Skip to main content

Advertisement

Log in

Radionuclide Imaging Applications in Cardiomyopathies and Heart Failure

  • Nuclear Cardiology (V Dilsizian, Section Editor)
  • Published:
Current Cardiology Reports Aims and scope Submit manuscript

Abstract

Multiple epidemiological factors including population aging and improved survival after acute coronary syndromes have contributed to a heart failure (HF) prevalence in the USA in epidemic proportions. In the absence of transplantation, HF remains a progressive disease with poor prognosis. The structural and functional abnormalities of the myocardium in HF can be assessed by various radionuclide imaging techniques. Radionuclide imaging may be uniquely suited to address several important clinical questions in HF such as identifying etiology and guiding the selection of patients for coronary revascularization. Newer approaches such as autonomic innervation imaging, phase analysis for synchrony assessment, and other molecular imaging techniques continue to expand the applications of radionuclide imaging in HF. In this manuscript, we review established and evolving applications of radionuclide imaging for the diagnosis, risk stratification, and management of HF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Mozaffarian D, Benjamin EJ, Go AS, et al. Heart disease and stroke statistics—2015 update: a report from the American Heart Association. Circulation. 2015;131:e29–322.

    Article  PubMed  Google Scholar 

  2. Uretsky BF, Sheahan RG. Primary prevention of sudden cardiac death in heart failure: will the solution be shocking? J Am Coll Cardiol. 1997;30:1589–97.

    Article  CAS  PubMed  Google Scholar 

  3. Soman P. Radionuclide imaging in heart failure. In: Iskandrian AE, Garcia EV, editors. Nuclear cardiac imaging: principles and applications. 5th ed. New York: Oxford University Press; 2015.

    Google Scholar 

  4. Felker GM, Shaw LK, O'Connor CM. A standardized definition of ischemic cardiomyopathy for use in clinical research. J Am Coll Cardiol. 2002;39:210–8.

    Article  PubMed  Google Scholar 

  5. Allman KC, Shaw LJ, Hachamovitch R, Udelson JE. Myocardial viability testing and impact of revascularization on prognosis in patients with coronary artery disease and left ventricular dysfunction: a meta-analysis. J Am Coll Cardiol. 2002;39:1151–8.

    Article  PubMed  Google Scholar 

  6. Udelson JE, Shafer CD, Carrio I. Radionuclide imaging in heart failure: assessing etiology and outcomes and implications for management. J Nuclear Cardiology: Off Publ Am Soc Nuclear Cardiology. 2002;9:40s–52s.

    Article  Google Scholar 

  7. Soman P, Lahiri A, Mieres JH, et al. Etiology and pathophysiology of new-onset heart failure: evaluation by myocardial perfusion imaging. J Nuclear Cardiology: Off Publ Am Soc Nuclear Cardiology. 2009;16:82–91.

    Article  Google Scholar 

  8. Beanlands RSB, Nichol G, Huszti E, et al. F-18-Fluorodeoxyglucose positron emission tomography imaging-assisted management of patients with severe left ventricular dysfunction and suspected coronary disease: a randomized, controlled trial (PARR-2). J Am Coll Cardiol. 2007;50:2002–12.

    Article  PubMed  Google Scholar 

  9. Bonow RO, Maurer G, Lee KL, et al. Myocardial viability and survival in ischemic left ventricular dysfunction. N Engl J Med. 2011;364:1617–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Yancy CW, Jessup M, Bozkurt B, et al. 2013 ACCF/AHA guideline for the management of heart failure: a report of the American college of cardiology foundation/american heart association task force on practice guidelines. Circulation. 2013;128:e240–327.

    Article  PubMed  Google Scholar 

  11. Panza JA, Velazquez EJ, She L, et al. Extent of coronary and myocardial disease and benefit from surgical revascularization in ischemic LV dysfunction [Corrected]. J Am Coll Cardiol. 2014;64:553–61.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Caldwell JH, Link JM, Levy WC, Poole JE, Stratton JR. Evidence for pre- to postsynaptic mismatch of the cardiac sympathetic nervous system in ischemic congestive heart failure. J Nuclear Med: Off Publ, Soc Nuclear Med. 2008;49:234–41.

    Article  Google Scholar 

  13. Ungerer M, Bohm M, Elce JS, Erdmann E, Lohse MJ. Altered expression of beta-adrenergic receptor kinase and beta 1-adrenergic receptors in the failing human heart. Circulation. 1993;87:454–63.

    Article  CAS  PubMed  Google Scholar 

  14. Choudhury L, Rosen SD, Lefroy DC, Nihoyannopoulos P, Oakley CM, Camici PG. Myocardial beta adrenoceptor density in primary and secondary left ventricular hypertrophy. Eur Heart J. 1996;17:1703–9.

    Article  CAS  PubMed  Google Scholar 

  15. Merlet P, Delforge J, Syrota A, et al. Positron emission tomography with 11C CGP-12177 to assess beta-adrenergic receptor concentration in idiopathic dilated cardiomyopathy. Circulation. 1993;87:1169–78.

    Article  CAS  PubMed  Google Scholar 

  16. Triposkiadis F, Karayannis G, Giamouzis G, Skoularigis J, Louridas G, Butler J. The sympathetic nervous system in heart failure physiology, pathophysiology, and clinical implications. J Am Coll Cardiol. 2009;54:1747–62.

    Article  CAS  PubMed  Google Scholar 

  17. Zucker IH, Patel KP, Schultz HD. Neurohumoral stimulation. Heart Failure Clin. 2012;8:87–99.

    Article  Google Scholar 

  18. Soman P, Travin MI, Gerson M, Cullom SJ, Thompson R. I-123 MIBG cardiac imaging. J Nuclear Cardiology: Off Publ Am Soc Nuclear Cardiology. 2015;22:677–85.

    Article  Google Scholar 

  19. Carrio I, Cowie MR, Yamazaki J, Udelson J, Camici PG. Cardiac sympathetic imaging with mIBG in heart failure. J Am Coll Cardiol Img. 2010;3:92–100.

    Article  Google Scholar 

  20. Carrio I. Cardiac neurotransmission imaging. J Nuclear Med: Off Publ, Soc Nuclear Med. 2001;42:1062–76.

    CAS  Google Scholar 

  21. Agostini D, Carrio I, Verberne HJ. How to use myocardial 123I-MIBG scintigraphy in chronic heart failure. Eur J Nucl Med Mol Imaging. 2009;36:555–9.

    Article  PubMed  Google Scholar 

  22. Merlet P, Benvenuti C, Moyse D, et al. Prognostic value of MIBG imaging in idiopathic dilated cardiomyopathy. J Nucl Med. 1999;40:917–23.

    CAS  PubMed  Google Scholar 

  23. Jacobson AF, Senior R, Cerqueira MD, et al. Myocardial iodine-123 meta-iodobenzylguanidine imaging and cardiac events in heart failure. Results of the prospective ADMIRE-HF (AdreView myocardial imaging for risk evaluation in heart failure) study. J Am Coll Cardiol. 2010;55:2212–21.

    Article  PubMed  Google Scholar 

  24. Sasano T, Abraham MR, Chang KC, et al. Abnormal sympathetic innervation of viable myocardium and the substrate of ventricular tachycardia after myocardial infarction. J Am Coll Cardiol. 2008;51:2266–75.

    Article  PubMed  Google Scholar 

  25. Sinusas AJ, Lazewatsky J, Brunetti J, et al. Biodistribution and radiation dosimetry of LMI1195: first-in-human study of a novel 18F-labeled tracer for imaging myocardial innervation. J Nuclear Med: Off Publ, Soc Nuclear Med. 2014;55:1445–51. Study evaluating the radiation dosimetry and potential of imaging a novel tracer with PET for the assessment of myocardial innervation.

    Article  CAS  Google Scholar 

  26. Werner RA, Rischpler C, Onthank D, et al. Retention kinetics of the 18F-labeled sympathetic nerve PET Tracer LMI1195: comparison with 11C-Hydroxyephedrine and 123I-MIBG. J Nuclear Med: Off Publ, Soc Nuclear Med. 2015;56:1429–33.

    Article  Google Scholar 

  27. Majmudar MD, Murthy VL, Shah RV et al. Quantification of coronary flow reserve in patients with ischaemic and non-ischaemic cardiomyopathy and its association with clinical outcomes. Eur Heart J Cardiovascular Imaging 2015. Study which revealed that reduced coronary flow reserve, indicative of impaired coronary vascular function is associated with adverse in outcomes in patients with both ischemic and nonischemic cardiomyopathies.

  28. Douglas PS, Morrow R, Ioli A, Reichek N. Left ventricular shape, afterload and survival in idiopathic dilated cardiomyopathy. J Am Coll Cardiol. 1989;13:311–5.

    Article  CAS  PubMed  Google Scholar 

  29. Hall SA, Cigarroa CG, Marcoux L, Risser RC, Grayburn PA, Eichhorn EJ. Time course of improvement in left ventricular function, mass and geometry in patients with congestive heart failure treated with beta-adrenergic blockade. J Am Coll Cardiol. 1995;25:1154–61.

    Article  CAS  PubMed  Google Scholar 

  30. Lowes BD, Gill EA, Abraham WT, et al. Effects of carvedilol on left ventricular mass, chamber geometry, and mitral regurgitation in chronic heart failure. Am J Cardiol. 1999;83:1201–5.

    Article  CAS  PubMed  Google Scholar 

  31. Abidov A, Slomka PJ, Nishina H, et al. Left ventricular shape index assessed by gated stress myocardial perfusion SPECT: initial description of a new variable. J Nuclear Cardiology: Off Publ Am Soc Nuclear Cardiology. 2006;13:652–9.

    Article  Google Scholar 

  32. Noordzij W, Glaudemans AW, Longhi S, et al. Nuclear imaging for cardiac amyloidosis. Heart Fail Rev. 2015;20:145–54.

    Article  CAS  PubMed  Google Scholar 

  33. Falk RH, Quarta CC, Dorbala S. How to image cardiac amyloidosis. Circ Cardiovascular Imaging. 2014;7:552–62.

    Article  PubMed  Google Scholar 

  34. Bokhari S, Castano A, Pozniakoff T, Deslisle S, Latif F, Maurer MS. (99m)Tc-pyrophosphate scintigraphy for differentiating light-chain cardiac amyloidosis from the transthyretin-related familial and senile cardiac amyloidoses. Circ Cardiovascular Imaging. 2013;6:195–201.

    Article  PubMed  Google Scholar 

  35. Yamamoto Y, Onoguchi M, Haramoto M, et al. Novel method for quantitative evaluation of cardiac amyloidosis using (201)TlCl and (99m)Tc-PYP SPECT. Ann Nucl Med. 2012;26:634–43.

    Article  CAS  PubMed  Google Scholar 

  36. Isobe M, Tezuka D. Isolated cardiac sarcoidosis: clinical characteristics, diagnosis and treatment. Int J Cardiol. 2015;182:132–40.

    Article  PubMed  Google Scholar 

  37. Ayoub C, Pena E, Ohira H, et al. Advanced imaging of cardiac sarcoidosis. Current Cardiology Reports. 2015;17:17.

    Article  PubMed  Google Scholar 

  38. Brancato SC, Arrighi JA. Fasting FDG PET compared to MPI SPECT in cardiac sarcoidosis. J Nuclear Cardiology: Off Publ Am Soc Nuclear Cardiology. 2011;18:371–4.

    Article  Google Scholar 

  39. Le Guludec D, Menad F, Faraggi M, Weinmann P, Battesti JP, Valeyre D. Myocardial sarcoidosis. Clinical value of technetium-99m sestamibi tomoscintigraphy. Chest. 1994;106:1675–82.

    Article  PubMed  Google Scholar 

  40. Tellier P, Valeyre D, Nitenberg A, Foult JM, Bedig G, Battesti JP. Cardiac sarcoidosis: reversion of myocardial perfusion abnormalities by dipyridamole. Eur J Nucl Med. 1985;11:201–4.

    Article  CAS  PubMed  Google Scholar 

  41. Ohira H, Tsujino I, Ishimaru S, et al. Myocardial imaging with 18F-fluoro-2-deoxyglucose positron emission tomography and magnetic resonance imaging in sarcoidosis. Eur J Nucl Med Mol Imaging. 2008;35:933–41.

    Article  PubMed  Google Scholar 

  42. Orii M, Hirata K, Tanimoto T et al. Comparison of cardiac MRI and F-FDG positron emission tomography manifestations and regional response to corticosteroid therapy in newly diagnosed cardiac sarcoidosis with complete heart block. Heart rhythm : the official journal of the Heart Rhythm Society 2015.

  43. Ishimaru S, Tsujino I, Takei T, et al. Focal uptake on 18F-fluoro-2-deoxyglucose positron emission tomography images indicates cardiac involvement of sarcoidosis. Eur Heart J. 2005;26:1538–43.

    Article  PubMed  Google Scholar 

  44. Langah R, Spicer K, Gebregziabher M, Gordon L. Effectiveness of prolonged fasting 18f-FDG PET-CT in the detection of cardiac sarcoidosis. J Nuclear Cardiology: Off Publ Am Soc Nuclear Cardiology. 2009;16:801–10.

    Article  Google Scholar 

  45. Okumura W, Iwasaki T, Toyama T, et al. Usefulness of fasting 18F-FDG PET in identification of cardiac sarcoidosis. J Nuclear Med: Off Publ, Soc Nuclear Med. 2004;45:1989–98.

    Google Scholar 

  46. Osborne MT, Hulten EA, Singh A, et al. Reduction in (1)(8)F-fluorodeoxyglucose uptake on serial cardiac positron emission tomography is associated with improved left ventricular ejection fraction in patients with cardiac sarcoidosis. J Nuclear Cardiology: Off Publ Am Soc Nuclear Cardiology. 2014;21:166–74. Study performed to investigate the significance of a reduction in myocardial inflammation, as assessed with PET, in patients with cardiac sarcoidosis. A reduction in myocardial inflammation was associated with an improvement in LVEF. The authors concluded that serial PET imaging may help to guide therapy.

    Article  Google Scholar 

  47. Weeke P, Johansen JB, Jorgensen OD, et al. Mortality and appropriate and inappropriate therapy in patients with ischaemic heart disease and implanted cardioverter-defibrillators for primary prevention: data from the Danish ICD Register. Europace. 2013;15:1150–7.

    Article  PubMed  Google Scholar 

  48. Hlatky MA, Massie BM. Cardiac resynchronization for heart failure. Ann Intern Med. 2004;141:399–400.

    Article  PubMed  Google Scholar 

  49. Travin MI. Cardiac neuronal imaging at the edge of clinical application. Cardiol Clin. 2009;27:311–27. Table of Contents.

    Article  PubMed  Google Scholar 

  50. Friehling M, Chen J, Saba S, et al. A prospective pilot study to evaluate the relationship between acute change in left ventricular synchrony after cardiac resynchronization therapy and patient outcome using a single-injection gated SPECT protocol. Circ Cardiovasc Imaging. 2011;4:532–9.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Lin X, Xu H, Zhao X, et al. Repeatability of left ventricular dyssynchrony and function parameters in serial gated myocardial perfusion SPECT studies. J Nucl Cardiol. 2010;17:811–6.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Chen W, Kim J, Molchanova-Cook OP, Dilsizian V. The potential of FDG PET/CT for early diagnosis of cardiac device and prosthetic valve infection before morphologic damages ensue. Curr Cardiol Rep. 2014;16:459.

    Article  PubMed  Google Scholar 

  53. Libby P. The vascular biology of atherosclerosis. In: Libby P, Bonow RO, Mann DL, Zipes DP, editors. Braunwald’s heart disease. Philadelphia: Saunders; 2008. p. 985–1002.

    Google Scholar 

  54. McCarthy PM. Surgical management of heart failure. In: Libby P, Bonow RO, Mann DL, Zipes DP, editors. Braunwald’s heart disease. Philadelphia: Saunders; 2008. p. 665–83.

    Google Scholar 

  55. Manrique A, Bernard M, Hitzel A, et al. Diagnostic and prognostic value of myocardial perfusion gated SPECT in orthotopic heart transplant recipients. J Nuclear Cardiology: Off Publ Am Soc Nuclear Cardiology. 2010;17:197–206.

    Article  Google Scholar 

  56. Mc Ardle BA, Davies RA, Chen L, et al. Prognostic value of rubidium-82 positron emission tomography in patients after heart transplant. Circ: Cardiovascular Imaging. 2014;7:930–7. PET imaging study assessing absolute myocardial blood flow in post heart transplant patients. Abnormalities in rubidium-82 PET were associated with adverse outcomes and may help to identify coronary allograft vasculopathy.

    PubMed  Google Scholar 

  57. Soman P, McNamara D. Surveillance for post-transplant coronary artery vasculopathy: shifting gears from diagnosis to prognosis. J Nuclear Cardiology: Off Publ Am Soc Nuclear Cardiology. 2010;17:172–4.

    Article  Google Scholar 

  58. Shirani J, Narula J, Eckelman WC, Narula N, Dilsizian V. Early imaging in heart failure: exploring novel molecular targets. J Nucl Cardiol. 2007;14:100–10.

    Article  PubMed  Google Scholar 

  59. Thimister PW, Hofstra L, Liem IH, et al. In vivo detection of cell death in the area at risk in acute myocardial infarction. J Nucl Med. 2003;44:391–6.

    PubMed  Google Scholar 

  60. Korngold EC, Jaffer FA, Weissleder R, Sosnovik DE. Noninvasive imaging of apoptosis in cardiovascular disease. Heart Fail Rev. 2008;13:163–73.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Dilsizian V, Eckelman WC, Loredo ML, Jagoda EM, Shirani J. Evidence for tissue angiotensin-converting enzyme in explanted hearts of ischemic cardiomyopathy using targeted radiotracer technique. J Nuclear Med: Off Publ, Soc Nuclear Med. 2007;48:182–7.

    CAS  Google Scholar 

  62. Dilsizian V. Metabolic adaptation to myocardial ischemia: the role of fatty acid imaging. J Nuclear Cardiology: Off Publ Am Soc Nuclear Cardiology. 2007;14:S97–9.

    Article  Google Scholar 

  63. Bengel F. Nuclear imaging in cardiac cell therapy. Heart Fail Rev. 2006;11:325–32.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prem Soman.

Ethics declarations

Conflict of Interest

Matthew E. Harinstein declares that he has no conflict of interest. Prem Soman reports grants and personal fees from Astellas Pharma.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Nuclear Cardiology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Harinstein, M.E., Soman, P. Radionuclide Imaging Applications in Cardiomyopathies and Heart Failure. Curr Cardiol Rep 18, 23 (2016). https://doi.org/10.1007/s11886-016-0699-8

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11886-016-0699-8

Keywords

Navigation