–10.

    Article  PubMed  Google Scholar 

  60. Shindler DM, Palmeri ST, Antonelli TA, et al. Diabetes mellitus in cardiogenic shock complicating acute myocardial infarction: a report from the SHOCK trial registry. Should we emergently revascularize occluded coronaries for cardiogenic shocK? J Am Coll Cardiol. 2000;36(3 Suppl A):1097–103.

    Article  CAS  PubMed  Google Scholar 

  61. Figueras J, Cortadellas J, Calvo F, et al. Relevance of delayed hospital admission on development of cardiac rupture during acute myocardial infarction: study in 225 patients with free wall, septal or papillary muscle rupture. J Am Coll Cardiol. 1998;32(1):135–9.

    Article  CAS  PubMed  Google Scholar 

  62. Levine GN, Bates ER, Blankenship JC, et al. 2015 ACC/AHA/SCAI focused update on primary percutaneous coronary intervention for patients with ST-elevation myocardial infarction: an update of the 2011 ACCF/AHA/SCAI guideline for percutaneous coronary intervention and the 2013 ACCF/AHA guideline for the management of ST-elevation myocardial infarction. J Am Coll Cardiol. 2016;67(10):1235–50.

    Article  PubMed  Google Scholar 

  63. Wald DS, Morris JK, Wald NJ, et al. Randomized trial of preventive angioplasty in myocardial infarction. N Engl J Med. 2013;369(12):1115–23.

    Article  CAS  PubMed  Google Scholar 

  64. Gershlick AH, Khan JN, Kelly DJ, et al. Randomized trial of complete versus lesion-only revascularization in patients undergoing primary percutaneous coronary intervention for STEMI and multivessel disease: the CvLPRIT trial. J Am Coll Cardiol. 2015;65(10):963–72.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Engstrom T, Kelbaek H, Helqvist S, et al. Complete revascularisation versus treatment of the culprit lesion only in patients with ST-segment elevation myocardial infarction and multivessel disease (DANAMI-3-PRIMULTI): an open-label, randomised controlled trial. Lancet. 2015;386(9994):665–71.

    Article  PubMed  Google Scholar 

  66. Serruys PW, Ong AT, van Herwerden LA, et al. Five-year outcomes after coronary stenting versus bypass surgery for the treatment of multivessel disease: the final analysis of the arterial revascularization therapies study (ARTS) randomized trial. J Am Coll Cardiol. 2005;46(4):575–81.

    Article  PubMed  Google Scholar 

  67. Investigators B. The final 10-year follow-up results from the BARI randomized trial. J Am Coll Cardiol. 2007;49(15):1600–6.

    Article  Google Scholar 

  68. Participants CT. First-year results of CABRI (coronary angioplasty versus bypass revascularisation investigation). CABRI trial participants. Lancet. 1995;346(8984):1179–84.

    Article  Google Scholar 

  69. King 3rd SB, Kosinski AS, Guyton RA, et al. Eight-year mortality in the Emory angioplasty versus surgery trial (EAST). J Am Coll Cardiol. 2000;35(5):1116–21.

    Article  PubMed  Google Scholar 

  70. Rodriguez AE, Baldi J, Fernandez Pereira C, et al. Five-year follow-up of the argentine randomized trial of coronary angioplasty with stenting versus coronary bypass surgery in patients with multiple vessel disease (ERACI II). J Am Coll Cardiol. 2005;46(4):582–8.

    Article  PubMed  Google Scholar 

  71. Kaehler J, Koester R, Billmann W, et al. 13-year follow-up of the German angioplasty bypass surgery investigation. Eur Heart J. 2005;26(20):2148–53.

    Article  PubMed  Google Scholar 

  72. Hueb W, Lopes NH, Gersh BJ, et al. Five-year follow-up of the medicine, angioplasty, or surgery study (MASS II): a randomized controlled clinical trial of 3 therapeutic strategies for multivessel coronary artery disease. Circulation. 2007;115(9):1082–9.

    Article  PubMed  Google Scholar 

  73. Henderson RA, Pocock SJ, Sharp SJ, et al. Long-term results of RITA-1 trial: clinical and cost comparisons of coronary angioplasty and coronary-artery bypass grafting. Randomised intervention treatment of angina. Lancet. 1998;352(9138):1419–25.

    Article  CAS  PubMed  Google Scholar 

  74. Booth J, Clayton T, Pepper J, et al. Randomized, controlled trial of coronary artery bypass surgery versus percutaneous coronary intervention in patients with multivessel coronary artery disease: six-year follow-up from the stent or surgery trial (SoS). Circulation. 2008;118(4):381–8.

    Article  PubMed  Google Scholar 

  75. Carrie D, Elbaz M, Puel J, et al. Five-year outcome after coronary angioplasty versus bypass surgery in multivessel coronary artery disease: results from the french monocentric study. Circulation. 1997;96(9):II-1-6.

    PubMed  Google Scholar 

  76. Hlatky MA, Boothroyd DB, Bravata DM, et al. Coronary artery bypass surgery compared with percutaneous coronary interventions for multivessel disease: a collaborative analysis of individual patient data from ten randomised trials. Lancet. 2009;373(9670):1190–7.

    Article  PubMed  Google Scholar 

  77. Palmerini T, Biondi-Zoccai G, Della Riva D, et al. Stent thrombosis with drug-eluting and bare-metal stents: evidence from a comprehensive network meta-analysis. Lancet. 2012;379(9824):1393–402.

    Article  CAS  PubMed  Google Scholar 

  78. Wiviott SD, Braunwald E, McCabe CH, et al. Prasugrel versus clopidogrel in patients with acute coronary syndromes. N Engl J Med. 2007;357(20):2001–15.

    Article  CAS  PubMed  Google Scholar 

  79. Wallentin L, Becker RC, Budaj A, et al. Ticagrelor versus clopidogrel in patients with acute coronary syndromes. N Engl J Med. 2009;361(11):1045–57.

    Article  CAS  PubMed  Google Scholar 

  80. Head SJ, Davierwala PM, Serruys PW, et al. Coronary artery bypass grafting vs. percutaneous coronary intervention for patients with three-vessel disease: final five-year follow-up of the SYNTAX trial. Eur Heart J. 2014;35(40):2821–30. This study presents the 5-year data from the SYNTAX trial, in which patients with multivessel CAD were randomized to either CABG or PCI with 1st-generation drug-eluting stents. They demonstrate a statistically significant mortality benefit favoring CABG over PCI. In those with CAD of low complexity, there was no statistically significant difference in mortality between the groups.

    Article  CAS  PubMed  Google Scholar 

  81. Kurlansky P, Herbert M, Prince S, et al. Improved long-term survival for diabetic patients with surgical versus interventional revascularization. Ann Thorac Surg. 2015;99(4):1298–305. This is an all-comers retrospective analysis comparing patients who underwent CABG or PCI with 1st generation DES at 8 community hospitals, designed to confirm the results of the FREEDOM and SYNTAX trials. Indeed, in this more inclusive sample, they demonstrated a statistically signifincat lower mortality rate in the CABG-treated patients compared to the PCI-treated patients.

    Article  PubMed  Google Scholar 

  82. Park SJ, Ahn JM, Kim YH, et al. Trial of everolimus-eluting stents or bypass surgery for coronary disease. N Engl J Med. 2015;372(13):1204–12. This is a randomized trial designed to compare CABG vs. PCI with 2nd- generation DES in patients with multivessel disease. Due to slow enrollment, it was stopped early.

    Article  CAS  PubMed  Google Scholar 

  83. Bangalore S, Guo Y, Samadashvili Z, et al. Everolimus-eluting stents or bypass surgery for multivessel coronary disease. N Engl J Med. 2015;372(13):1213–22.

    Article  CAS  PubMed  Google Scholar 

  84. Fihn SD, Gardin JM, Abrams J, et al. 2012 ACCF/AHA/ACP/AATS/PCNA/SCAI/STS guideline for the diagnosis and management of patients with stable ischemic heart disease: a report of the american college of cardiology foundation/american heart association task force on practice guidelines, and the american college of physicians, american association for thoracic surgery, preventive cardiovascular nurses association, society for cardiovascular angiography and interventions, and society of thoracic surgeons. J Am Coll Cardiol. 2012;60(24):e44–e164.

    Article  PubMed  Google Scholar 

  85. Fihn SD, Blankenship JC, Alexander KP, et al. 2014 ACC/AHA/AATS/PCNA/SCAI/STS focused update of the guideline for the diagnosis and management of patients with stable ischemic heart disease: a report of the american college of cardiology/american heart association task force on practice guidelines, and the american association for thoracic surgery, preventive cardiovascular nurses association, society for cardiovascular angiography and interventions, and society of thoracic surgeons. Circulation. 2014;130(19):1749–67.

    Article  PubMed  Google Scholar 

  86. Authors/Task Force m, Windecker S, Kolh P, et al. 2014 ESC/EACTS guidelines on myocardial revascularization: the task force on myocardial revascularization of the european society of cardiology (ESC) and the european association for cardio-thoracic surgery (EACTS)developed with the special contribution of the european association of percutaneous cardiovascular interventions (EAPCI). Eur Heart J. 2014;35(37):2541–619.

    Article  Google Scholar 

Download references

Acknowledgments

Binita Shah is supported in part by the Biomedical Laboratory Research and Development Service of the VA Office of Research and Development (I01BX007080).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Binita Shah.

Ethics declarations

Conflict of Interest

Adam Buntaine, Binita Shah, Jeffrey Lorin, and Steven Sedlis declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Management of Acute Coronary Syndromes

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Buntaine, A.J., Shah, B., Lorin, J.D. et al. Revascularization Strategies in Patients with Diabetes Mellitus and Acute Coronary Syndrome. Curr Cardiol Rep 18, 79 (2016). https://doi.org/10.1007/s11886-016-0756-3

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11886-016-0756-3

Keywords

Navigation