Skip to main content

Arrhythmias and Other Electrophysiology Issues in Cancer Patients Receiving Chemotherapy or Radiation

Abstract

Enhanced understanding of cancer biology has significantly increased treatment options and dramatically improved outcomes for patients with malignancies. Despite these advances, many therapies have cardiovascular toxicities which can affect morbidity and mortality independent of the oncologic prognosis. Arrhythmias and other electrophysiology issues are increasingly identified as common complications of cancer therapy. Atrial fibrillation and other supraventricular arrhythmias are frequently observed in cancer patients receiving chemotherapy, often due to their effects on intracellular signaling pathways. Similarly, many oncologic pharmaceuticals can lead to QT prolongation and possible ventricular arrhythmias including torsades do pointes. Management of these arrhythmias can be challenging as typical treatment strategies may not be feasible in cancer patients. Finally, a proportion of individuals with cancer will present with an implantable cardiac device (pacemaker or defibrillator) which poses unique challenges should radiation be necessary in the region of the device. Given the frequency of electrophysiology complications in cancer patients, it is essential for cardio-oncologists to possess knowledge of these issues in order to provide optimal care.

This is a preview of subscription content, access via your institution.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2016. CA Cancer J Clin 2016

  2. Yeh ET, Bickford CL. Cardiovascular complications of cancer therapy: incidence, pathogenesis, diagnosis, and management. J Am Coll Cardiol. 2009;53:2231–47.

    CAS  Article  PubMed  Google Scholar 

  3. Guglin M, Aljayeh M, Saiyad S, et al. Introducing a new entity: chemotherapy-induced arrhythmia. Europace. 2009;11:1579–86.

    Article  PubMed  Google Scholar 

  4. Tamargo J, Caballero R, Delpon E. Cancer chemotherapy and cardiac arrhythmias: a review. Drug Saf. 2015;38:129–52. This comprehensive review discusses the rates of arrhythmias reported in the literature associated with all classes of chemotherapy as well as the pathophysiology of these rhythm abnormalities.

    CAS  Article  PubMed  Google Scholar 

  5. Crossley GH, Poole JE, Rozner MA, et al. The Heart Rhythm Society (HRS)/American Society of Anesthesiologists (ASA) Expert Consensus Statement on the perioperative management of patients with implantable defibrillators, pacemakers and arrhythmia monitors: facilities and patient management this document was developed as a joint project with the American Society of Anesthesiologists (ASA), and in collaboration with the American Heart Association (AHA), and the Society of Thoracic Surgeons (STS). Heart Rhythm. 2011;8:1114–54.

    Article  PubMed  Google Scholar 

  6. Farmakis D, Parissis J, Filippatos G. Insights into onco-cardiology: atrial fibrillation in cancer. J Am Coll Cardiol. 2014;63:945–53.

    Article  PubMed  Google Scholar 

  7. Onaitis M, D’Amico T, Zhao Y, et al. Risk factors for atrial fibrillation after lung cancer surgery: analysis of the Society of Thoracic Surgeons general thoracic surgery database. Ann Thorac Surg. 2010;90:368–74.

    Article  PubMed  Google Scholar 

  8. Guzzetti S, Costantino G, Vernocchi A, et al. First diagnosis of colorectal or breast cancer and prevalence of atrial fibrillation. Intern Emerg Med. 2008;3:227–31.

    Article  PubMed  Google Scholar 

  9. Erichsen R, Christiansen CF, Mehnert F, et al. Colorectal cancer and risk of atrial fibrillation and flutter: a population-based case–control study. Intern Emerg Med. 2012;7:431–8.

    Article  PubMed  Google Scholar 

  10. O’Neal WT, Lakoski SG, Qureshi W, et al. Relation between cancer and atrial fibrillation (from the REasons for Geographic And Racial Differences in Stroke Study). Am J Cardiol. 2015;115:1090–4. This is the first study to demonstrate elevated rates of atrial fibrillation in patients with non-life-threatening cancers independent of traditional risk factors for this arrhythmia.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Aviles RJ, Martin DO, Apperson-Hansen C, et al. Inflammation as a risk factor for atrial fibrillation. Circulation. 2003;108:3006–10.

    Article  PubMed  Google Scholar 

  12. Writing Group M, Lloyd-Jones D, Adams RJ, et al. Heart disease and stroke statistics—2010 update: a report from the American Heart Association. Circulation. 2010;121:e46–215.

    Article  Google Scholar 

  13. Gage BF, Waterman AD, Shannon W, et al. Validation of clinical classification schemes for predicting stroke: results from the National Registry of Atrial Fibrillation. JAMA. 2001;285:2864–70.

    CAS  Article  PubMed  Google Scholar 

  14. de Forni M, Malet-Martino MC, Jaillais P, et al. Cardiotoxicity of high-dose continuous infusion fluorouracil: a prospective clinical study. J Clin Oncol. 1992;10:1795–801.

    PubMed  Google Scholar 

  15. Polk A, Vaage-Nilsen M, Vistisen K, Nielsen DL. Cardiotoxicity in cancer patients treated with 5-fluorouracil or capecitabine: a systematic review of incidence, manifestations and predisposing factors. Cancer Treat Rev. 2013;39:974–84.

    CAS  Article  PubMed  Google Scholar 

  16. Rezkalla S, Kloner RA, Ensley J, et al. Continuous ambulatory ECG monitoring during fluorouracil therapy: a prospective study. J Clin Oncol. 1989;7:509–14.

    CAS  PubMed  Google Scholar 

  17. Bischiniotis TS, Lafaras CT, Platogiannis DN, et al. Intrapericardial cisplatin administration after pericardiocentesis in patients with lung adenocarcinoma and malignant cardiac tamponade. Hell J Cardiol. 2005;46:324–9.

    Google Scholar 

  18. Richards WG, Zellos L, Bueno R, et al. Phase I to II study of pleurectomy/decortication and intraoperative intracavitary hyperthermic cisplatin lavage for mesothelioma. J Clin Oncol. 2006;24:1561–7.

    CAS  Article  PubMed  Google Scholar 

  19. Gorelik J, Vodyanoy I, Shevchuk AI, et al. Esmolol is antiarrhythmic in doxorubicin-induced arrhythmia in cultured cardiomyocytes—determination by novel rapid cardiomyocyte assay. FEBS Lett. 2003;548:74–8.

    CAS  Article  PubMed  Google Scholar 

  20. Binah O, Cohen IS, Rosen MR. The effects of adriamycin on normal and ouabain-toxic canine Purkinje and ventricular muscle fibers. Circ Res. 1983;53:655–62.

    CAS  Article  PubMed  Google Scholar 

  21. Kilickap S, Barista I, Akgul E, et al. Early and late arrhythmogenic effects of doxorubicin. South Med J. 2007;100:262–5.

    Article  PubMed  Google Scholar 

  22. Siegel JP, Puri RK. Interleukin-2 toxicity. J Clin Oncol. 1991;9:694–704.

    CAS  PubMed  Google Scholar 

  23. Rosenberg SA, Lotze MT, Muul LM, et al. A progress report on the treatment of 157 patients with advanced cancer using lymphokine-activated killer cells and interleukin-2 or high-dose interleukin-2 alone. N Engl J Med. 1987;316:889–97.

    CAS  Article  PubMed  Google Scholar 

  24. Margolin KA, Rayner AA, Hawkins MJ, et al. Interleukin-2 and lymphokine-activated killer cell therapy of solid tumors: analysis of toxicity and management guidelines. J Clin Oncol. 1989;7:486–98.

    CAS  PubMed  Google Scholar 

  25. Lee RE, Lotze MT, Skibber JM, et al. Cardiorespiratory effects of immunotherapy with interleukin-2. J Clin Oncol. 1989;7:7–20.

    CAS  PubMed  Google Scholar 

  26. Krause DS, Van Etten RA. Tyrosine kinases as targets for cancer therapy. N Engl J Med. 2005;353:172–87.

    CAS  Article  PubMed  Google Scholar 

  27. Chu TF, Rupnick MA, Kerkela R, et al. Cardiotoxicity associated with tyrosine kinase inhibitor sunitinib. Lancet. 2007;370:2011–9.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  28. Mego M, Reckova M, Obertova J, et al. Increased cardiotoxicity of sorafenib in sunitinib-pretreated patients with metastatic renal cell carcinoma. Ann Oncol. 2007;18:1906–7.

    CAS  Article  PubMed  Google Scholar 

  29. Xu Z, Cang S, Yang T, Liu D. Cardiotoxicity of tyrosine kinase inhibitors in chronic myelogenous leukemia therapy. Hematol Reviews. 2009;1:17–21.

    CAS  Google Scholar 

  30. Wang ML, Rule S, Martin P, et al. Targeting BTK with ibrutinib in relapsed or refractory mantle-cell lymphoma. N Engl J Med. 2013;369:507–16.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  31. Byrd JC, Brown JR, O’Brien S, et al. Ibrutinib versus ofatumumab in previously treated chronic lymphoid leukemia. N Engl J Med. 2014;371:213–23. This study reported elevated rates of atrial fibrillation associated with this novel treatment for chronic lymphocytic leukemia.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Wang ML, Blum KA, Martin P, et al. Long-term follow-up of MCL patients treated with single-agent ibrutinib: updated safety and efficacy results. Blood. 2015;126:739–45.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  33. Craxton A, Jiang A, Kurosaki T, Clark EA. Syk and Bruton’s tyrosine kinase are required for B cell antigen receptor-mediated activation of the kinase Akt. J Biol Chem. 1999;274:30644–50.

    CAS  Article  PubMed  Google Scholar 

  34. McMullen JR, Boey EJ, Ooi JY, et al. Ibrutinib increases the risk of atrial fibrillation, potentially through inhibition of cardiac PI3K-Akt signaling. Blood. 2014;124:3829–30. This study suggested potential mechanisms for atrial fibrillation associated with ibrutinib use.

    CAS  Article  PubMed  Google Scholar 

  35. Pretorius L, Du XJ, Woodcock EA, et al. Reduced phosphoinositide 3-kinase (p110alpha) activation increases the susceptibility to atrial fibrillation. Am J Pathol. 2009;175:998–1009.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  36. Chong E, Chang SL, Hsiao YW, et al. Resveratrol, a red wine antioxidant, reduces atrial fibrillation susceptibility in the failing heart by PI3K/AKT/eNOS signaling pathway activation. Heart Rhythm. 2015;12:1046–56.

    Article  PubMed  Google Scholar 

  37. Singhal R, Chang SL, Chong E, et al. Colchicine suppresses atrial fibrillation in failing heart. Int J Cardiol. 2014;176:651–60.

    Article  PubMed  Google Scholar 

  38. Furman RR, Sharman JP, Coutre SE, et al. Idelalisib and rituximab in relapsed chronic lymphocytic leukemia. N Engl J Med. 2014;370:997–1007.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  39. Gopal AK, Kahl BS, de Vos S, et al. PI3Kdelta inhibition by idelalisib in patients with relapsed indolent lymphoma. N Engl J Med. 2014;370:1008–18.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  40. Lannutti BJ, Meadows SA, Herman SE, et al. CAL-101, a p110delta selective phosphatidylinositol-3-kinase inhibitor for the treatment of B-cell malignancies, inhibits PI3K signaling and cellular viability. Blood. 2011;117:591–4.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  41. Byrd JC, Harrington B, O’Brien S et al. Acalabrutinib (ACP-196) in Relapsed Chronic Lymphocytic Leukemia. N Engl J Med 2015

  42. Singla A, Hogan WJ, Ansell SM, et al. Incidence of supraventricular arrhythmias during autologous peripheral blood stem cell transplantation. Biol Blood Marrow Transplant. 2013;19:1233–7.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Tonorezos ES, Stillwell EE, Calloway JJ, et al. Arrhythmias in the setting of hematopoietic cell transplants. Bone Marrow Transplant. 2015;50:1212–6. This study reported significant adverse outcomes including increased mortality in patients undergoing stem cell transplant who develop atrial fibrillation.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  44. Feliz V, Saiyad S, Ramarao SM, et al. Melphalan-induced supraventricular tachycardia: incidence and risk factors. Clin Cardiol. 2011;34:356–9.

    Article  PubMed  Google Scholar 

  45. Peres E, Levine JE, Khaled YA, et al. Cardiac complications in patients undergoing a reduced-intensity conditioning hematopoietic stem cell transplantation. Bone Marrow Transplant. 2010;45:149–52.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  46. Sureddi RK, Amani F, Hebbar P, et al. Atrial fibrillation following autologous stem cell transplantation in patients with multiple myeloma: incidence and risk factors. Ther Adv Cardiovasc Dis. 2012;6:229–36.

    Article  PubMed  Google Scholar 

  47. Fradley MG, Moslehi J. QT prolongation and oncology drug development. Card Electrophysiol Clin. 2015;7:341–55.

    Article  PubMed  Google Scholar 

  48. Zipes DP. Mechanisms of clinical arrhythmias. J Cardiovasc Electrophysiol. 2003;14:902–12.

    Article  PubMed  Google Scholar 

  49. Viskin S, Rosovski U, Sands AJ, et al. Inaccurate electrocardiographic interpretation of long QT: the majority of physicians cannot recognize a long QT when they see one. Heart Rhythm. 2005;2:569–74.

    Article  PubMed  Google Scholar 

  50. Rautaharju PM, Surawicz B, Gettes LS, et al. AHA/ACCF/HRS recommendations for the standardization and interpretation of the electrocardiogram: part IV: the ST segment, T and U waves, and the QT interval: a scientific statement from the American Heart Association Electrocardiography and Arrhythmias Committee, Council on Clinical Cardiology; the American College of Cardiology Foundation; and the Heart Rhythm Society: endorsed by the International Society for Computerized Electrocardiology. Circulation. 2009;119:e241–50.

    Article  PubMed  Google Scholar 

  51. Curigliano G, Spitaleri G, de Braud F, et al. QTc prolongation assessment in anticancer drug development: clinical and methodological issues. Ecancer Med Sci. 2009;3:130.

    CAS  Google Scholar 

  52. Curigliano G, Spitaleri G, Fingert HJ, et al. Drug-induced QTc interval prolongation: a proposal towards an efficient and safe anticancer drug development. Eur J Cancer. 2008;44:494–500.

    CAS  Article  PubMed  Google Scholar 

  53. Brell JM. Prolonged QTc interval in cancer therapeutic drug development: defining arrhythmic risk in malignancy. Prog Cardiovasc Dis. 2010;53:164–72.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  54. Naing A, Veasey-Rodrigues H, Hong DS, et al. Electrocardiograms (ECGs) in phase I anticancer drug development: the MD Anderson Cancer Center experience with 8518 ECGs. Ann Oncol. 2012;23:2960–3.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  55. Hu J, Shen ZX, Sun GL, et al. Long-term survival and prognostic study in acute promyelocytic leukemia treated with all-trans-retinoic acid, chemotherapy, and As2O3: an experience of 120 patients at a single institution. Int J Hematol. 1999;70:248–60.

    CAS  PubMed  Google Scholar 

  56. Shen ZX, Chen GQ, Ni JH, et al. Use of arsenic trioxide (As2O3) in the treatment of acute promyelocytic leukemia (APL): II. Clinical efficacy and pharmacokinetics in relapsed patients. Blood. 1997;89:3354–60.

    CAS  PubMed  Google Scholar 

  57. Soignet SL, Frankel SR, Douer D, et al. United States multicenter study of arsenic trioxide in relapsed acute promyelocytic leukemia. J Clin Oncol. 2001;19:3852–60.

    CAS  PubMed  Google Scholar 

  58. Soignet SL, Maslak P, Wang ZG, et al. Complete remission after treatment of acute promyelocytic leukemia with arsenic trioxide. N Engl J Med. 1998;339:1341–8.

    CAS  Article  PubMed  Google Scholar 

  59. Weinberg SL. The electrocardiogram in acute arsenic poisoning. Am Heart J. 1960;60:971–5.

    CAS  Article  PubMed  Google Scholar 

  60. Barbey JT, Pezzullo JC, Soignet SL. Effect of arsenic trioxide on QT interval in patients with advanced malignancies. J Clin Oncol. 2003;21:3609–15.

    CAS  Article  PubMed  Google Scholar 

  61. Roboz GJ, Ritchie EK, Carlin RF, et al. Prevalence, management, and clinical consequences of QT interval prolongation during treatment with arsenic trioxide. J Clin Oncol. 2014;32:3723–8.

    CAS  Article  PubMed  Google Scholar 

  62. Barbey JT. Cardiac toxicity of arsenic trioxide. Blood. 2001;98:1632. author reply 1633–1634.

    CAS  Article  PubMed  Google Scholar 

  63. Shah RR, Morganroth J, Shah DR. Cardiovascular safety of tyrosine kinase inhibitors: with a special focus on cardiac repolarisation (QT interval). Drug Saf. 2013;36:295–316.

    CAS  Article  PubMed  Google Scholar 

  64. Lu Z, Wu CY, Jiang YP, et al. Suppression of phosphoinositide 3-kinase signaling and alteration of multiple ion currents in drug-induced long QT syndrome. Sci Transl Med. 2012;4:131ra150.

    Article  Google Scholar 

  65. Morgan Jr TK, Sullivan ME. An overview of class III electrophysiological agents: a new generation of antiarrhythmic therapy. Prog Med Chem. 1992;29:65–108.

    CAS  Article  PubMed  Google Scholar 

  66. Zang J, Wu S, Tang L, et al. Incidence and risk of QTc interval prolongation among cancer patients treated with vandetanib: a systematic review and meta-analysis. PLoS One. 2012;7, e30353.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  67. Tamura T, Minami H, Yamada Y, et al. A phase I dose-escalation study of ZD6474 in Japanese patients with solid, malignant tumors. J Thorac Oncol. 2006;1:1002–9.

    Article  PubMed  Google Scholar 

  68. Kiura K, Nakagawa K, Shinkai T, et al. A randomized, double-blind, phase IIa dose-finding study of Vandetanib (ZD6474) in Japanese patients with non-small cell lung cancer. J Thorac Oncol. 2008;3:386–93.

    Article  PubMed  Google Scholar 

  69. Natale RB, Thongprasert S, Greco FA, et al. Phase III trial of vandetanib compared with erlotinib in patients with previously treated advanced non-small-cell lung cancer. J Clin Oncol. 2011;29:1059–66.

    CAS  Article  PubMed  Google Scholar 

  70. Locatelli M, Criscitiello C, Esposito A, et al. QTc prolongation induced by targeted biotherapies used in clinical practice and under investigation: a comprehensive review. Target Oncol. 2015;10:27–43.

    Article  PubMed  Google Scholar 

  71. Tam CS, Kantarjian H, Garcia-Manero G, et al. Failure to achieve a major cytogenetic response by 12 months defines inadequate response in patients receiving nilotinib or dasatinib as second or subsequent line therapy for chronic myeloid leukemia. Blood. 2008;112:516–8.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  72. Kantarjian H, Giles F, Wunderle L, et al. Nilotinib in imatinib-resistant CML and Philadelphia chromosome-positive ALL. N Engl J Med. 2006;354:2542–51.

    Article  PubMed  Google Scholar 

  73. Strevel EL, Ing DJ, Siu LL. Molecularly targeted oncology therapeutics and prolongation of the QT interval. J Clin Oncol. 2007;25:3362–71.

    CAS  Article  PubMed  Google Scholar 

  74. Shultz MD, Cao X, Chen CH, et al. Optimization of the in vitro cardiac safety of hydroxamate-based histone deacetylase inhibitors. J Med Chem. 2011;54:4752–72.

    CAS  Article  PubMed  Google Scholar 

  75. Olsen EA, Kim YH, Kuzel TM, et al. Phase IIb multicenter trial of vorinostat in patients with persistent, progressive, or treatment refractory cutaneous T-cell lymphoma. J Clin Oncol. 2007;25:3109–15.

    CAS  Article  PubMed  Google Scholar 

  76. Piekarz RL, Frye AR, Wright JJ, et al. Cardiac studies in patients treated with depsipeptide, FK228, in a phase II trial for T-cell lymphoma. Clin Cancer Res. 2006;12:3762–73.

    CAS  Article  PubMed  Google Scholar 

  77. Epstein AE, DiMarco JP, Ellenbogen KA, et al. ACC/AHA/HRS 2008 Guidelines for Device-Based Therapy of Cardiac Rhythm Abnormalities: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Writing Committee to Revise the ACC/AHA/NASPE 2002 Guideline Update for Implantation of Cardiac Pacemakers and Antiarrhythmia Devices): developed in collaboration with the American Association for Thoracic Surgery and Society of Thoracic Surgeons. Circulation. 2008;117:e350–408.

    Article  PubMed  Google Scholar 

  78. Epstein AE, DiMarco JP, Ellenbogen KA, et al. 2012 ACCF/AHA/HRS focused update incorporated into the ACCF/AHA/HRS 2008 guidelines for device-based therapy of cardiac rhythm abnormalities: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines and the Heart Rhythm Society. J Am Coll Cardiol. 2013;61:e6–75.

    Article  PubMed  Google Scholar 

  79. Lin G, Meverden RA, Hodge DO, et al. Age and gender trends in implantable cardioverter defibrillator utilization: a population based study. J Interv Card Electrophysiol. 2008;22:65–70.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Mond HG, Proclemer A. The 11th world survey of cardiac pacing and implantable cardioverter-defibrillators: calendar year 2009—a World Society of Arrhythmia’s project. Pacing Clin Electrophysiol. 2011;34:1013–27.

    Article  PubMed  Google Scholar 

  81. Gomez DR, Poenisch F, Pinnix CC, et al. Malfunctions of implantable cardiac devices in patients receiving proton beam therapy: incidence and predictors. Int J Radiat Oncol Biol Phys. 2013;87:570–5.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Zweng A, Schuster R, Hawlicek R, Weber HS. Life-threatening pacemaker dysfunction associated with therapeutic radiation: a case report. Angiology. 2009;60:509–12.

    Article  PubMed  Google Scholar 

  83. Tsekos A, Momm F, Brunner M, Guttenberger R. The cardiac pacemaker patient—might the pacer be directly irradiated? Acta Oncol. 2000;39:881–3.

    CAS  Article  PubMed  Google Scholar 

  84. Mouton J, Haug R, Bridier A, et al. Influence of high-energy photon beam irradiation on pacemaker operation. Phys Med Biol. 2002;47:2879–93.

    CAS  Article  PubMed  Google Scholar 

  85. Rodriguez F, Filimonov A, Henning A, et al. Radiation-induced effects in multiprogrammable pacemakers and implantable defibrillators. Pacing Clin Electrophysiol. 1991;14:2143–53.

    CAS  Article  PubMed  Google Scholar 

  86. Hurkmans CW, Scheepers E, Springorum BG, Uiterwaal H. Influence of radiotherapy on the latest generation of implantable cardioverter-defibrillators. Int J Radiat Oncol Biol Phys. 2005;63:282–9.

    Article  PubMed  Google Scholar 

  87. Kapa S, Fong L, Blackwell CR, et al. Effects of scatter radiation on ICD and CRT function. Pacing Clin Electrophysiol. 2008;31:727–32.

    Article  PubMed  Google Scholar 

  88. Hurkmans CW, Knegjens JL, Oei BS, et al. Management of radiation oncology patients with a pacemaker or ICD: a new comprehensive practical guideline in The Netherlands. Dutch Society of Radiotherapy and Oncology (NVRO). Radiat Oncol. 2012;7:198.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Grant JD, Jensen GL, Tang C, et al. Radiotherapy-induced malfunction in contemporary cardiovascular implantable electronic devices: clinical incidence and predictors. JAMA Oncol. 2015;1:624–32. This study provides incidence and risk factors associated with malfunction of modern implantable cardiac devices exposed to radiation therapy.

    Article  PubMed  Google Scholar 

  90. Elders J, Kunze-Busch M, Jan Smeenk R, Smeets JL. High incidence of implantable cardioverter defibrillator malfunctions during radiation therapy: neutrons as a probable cause of soft errors. Europace. 2013;15:60–5.

    Article  PubMed  Google Scholar 

  91. Hurkmans CW, Scheepers E, Springorum BG, Uiterwaal H. Influence of radiotherapy on the latest generation of pacemakers. Radiother Oncol. 2005;76:93–8.

    Article  PubMed  Google Scholar 

  92. Uiterwaal GJ, Springorum BG, Scheepers E, et al. Interference detection in implantable defibrillators induced by therapeutic radiation therapy. Neth Hear J. 2006;14:330–4.

    Google Scholar 

  93. Gossman MS, Wilkinson JD, Mallick A. Treatment approach, delivery, and follow-up evaluation for cardiac rhythm disease management patients receiving radiation therapy: retrospective physician surveys including chart reviews at numerous centers. Med Dosim. 2014;39:320–4.

    Article  PubMed  Google Scholar 

  94. Brambatti M, Mathew R, Strang B, et al. Management of patients with implantable cardioverter-defibrillators and pacemakers who require radiation therapy. Heart Rhythm. 2015;12:2148–54.

    Article  PubMed  Google Scholar 

  95. Marbach JR, Sontag MR, Van Dyk J, Wolbarst AB. Management of radiation oncology patients with implanted cardiac pacemakers: report of AAPM Task Group No. 34. American Association of Physicists in Medicine. Med Phys. 1994;21:85–90.

    CAS  Article  PubMed  Google Scholar 

  96. Solan AN, Solan MJ, Bednarz G, Goodkin MB. Treatment of patients with cardiac pacemakers and implantable cardioverter-defibrillators during radiotherapy. Int J Radiat Oncol Biol Phys. 2004;59:897–904.

    Article  PubMed  Google Scholar 

  97. Frizzell B. Radiation therapy in oncology patients who have a pacemaker or implantable cardioverter-defibrillator. In. Comm Oncol: 2009; 469–471

  98. Lester JF, Evans LM, Yousef Z, et al. A national audit of current cardiac device policies from radiotherapy centres across the UK. Clin Oncol (R Coll Radiol). 2014;26:45–50.

    CAS  Article  Google Scholar 

  99. Scientific B. Therapeutic radiation and implantable device systems. In. http://www.bostonscientific.com/content/dam/bostonscientific/quality/education-resources/english/ACL_Therapeutic_Radiation_20120925.pdf: 2012.

  100. Medtronic. Therapeutic radiation. In. https://www.medtronic.com/wcm/groups/…sg/…/crdm_sl_radiation.pdf: 2013.

  101. Medical SJ. Effects of therapeutic radiation on St. Jude Medical implantable cardiac rhythm devices. . In. http://www.sjm.com/~/media/pro/resources/emi/med-dental/fl-therapeutic-r… 2013.

  102. Lambert P, Da Costa A, Marcy PY, et al. Pacemaker, implanted cardiac defibrillator and irradiation: management proposal in 2010 depending on the type of cardiac stimulator and prognosis and location of cancer. Cancer Radiother. 2011;15:238–49. quiz 257.

    CAS  Article  PubMed  Google Scholar 

  103. Makkar A, Prisciandaro J, Agarwal S, et al. Effect of radiation therapy on permanent pacemaker and implantable cardioverter-defibrillator function. Heart Rhythm. 2012;9:1964–8.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael G. Fradley.

Ethics declarations

Conflict of Interest

Federico Viganego, Robin Singh, and Michael G. Fradley declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Cardio-Oncology

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Viganego, F., Singh, R. & Fradley, M.G. Arrhythmias and Other Electrophysiology Issues in Cancer Patients Receiving Chemotherapy or Radiation. Curr Cardiol Rep 18, 52 (2016). https://doi.org/10.1007/s11886-016-0730-0

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11886-016-0730-0

Keywords

  • Arrhythmias
  • Cardiotoxicity
  • Chemotherapy
  • Cardio-oncology
  • Atrial Fibrillation
  • Radiation