Skip to main content
Log in

Coagulopathy in Mechanical Circulatory Support: A Fine Balance

  • Heart Failure (MR Mehra and E Joyce, Section Editors)
  • Published:
Current Cardiology Reports Aims and scope Submit manuscript

Abstract

Therapeutic intervention with mechanical circulatory support has revolutionized the medical care of individuals living with advanced heart failure. Left ventricular assist devices (LVADs) have enabled patients to live longer while providing improved quality of life and functional status. However, intervention is not without risk. Over the last decade, clinicians have identified common mechanical assist device-associated complications. This appears to be multi-factorial with relation to patient variables, inherent device technology, and nuances of concurrent medical management. This review will discuss the impact of adverse hematologic complications: bleeding, pump thrombosis, and hemolysis in continuous flow LVAD patients. These obstacles continue to pose a clinical challenge with regard to both diagnosis and optimal management. Heightened awareness and understanding of heterogeneous clinical presentations is essential for preventive management and early detection with intervention.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Kirklin JK et al. Sixth INTERMACS annual report: a 10,000-patient database. J Heart Lung Transplant. 2014;33(6):555–64. Review of most up-to-date MCS registry data.

    Article  PubMed  Google Scholar 

  2. Lund LH et al. The registry of the international society for heart and lung transplantation: thirtieth official adult heart transplant report—2013; focus theme: age. J Heart Lung Transplant. 2013;32(10):951–64.

    Article  PubMed  Google Scholar 

  3. Feldman D et al. The 2013 international society for heart and lung transplantation guidelines for mechanical circulatory support: executive summary. J Heart Lung Transplant. 2013;32(2):157–87. Current MCS guidelines for the care and management of individuals with MCS.

    Article  PubMed  Google Scholar 

  4. Aaronson KD et al. Use of an intrapericardial, continuous-flow, centrifugal pump in patients awaiting heart transplantation. Circulation. 2012;125(25):3191–200.

    Article  PubMed  Google Scholar 

  5. Miller LW et al. Use of a continuous-flow device in patients awaiting heart transplantation. N Engl J Med. 2007;357(9):885–96.

    Article  CAS  PubMed  Google Scholar 

  6. Rose EA et al. Long-term use of a left ventricular assist device for end-stage heart failure. N Engl J Med. 2001;345(20):1435–43.

    Article  CAS  PubMed  Google Scholar 

  7. Slaughter MS et al. Advanced heart failure treated with continuous-flow left ventricular assist device. N Engl J Med. 2009;361(23):2241–51.

    Article  CAS  PubMed  Google Scholar 

  8. Rogers JG et al. Continuous flow left ventricular assist device improves functional capacity and quality of life of advanced heart failure patients. J Am Coll Cardiol. 2010;55(17):1826–34.

    Article  PubMed  Google Scholar 

  9. Hasin T et al. Readmissions after implantation of axial flow left ventricular assist device. J Am Coll Cardiol. 2013;61(2):153–63.

    Article  PubMed  Google Scholar 

  10. Smedira NG et al. Unplanned hospital readmissions after HeartMate II implantation: frequency, risk factors, and impact on resource use and survival. JACC Heart Fail. 2013;1(1):31–9.

    Article  PubMed  Google Scholar 

  11. Najjar SS et al. An analysis of pump thrombus events in patients in the HeartWare ADVANCE bridge to transplant and continued access protocol trial. J Heart Lung Transplant. 2014;33(1):23–34.

    Article  PubMed  Google Scholar 

  12. Backes D et al. Cerebrovascular complications of left ventricular assist devices. Eur J Cardiothorac Surg. 2012;42(4):612–20.

    Article  PubMed  Google Scholar 

  13. Bunte MC et al. Major bleeding during HeartMate II support. J Am Coll Cardiol. 2013;62(23):2188–96.

    Article  PubMed  Google Scholar 

  14. Katz JN, JB, Chang PP, Myers SL, Pagani FD, Kirklin JK. A multicenter analysis of clinical hemolysis in patients supported with durable, long-term left ventricular assist device therapy. J Heart Lung Transplant. 2015.

  15. John R et al. Immunologic sensitization in recipients of left ventricular assist devices. J Thorac Cardiovasc Surg. 2003;125(3):578–91.

    Article  PubMed  Google Scholar 

  16. Wever-Pinzon O et al. Morbidity and mortality in heart transplant candidates supported with mechanical circulatory support: is reappraisal of the current united network for organ sharing thoracic organ allocation policy justified? Circulation. 2013;127(4):452–62.

    Article  PubMed Central  PubMed  Google Scholar 

  17. Slaughter MS. Hematologic effects of continuous flow left ventricular assist devices. J Cardiovasc Transl Res. 2010;3(6):618–24.

    Article  PubMed  Google Scholar 

  18. Kirklin JK et al. Interagency registry for mechanically assisted circulatory support (INTERMACS) analysis of pump thrombosis in the HeartMate II left ventricular assist device. J Heart Lung Transplant. 2014;33(1):12–22.

    Article  PubMed  Google Scholar 

  19. Starling RC, Blackstone EH, Smedira NG. Increase in left ventricular assist device thrombosis. N Engl J Med. 2014;370(15):1465–6.

    CAS  PubMed  Google Scholar 

  20. Starling RC et al. Unexpected abrupt increase in left ventricular assist device thrombosis. N Engl J Med. 2014;370(1):33–40.

    Article  CAS  PubMed  Google Scholar 

  21. Bonde P, Dew MA, Meyer D, et al. National trends in readmission (REA) rates following left ventricular assist device (LVAD) therapy. J Heart Lung Transplant. 2011;30:S9.

    Article  Google Scholar 

  22. Forest SJ et al. Readmissions after ventricular assist device: etiologies, patterns, and days out of hospital. Ann Thorac Surg. 2013;95(4):1276–81.

    Article  PubMed  Google Scholar 

  23. Uriel N et al. Device thrombosis in HeartMate II continuous-flow left ventricular assist devices: a multifactorial phenomenon. J Heart Lung Transplant. 2014;33(1):51–9.

    Article  PubMed  Google Scholar 

  24. Starling RC et al. Results of the post-U.S. Food and drug administration-approval study with a continuous flow left ventricular assist device as a bridge to heart transplantation: a prospective study using the INTERMACS (interagency registry for mechanically assisted circulatory support). J Am Coll Cardiol. 2011;57(19):1890–8.

    Article  PubMed  Google Scholar 

  25. Boyle AJ et al. Pre-operative risk factors of bleeding and stroke during left ventricular assist device support: an analysis of more than 900 HeartMate II outpatients. J Am Coll Cardiol. 2014;63(9):880–8.

    Article  PubMed  Google Scholar 

  26. Slaughter MS et al. HeartWare ventricular assist system for bridge to transplant: combined results of the bridge to transplant and continued access protocol trial. J Heart Lung Transplant. 2013;32(7):675–83.

    Article  PubMed  Google Scholar 

  27. INTERMACS manual of operations and procedures, version 4.0, appendix A. 2014.

  28. Slaughter MS et al. Fibrinolytic activation during long-term support with the HeartMate II left ventricular assist device. ASAIO J. 2008;54(1):115–9.

    Article  PubMed  Google Scholar 

  29. John R et al. Activation of endothelial and coagulation systems in left ventricular assist device recipients. Ann Thorac Surg. 2009;88(4):1171–9.

    Article  PubMed  Google Scholar 

  30. Spanier T et al. Activation of coagulation and fibrinolytic pathways in patients with left ventricular assist devices. J Thorac Cardiovasc Surg. 1996;112(4):1090–7.

    Article  CAS  PubMed  Google Scholar 

  31. Boyle AJ et al. Low thromboembolism and pump thrombosis with the HeartMate II left ventricular assist device: analysis of outpatient anti-coagulation. J Heart Lung Transplant. 2009;28(9):881–7.

    Article  PubMed  Google Scholar 

  32. Slaughter MS et al. Post-operative heparin may not be required for transitioning patients with a HeartMate II left ventricular assist system to long-term warfarin therapy. J Heart Lung Transplant. 2010;29(6):616–24.

    Article  PubMed  Google Scholar 

  33. Blitz A. Pump thrombosis-a riddle wrapped in a mystery inside an enigma. Ann Cardiothorac Surg. 2014;3(5):450–71.

    PubMed Central  PubMed  Google Scholar 

  34. Slaughter MS et al. Clinical management of continuous-flow left ventricular assist devices in advanced heart failure. J Heart Lung Transplant. 2010;29(4 Suppl):S1–39.

    Article  PubMed  Google Scholar 

  35. Katz MR et al. Outcomes of patients implanted with a left ventricular assist device at nontransplant mechanical circulatory support centers. Am J Cardiol. 2015;115(9):1254–9.

    Article  PubMed  Google Scholar 

  36. Jessup ML GD, Ascheim DD, Teuteberg JJ, Park SJ, Naftel DC, Gonzales-Stawirski GV, et al. Risk for bleeding after MCSD implant: an analysis of 2358 patients in INTERMACS. J Heart Lung Transplant. 2011;30(4):S9.

    Article  Google Scholar 

  37. Goldstein DJ et al. Gastrointestinal bleeding in recipients of the HeartWare ventricular assist system. JACC Heart Fail. 2015;3:303–13.

    Article  PubMed  Google Scholar 

  38. Draper KV, Huang RJ, Gerson LB. GI bleeding in patients with continuous-flow left ventricular assist devices: a systematic review and meta-analysis. Gastrointest Endosc. 2014;80(3):435–46.

    Article  PubMed  Google Scholar 

  39. Islam S et al. Left ventricular assist devices and gastrointestinal bleeding: a narrative review of case reports and case series. Clin Cardiol. 2013;36(4):190–200.

    Article  PubMed  Google Scholar 

  40. Franchini M, Mannucci PM. Von Willebrand disease-associated angiodysplasia: a few answers, still many questions. Br J Haematol. 2013;161(2):177–82.

    Article  PubMed  Google Scholar 

  41. Eckman PM, John R. Bleeding and thrombosis in patients with continuous-flow ventricular assist devices. Circulation. 2012;125(24):3038–47.

    Article  PubMed  Google Scholar 

  42. Klovaite J et al. Severely impaired von Willebrand factor-dependent platelet aggregation in patients with a continuous-flow left ventricular assist device (HeartMate II). J Am Coll Cardiol. 2009;53(23):2162–7.

    Article  CAS  PubMed  Google Scholar 

  43. Crow S et al. Acquired von Willebrand syndrome in continuous-flow ventricular assist device recipients. Ann Thorac Surg. 2010;90(4):1263–9.

    Article  PubMed  Google Scholar 

  44. Uriel N et al. Acquired von Willebrand syndrome after continuous-flow mechanical device support contributes to a high prevalence of bleeding during long-term support and at the time of transplantation. J Am Coll Cardiol. 2010;56(15):1207–13.

    Article  PubMed  Google Scholar 

  45. Meyer AL et al. Acquired von Willebrand syndrome in patients with a centrifugal or axial continuous flow left ventricular assist device. JACC Heart Fail. 2014;2(2):141–5.

    Article  PubMed  Google Scholar 

  46. Birschmann I et al. Ambient hemolysis and activation of coagulation is different between HeartMate II and HeartWare left ventricular assist devices. J Heart Lung Transplant. 2014;33(1):80–7.

    Article  PubMed  Google Scholar 

  47. Lenting PJ et al. von Willebrand factor: the old, the new and the unknown. J Thromb Haemost. 2012;10(12):2428–37.

    Article  CAS  PubMed  Google Scholar 

  48. Meyer AL et al. Acquired von Willebrand syndrome in patients with an axial flow left ventricular assist device. Circ Heart Fail. 2010;3(6):675–81.

    Article  PubMed  Google Scholar 

  49. Pate GE et al. Heyde’s syndrome: a review. J Heart Valve Dis. 2004;13(5):701–12.

    PubMed  Google Scholar 

  50. Cappell MS, Lebwohl O. Cessation of recurrent bleeding from gastrointestinal angiodysplasias after aortic valve replacement. Ann Intern Med. 1986;105(1):54–7.

    Article  CAS  PubMed  Google Scholar 

  51. Crow S et al. Gastrointestinal bleeding rates in recipients of nonpulsatile and pulsatile left ventricular assist devices. J Thorac Cardiovasc Surg. 2009;137(1):208–15.

    Article  CAS  PubMed  Google Scholar 

  52. Letsou GV et al. Gastrointestinal bleeding from arteriovenous malformations in patients supported by the jarvik 2000 axial-flow left ventricular assist device. J Heart Lung Transplant. 2005;24(1):105–9.

    Article  PubMed  Google Scholar 

  53. Boley SJ et al. On the nature and etiology of vascular ectasias of the colon. Degenerative lesions of aging. Gastroenterology. 1977;72(4 Pt 1):650–60.

    CAS  PubMed  Google Scholar 

  54. Myers TJ et al. Assessment of arterial blood pressure during support with an axial flow left ventricular assist device. J Heart Lung Transplant. 2009;28(5):423–7.

    Article  PubMed  Google Scholar 

  55. Wever-Pinzon O et al. Pulsatility and the risk of nonsurgical bleeding in patients supported with the continuous-flow left ventricular assist device HeartMate II. Circ Heart Fail. 2013;6(3):517–26.

    Article  CAS  PubMed  Google Scholar 

  56. Demirozu ZT et al. Arteriovenous malformation and gastrointestinal bleeding in patients with the HeartMate II left ventricular assist device. J Heart Lung Transplant. 2011;30(8):849–53.

    PubMed  Google Scholar 

  57. Stulak JM et al. Gastrointestinal bleeding and subsequent risk of thromboembolic events during support with a left ventricular assist device. J Heart Lung Transplant. 2014;33(1):60–4.

    Article  PubMed  Google Scholar 

  58. Rennyson SL et al. Octreotide for left ventricular assist device-related gastrointestinal hemorrhage: can we stop the bleeding? ASAIO J. 2013;59(4):450–1.

    Article  PubMed  Google Scholar 

  59. Ray R et al. Treatment of left ventricular assist device-associated arteriovenous malformations with thalidomide. ASAIO J. 2014;60(4):482–3.

    Article  CAS  PubMed  Google Scholar 

  60. Adatya S et al. Anti-factor Xa and activated partial thromboplastin time measurements for heparin monitoring in mechanical circulatory support. JACC Heart Fail. 2015;3(4):314–22.

    Article  PubMed  Google Scholar 

  61. Birati EY et al. Ventricular assist device thrombosis: a wide spectrum of clinical presentation. J Heart Lung Transplant. 2015;34(4):613–5.

    Article  PubMed  Google Scholar 

  62. Goldstein DJ et al. Algorithm for the diagnosis and management of suspected pump thrombus. J Heart Lung Transplant. 2013;32(7):667–70. Current recommendations regarding the evaluation and management of suspected pump thrombosis.

    Article  PubMed  Google Scholar 

  63. Cappellini MD. Coagulation in the pathophysiology of hemolytic anemias. Hematol Am Soc Hematol Educ Progr. 2007: 74–8.

  64. Uriel N et al. Development of a novel echocardiography ramp test for speed optimization and diagnosis of device thrombosis in continuous-flow left ventricular assist devices: the Columbia ramp study. J Am Coll Cardiol. 2012;60(18):1764–75.

    Article  PubMed Central  PubMed  Google Scholar 

  65. Adatya S et al. Echocardiographic ramp test for continuous-flow left ventricular assist devices: do loading conditions matter? JACC Heart Fail. 2015;3(4):291–9.

    Article  PubMed  Google Scholar 

  66. Shah P et al. Diagnosis of hemolysis and device thrombosis with lactate dehydrogenase during left ventricular assist device support. J Heart Lung Transplant. 2014;33(1):102–4.

    Article  PubMed  Google Scholar 

  67. Bhama J et al. Does LVAD inflow cannula position contribute to the development of pump thrombosis requiring device exchange? J Am Coll Cardiol. 2013;61(10):E719.

    Article  Google Scholar 

  68. Taghavi S et al. Surgical technique influences HeartMate II left ventricular assist device thrombosis. Ann Thorac Surg. 2013;96(4):1259–65.

    Article  PubMed  Google Scholar 

  69. Thenappan T et al. Treatment of left ventricular assist device thrombosis with extended catheter-directed intraventricular thrombolytic therapy. Circ Heart Fail. 2013;6(3):e27–9.

    Article  PubMed  Google Scholar 

  70. Kiernan MS et al. Management of HeartWare left ventricular assist device thrombosis using intracavitary thrombolytics. J Thorac Cardiovasc Surg. 2011;142(3):712–4.

    Article  PubMed  Google Scholar 

  71. Hasin T et al. The role of medical management for acute intravascular hemolysis in patients supported on axial flow LVAD. ASAIO J. 2014;60(1):9–14.

    Article  CAS  PubMed  Google Scholar 

  72. Schlendorf K et al. Thrombolytic therapy for thrombosis of continuous flow ventricular assist devices. J Card Fail. 2014;20(2):91–7.

    Article  CAS  PubMed  Google Scholar 

  73. Tellor BR et al. The use of eptifibatide for suspected pump thrombus or thrombosis in patients with left ventricular assist devices. J Heart Lung Transplant. 2014;33(1):94–101.

    Article  PubMed  Google Scholar 

  74. Badiye A, Hernandez GA, Chaparro S. Argatroban as novel therapy for suspected thrombosis in patients with continuous-flow left ventricle assist device and hemolysis. ASAIO J. 2014;60(3):361–5.

    Article  PubMed  Google Scholar 

  75. Sylvia LM et al. Bivalirudin for treatment of LVAD thrombosis: a case series. ASAIO J. 2014;60(6):744–7.

    Article  PubMed  Google Scholar 

  76. Cowger JA et al. Hemolysis: a harbinger of adverse outcome after left ventricular assist device implant. J Heart Lung Transplant. 2014;33(1):35–43.

    Article  PubMed  Google Scholar 

  77. Katz JN et al. A multicenter analysis of clinical hemolysis in patients supported with durable, long-term left ventricular assist device therapy. J Heart Lung Transplant. 2015;34(5):701–9.

    Article  PubMed  Google Scholar 

  78. Ataga KI. Hypercoagulability and thrombotic complications in hemolytic anemias. Haematologica. 2009;94(11):1481–4.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  79. Tromp TR, de Jonge N, Joles JA. Left ventricular assist devices: a kidney’s perspective. Heart Fail Rev. 2015;20:519–32.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Randall C. Starling.

Ethics declarations

Conflict of Interest

Julie L. Rosenthal declares that she has no conflict of interest.

Randall C. Starling reports grants and other from Thoratec and HeartWare.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Heart Failure

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rosenthal, J.L., Starling, R.C. Coagulopathy in Mechanical Circulatory Support: A Fine Balance. Curr Cardiol Rep 17, 114 (2015). https://doi.org/10.1007/s11886-015-0670-0

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11886-015-0670-0

Keywords

Navigation