Skip to main content

EDTA Chelation Therapy to Reduce Cardiovascular Events in Persons with Diabetes

Abstract

The Trial to Assess Chelation Therapy (TACT) was a randomized double-blind placebo-controlled trial enrolling patients age ≥50 years with prior myocardial infarction. TACT used a 2 × 2 factorial design to study ethylene diamine tetraacetic acid (EDTA) chelation and high-dose vitamin supplementation. Chelation provided a modest but significant reduction in cardiovascular endpoints. The benefit was stronger and significant among participants with diabetes but absent in those without diabetes. Mechanisms by which chelation might reduce cardiovascular risk in persons with diabetes include the effects of EDTA chelation on transition and toxic metals. Transition metals, particularly copper and iron, play important roles in oxidative stress pathways. Toxic metals, in particular cadmium and lead, are toxic for the cardiovascular system. This review discusses the epidemiologic evidence and animal and human studies supporting the role of these metals in the development of diabetes and ischemic heart disease and potential ways by which EDTA chelation could confer cardiovascular benefit.

This is a preview of subscription content, access via your institution.

Fig. 1

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Lamas GA, Goertz C, Boineau R, et al. Effect of disodium EDTA chelation regimen on cardiovascular events in patients with previous myocardial infarction: the TACT randomized trial. JAMA. 2013;309:1241–50. Main results of the Trial to Assess Chelation Therapy.

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  2. Escolar E, Lamas GA, Mark DB, et al. Clinical benefit of EDTA chelation therapy in patients with diabetes in the trial to assess chelation therapy (TACT). Circulation 2013;128. Prespecified subgroup analysis showed that post-myocardial infarction patients with diabetes demonstrated that chelation was associated with 61 % reduction in hazard ratio for the primary endpoint of death, reinfarction, stroke, coronary revascularization, or hospitalization for angina. No benefit was evident in the patients without diabetes.

  3. Nissen SE. Concerns about reliability in the Trial to Assess Chelation Therapy (TACT). JAMA. 2013;309:1293–4.

    CAS  Article  PubMed  Google Scholar 

  4. Kaul S. Are concerns about reliability in the trial to assess chelation therapy fair grounds for a hasty dismissal? An alternative perspective. Circ Cardiovasc Qual Outcomes. 2014;7:5–7.

    Article  PubMed  Google Scholar 

  5. Lamas GA, Boineau R, Goertz C, et al. EDTA chelation therapy alone and in combination with oral high-dose multivitamins and minerals for coronary disease: the factorial group results of the Trial to Assess Chelation Therapy. Am Heart J. 2014;168:37–44.e5.

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  6. Maron DJ, Hlatky MA. Trial to Assess Chelation Therapy (TACT) and equipoise: when evidence conflicts with beliefs. Am Heart J. 2014;168:4–5.

    Article  PubMed  Google Scholar 

  7. Brownlee M. The pathobiology of diabetic complications: a unifying mechanism. Diabetes. 2005;54:1615–25.

    CAS  Article  PubMed  Google Scholar 

  8. Selvin E, Halushka MK, Rawlings AM, et al. sRAGE and risk of diabetes, cardiovascular disease, and death. Diabetes. 2013;62:2116–21. Advanced glycation end products (AGEs) are produced in excess in diabetes due to the irreversible reaction of glucose with proteins. AGE binds to various ligands, especially the receptor for AGE (RAGE) which triggers NF-kB-mediated inflammatory signaling. Soluble circulating RAGE (sRAGE) may counteract the effects of RAGE. This study of stored samples from the Atherosclerosis Risk in Communities cohort showed an inverse relationship of sRAGE levels with future diabetes, coronary heart disease, and mortality.

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  9. Du XL, Edelstein D, Rossetti L, et al. Hyperglycemia-induced mitochondrial superoxide overproduction activates the hexosamine pathway and induces plasminogen activator inhibitor-1 expression by increasing Sp1 glycosylation. Proc Natl Acad Sci U S A. 2000;97:12222–6.

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  10. Pitocco D, Tesauro M, Alessandro R, Ghirlanda G, Cardillo C. Oxidative stress in diabetes: implications for vascular and other complications. Int J Mol Sci. 2013;14:21525–50. Detailed review of oxidative stress and the effect of reactive oxygen species (ROS) on the pancreatic beta cells and in the development of insulin resistance and diabetes. The role of ROS in the development of diabetic complications is discussed.

    PubMed Central  Article  PubMed  Google Scholar 

  11. Gupta S, Chough E, Daley J, et al. Hyperglycemia increases endothelial superoxide that impairs smooth muscle cell Na+−K+−ATPase activity. Am J Physiol Cell Physiol. 2002;282:C560–6.

    CAS  Article  PubMed  Google Scholar 

  12. Hink U, Li H, Mollnau H, et al. Mechanisms underlying endothelial dysfunction in diabetes mellitus. Circ Res. 2001;88:E14–22.

    CAS  Article  PubMed  Google Scholar 

  13. Mullarkey CJ, Edelstein D, Brownlee M. Free radical generation by early glycation products: a mechanism for accelerated atherogenesis in diabetes. Biochem Biophys Res Commun. 1990;173:932–9.

    CAS  Article  PubMed  Google Scholar 

  14. Furukawa S, Fujita T, Shimabukuro M, et al. Increased oxidative stress in obesity and its impact on metabolic syndrome. J Clin Invest. 2004;114:1752–61.

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  15. Aronson D. Hyperglycemia and the pathobiology of diabetic complications. Adv Cardiol. 2008;45:1–16.

    CAS  Article  PubMed  Google Scholar 

  16. Anderson EJ, Lustig ME, Boyle KE, et al. Mitochondrial H2O2 emission and cellular redox state link excess fat intake to insulin resistance in both rodents and humans. J Clin Invest. 2009;119:573–81.

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  17. Houstis N, Rosen ED, Lander ES. Reactive oxygen species have a causal role in multiple forms of insulin resistance. Nature. 2006;440:944–8.

    CAS  Article  PubMed  Google Scholar 

  18. Anderson RA, Evans ML, Ellis GR, et al. The relationships between post-prandial lipaemia, endothelial function and oxidative stress in healthy individuals and patients with type 2 diabetes. Atherosclerosis. 2001;154:475–83.

    CAS  Article  PubMed  Google Scholar 

  19. Montgomery MK, Turner N. Mitochondrial dysfunction and insulin resistance: an update. Endocr Connect. 2015;4:R1–15.

    PubMed Central  Article  PubMed  Google Scholar 

  20. Pennathur S, Wagner JD, Leeuwenburgh C, Litwak KN, Heinecke JW. A hydroxyl radical-like species oxidizes cynomolgus monkey artery wall proteins in early diabetic vascular disease. J Clin Invest. 2001;107:853–60.

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  21. Zheng Y, Li XK, Wang Y, Cai L. The role of zinc, copper and iron in the pathogenesis of diabetes and diabetic complications: therapeutic effects by chelators. Hemoglobin. 2008;32:135–45.

    CAS  Article  PubMed  Google Scholar 

  22. Krishnamurti C, Saryan LA, Petering DH. Effects of ethylenediaminetetraacetic acid and 1,10-phenanthroline on cell proliferation and DNA synthesis of Ehrlich ascites cells. Cancer Res. 1980;40:4092–9.

    CAS  PubMed  Google Scholar 

  23. Hansen JB, Moen IW, Mandrup-Poulsen T. Iron: the hard player in diabetes pathophysiology. Acta Physiol. 2014;210:717–32.

    CAS  Article  Google Scholar 

  24. Cooksey RC, Jouihan HA, Ajioka RS, et al. Oxidative stress, beta-cell apoptosis, and decreased insulin secretory capacity in mouse models of hemochromatosis. Endocrinology. 2004;145:5305–12.

    CAS  Article  PubMed  Google Scholar 

  25. Kakhlon O, Cabantchik ZI. The labile iron pool: characterization, measurement, and participation in cellular processes(1). Free Radic Biol Med. 2002;33:1037–46.

    CAS  Article  PubMed  Google Scholar 

  26. Lee DH, Liu DY, Jacobs Jr DR, et al. Common presence of non-transferrin-bound iron among patients with type 2 diabetes. Diabetes Care. 2006;29:1090–5.

    CAS  Article  PubMed  Google Scholar 

  27. Stack AG, Mutwali AI, Nguyen HT, Cronin CJ, Casserly LF, Ferguson J. Transferrin saturation ratio and risk of total and cardiovascular mortality in the general population. QJM. 2014;107:623–33.

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  28. Lapice E, Masulli M, Vaccaro O. Iron deficiency and cardiovascular disease: an updated review of the evidence. Curr Atheroscler Rep. 2013;15:358.

    Article  PubMed  Google Scholar 

  29. Haidari M, Javadi E, Sanati A, Hajilooi M, Ghanbili J. Association of increased ferritin with premature coronary stenosis in men. Clin Chem. 2001;47:1666–72.

    CAS  PubMed  Google Scholar 

  30. You SA, Wang Q. Ferritin in atherosclerosis. Clin Chim Acta. 2005;357:1–16.

    CAS  Article  PubMed  Google Scholar 

  31. Nagai R, Ikeda K, Higashi T, et al. Hydroxyl radical mediates N epsilon-(carboxymethyl)lysine formation from Amadori product. Biochem Biophys Res Commun. 1997;234:167–72.

    CAS  Article  PubMed  Google Scholar 

  32. Zacharski LR, Chow BK, Howes PS, et al. Reduction of iron stores and cardiovascular outcomes in patients with peripheral arterial disease: a randomized controlled trial. JAMA. 2007;297:603–10.

    CAS  Article  PubMed  Google Scholar 

  33. Valko M, Morris H, Cronin MTD. Metals, toxicity and oxidative stress. Curr Med Chem. 2005;12:1161–208.

    CAS  Article  PubMed  Google Scholar 

  34. Cai L, Li XK, Song Y, Cherian MG. Essentiality, toxicology and chelation therapy of zinc and copper. Curr Med Chem. 2005;12:2753–63.

    CAS  Article  PubMed  Google Scholar 

  35. Cai L, Koropatnick J, Cherian MG. Metallothionein protects DNA from copper-induced but not iron-induced cleavage in vitro. Chem Biol Interact. 1995;96:143–55.

    CAS  Article  PubMed  Google Scholar 

  36. Rae TD, Schmidt PJ, Pufahl RA, Culotta VC, O’Halloran TV. Undetectable intracellular free copper: the requirement of a copper chaperone for superoxide dismutase. Science. 1999;284:805–8.

    CAS  Article  PubMed  Google Scholar 

  37. Uriu-Adams JY, Keen CL. Copper, oxidative stress, and human health. Mol Asp Med. 2005;26:268–98.

    CAS  Article  Google Scholar 

  38. Cunningham J, Leffell M, Mearkle P, Harmatz P. Elevated plasma ceruloplasmin in insulin-dependent diabetes mellitus: evidence for increased oxidative stress as a variable complication. Metab Clin Exp. 1995;44:996–9.

    CAS  Article  PubMed  Google Scholar 

  39. Grammer TB, Kleber ME, Silbernagel G, et al. Copper, ceruloplasmin, and long-term cardiovascular and total mortality (the Ludwigshafen Risk and Cardiovascular Health Study). Free Radic Res. 2014;48:706–15. Analysis of the association between copper and ceruloplasmin concentrations and cardiovascular and all-cause mortality in 3253 participants of the LURIC study. This showed a hazard ratio for death of 2.23 for copper and 2.63 for ceruloplasmin when comparing highest to lowest quartiles. This significant association persisted after adjustments for risk factors.

    CAS  Article  PubMed  Google Scholar 

  40. Lee MJ, Jung CH, Hwang JY, et al. Association between serum ceruloplasmin levels and arterial stiffness in Korean men with type 2 diabetes mellitus. Diabetes Technol Ther. 2012;14:1091–7.

    CAS  Article  PubMed  Google Scholar 

  41. Hellman NE, Gitlin JD. Ceruloplasmin metabolism and function. Annu Rev Nutr. 2002;22:439–58.

    CAS  Article  PubMed  Google Scholar 

  42. Cooper GJ, Young AA, Gamble GD, et al. A copper(II)-selective chelator ameliorates left-ventricular hypertrophy in type 2 diabetic patients: a randomised placebo-controlled study. Diabetologia. 2009;52:715–22.

    CAS  Article  PubMed  Google Scholar 

  43. Cooper GJ, Phillips AR, Choong SY, et al. Regeneration of the heart in diabetes by selective copper chelation. Diabetes. 2004;53:2501–8.

    CAS  Article  PubMed  Google Scholar 

  44. Genuth S, Sun W, Cleary P, et al. Glycation and carboxymethyllysine levels in skin collagen predict the risk of future 10-year progression of diabetic retinopathy and nephropathy in the diabetes control and complications trial and epidemiology of diabetes interventions and complications participants with type 1 diabetes. Diabetes. 2005;54:3103–11.

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  45. Peppa M, Vlassara H. Advanced glycation end products and diabetic complications: a general overview. Hormones. 2005;4:28–37.

    Article  PubMed  Google Scholar 

  46. Semba RD, Ferrucci L, Sun K, et al. Advanced glycation end products and their circulating receptors predict cardiovascular disease mortality in older community-dwelling women. Aging Clin Exp Res. 2009;21:182–90.

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  47. Wolff SP, Dean RT. Glucose autoxidation and protein modification. The potential role of ‘autoxidative glycosylation’ in diabetes. Biochem J. 1987;245:243–50.

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  48. Brings S, Zhang S, Choong YS, et al. Diabetes-induced alterations in tissue collagen and carboxymethyllysine in rat kidneys: association with increased collagen-degrading proteinases and amelioration by Cu(II)-selective chelation. Biochim Biophys Acta. 1852;2015:1610–8.

    Google Scholar 

  49. Uchiki T, Weikel KA, Jiao W, et al. Glycation-altered proteolysis as a pathobiologic mechanism that links dietary glycemic index, aging, and age-related disease (in nondiabetics). Aging Cell. 2012;11:1–13.

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  50. Menke A, Muntner P, Batuman V, Silbergeld EK, Guallar E. Blood lead below 0.48 micromol/L (10 microg/dL) and mortality among US adults. Circulation. 2006;114:1388–94.

    CAS  Article  PubMed  Google Scholar 

  51. Navas-Acien A, Guallar E, Silbergeld EK, Rothenberg SJ. Lead exposure and cardiovascular disease--a systematic review. Environ Health Perspect. 2007;115:472–82.

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  52. Tellez-Plaza M, Guallar E, Howard BV, et al. Cadmium exposure and incident cardiovascular disease. Epidemiology. 2013;24:421–9.

    PubMed Central  Article  PubMed  Google Scholar 

  53. Tellez-Plaza M, Jones MR, Dominguez-Lucas A, Guallar E, Navas-Acien A. Cadmium exposure and clinical cardiovascular disease: a systematic review. Curr Atheroscler Rep. 2013;15:356. Systematic review of epidemiologic studies evaluating the association between cadmium exposure and cardiovascular disease.

    Article  PubMed  Google Scholar 

  54. Tellez-Plaza M, Navas-Acien A, Menke A, Crainiceanu CM, Pastor-Barriuso R, Guallar E. Cadmium exposure and all-cause and cardiovascular mortality in the U.S. general population. Environ Health Perspect. 2012;120:1017–22.

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  55. Toxicological profile for cadmium. In: Services. US Department of Health and Human Services, editor. Atlanta, GA: US Department of Health and Human Services: Public Health Service. 1999.

  56. Waters RS, Bryden NA, Patterson KY, Veillon C, Anderson RA. EDTA chelation effects on urinary losses of cadmium, calcium, chromium, cobalt, copper, lead, magnesium, and zinc. Biol Trace Elem Res. 2001;83:207–21.

    CAS  Article  PubMed  Google Scholar 

  57. Blanusa M, Varnai VM, Piasek M, Kostial K. Chelators as antidotes of metal toxicity: therapeutic and experimental aspects. Curr Med Chem. 2005;12:2771–94.

    CAS  Article  PubMed  Google Scholar 

  58. Jarup L, Berglund M, Elinder CG, Nordberg G, Vahter M. Health effects of cadmium exposure- a review of the literature and a risk estimate. Scand J Work Environ Health. 1998;24:1–51.

    Article  PubMed  Google Scholar 

  59. Nordberg GF, Nogawa K, Nordberg M, Friberg LT. Cadmium. In: Nordberg GF, Fowler BF, Nordberg M, Friberg LT, editors. Handbook on the toxicology of metals. 3rd ed. Amsterdam: Elsevier; 2007. p. 446–86.

    Google Scholar 

  60. Guallar E, Sanz-Gallardo MI, van’t Veer P, et al. Mercury, fish oils, and the risk of myocardial infarction. N Engl J Med. 2002;347:1747–54.

    CAS  Article  PubMed  Google Scholar 

  61. Navas-Acien A, Silbergeld EK, Sharrett R, Calderon-Aranda E, Selvin E, Guallar E. Metals in urine and peripheral arterial disease. Environ Health Perspect. 2005;113:164–9.

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  62. Solenkova NV, Newman JD, Berger JS, Thurston G, Hochman JS, Lamas GA. Metal pollutants and cardiovascular disease: mechanisms and consequences of exposure. Am Heart J. 2014;168:812–22.

    CAS  Article  PubMed  Google Scholar 

  63. Lalor GC. Review of cadmium transfers from soil to humans and its health effects in the Jamaican environment. Sci Total Environ. 2008;400:162–72.

    CAS  Article  PubMed  Google Scholar 

  64. Messner B, Bernhard D. Cadmium and cardiovascular diseases: cell biology, pathophysiology, and epidemiological relevance. Biometals. 2010;23:811–22.

    CAS  Article  PubMed  Google Scholar 

  65. Cuypers A, Plusquin M, Remans T, et al. Cadmium stress: an oxidative challenge. Biometals. 2010;23:927–40.

    CAS  Article  PubMed  Google Scholar 

  66. Ruiz-Hernandez A, Kuo CC, Rentero-Garrido P, et al. Environmental chemicals and DNA methylation in adults: a systematic review of the epidemiologic evidence. Clin Epigenetics. 2015;7:55.

    PubMed Central  Article  PubMed  Google Scholar 

  67. Martin-Nunez E, Donate-Correa J, Muros-de-Fuentes M, Mora-Fernandez C, Navarro-Gonzalez JF. Implications of Klotho in vascular health and disease. World J Cardiol. 2014;6:1262–9.

    PubMed Central  Article  PubMed  Google Scholar 

  68. Flegal AR, Smith DR. Lead levels in preindustrial humans. N Engl J Med. 1992;326:1293–4.

    CAS  PubMed  Google Scholar 

  69. Blood lead levels - United States, 199902002. MMWR Morb Mortal Wkly Rep. 2005;54:513–6.

  70. Apostolou A, Garcia-Esquinas E, Fadrowski JJ, McLain P, Weaver VM, Navas-Acien A. Secondhand tobacco smoke: a source of lead exposure in US children and adolescents. Am J Public Health. 2012;102:714–22.

    PubMed Central  Article  PubMed  Google Scholar 

  71. Hu H, Rabinowitz M, Smith D. Bone lead as a biological marker in epidemiologic studies of chronic toxicity: conceptual paradigms. Environ Health Perspect. 1998;106:1–8.

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  72. Hu H, Rothenberg SJ, Schwartz BS. The epidemiology of lead toxicity in adults: measuring dose and consideration of other methodologic issues. Environ Health Perspect. 2007;115:455–62.

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  73. Barbosa FJ, Tanus-Santos JE, Gerlach RF, Parsons PJ. A critical review of biomarkers used for monitoring human exposure to lead: advantages, limitations and future needs. Environ Health Perspect. 2005;113:1669–74.

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  74. Vaziri ND. Mechanisms of lead-induced hypertension and cardiovascular disease. Am J Physiol Heart Circ Physiol. 2008;295:H454–65.

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  75. Kern M, Audesirk G. Stimulatory and inhibitory effects of inorganic lead on calcineurin. Toxicology. 2000;150:171–8.

    CAS  Article  PubMed  Google Scholar 

  76. Tellez-Plaza M, Navas-Acien A, Crainiceanu CM, Sharrett AR, Guallar E. Cadmium and peripheral arterial disease: gender differences in the 1999–2004 US National Health and Nutrition Examination Survey. Am J Epidemiol. 2010;172:671–81.

    PubMed Central  Article  PubMed  Google Scholar 

  77. Navas-Acien A, Selvin E, Sharrett AR, Calderon-Aranda E, Silbergeld E, Guallar E. Lead, cadmium, smoking, and increased risk of peripheral arterial disease. Circulation. 2004;109:3196–201.

    CAS  Article  PubMed  Google Scholar 

  78. Fagerberg B, Bergstrom G, Boren J, Barregard L. Cadmium exposure, intercellular adhesion molecule-1 and peripheral artery disease: a cohort and an experimental study. BMJ Open. 2013;3.

  79. Bergstrom G, Fagerberg B, Sallsten G, Lundh T, Barregard L. Is cadmium exposure associated with the burden, vulnerability and rupture of human atherosclerotic plaques? PLoS One. 2015;10:e0121240.

    PubMed Central  Article  PubMed  Google Scholar 

  80. Tellez-Plaza M, Navas-Acien A, Crainiceanu CM, Guallar E. Cadmium exposure and hypertension in the 1999–2004 National Health and Nutrition Examination Survey (NHANES). Environ Health Perspect. 2008;116:51–6.

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  81. Peters JL, Fabian MP, Levy JI. Combined impact of lead, cadmium, polychlorinated biphenyls and non-chemical risk factors on blood pressure in NHANES. Environ Res. 2014;132:93–9.

    CAS  Article  PubMed  Google Scholar 

  82. Navas-Acien A, Tellez-Plaza M, Guallar E, et al. Blood cadmium and lead and chronic kidney disease in US adults: a joint analysis. Am J Epidemiol. 2009;170:1156–64.

    PubMed Central  Article  PubMed  Google Scholar 

  83. Sangartit W, Kukongviriyapan U, Donpunha W, et al. Tetrahydrocurcumin protects against cadmium-induced hypertension, raised arterial stiffness and vascular remodeling in mice. PLoS One. 2014;9:e114908.

    PubMed Central  Article  PubMed  Google Scholar 

  84. Daniel S, Limson JL, Dairam A, Watkins GM, Daya S. Through metal binding, curcumin protects against lead- and cadmium-induced lipid peroxidation in rat brain homogenates and against lead-induced tissue damage in rat brain. J Inorg Biochem. 2004;98:266–75.

    CAS  Article  PubMed  Google Scholar 

  85. Kukongviriyapan U, Pannangpetch P, Kukongviriyapan V, Donpunha W, Sompamit K, Surawattanawan P. Curcumin protects against cadmium-induced vascular dysfunction, hypertension and tissue cadmium accumulation in mice. Nutrients. 2014;6:1194–208.

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  86. Jiao Y, Wilkinson J, Di X, et al. Curcumin, a cancer chemopreventive and chemotherapeutic agent, is a biologically active iron chelator. Blood. 2009;113:462–9.

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  87. Muntner P, Menke A, DeSalvo KB, Rabito FA, Batuman V. Continued decline in blood lead levels among adults in the United States: the National Health and Nutrition Examination Surveys. Arch Intern Med. 2005;165:2155–61.

    CAS  Article  PubMed  Google Scholar 

  88. Jain NB, Potula V, Schwartz J, et al. Lead levels and ischemic heart disease in a prospective study of middle-aged and elderly men: the VA Normative Aging Study. Environ Health Perspect. 2007;115:871–5.

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  89. Weisskopf MG, Jain N, Nie H, et al. A prospective study of bone lead concentration and death from all causes, cardiovascular diseases, and cancer in the Department of Veterans Affairs Normative Aging Study. Circulation. 2009;120:1056–64.

    PubMed Central  Article  PubMed  Google Scholar 

  90. Forbes JM, Cooper ME, Thallas V, et al. Reduction of the accumulation of advanced glycation end products by ACE inhibition in experimental diabetic nephropathy. Diabetes. 2002;51:3274–82.

    CAS  Article  PubMed  Google Scholar 

  91. Miyata T, van Ypersele de Strihou C, Ueda Y, et al. Angiotensin II receptor antagonists and angiotensin-converting enzyme inhibitors lower in vitro the formation of advanced glycation end products: biochemical mechanisms. J Am Soc Nephrol. 2002;13:2478–87.

    CAS  Article  PubMed  Google Scholar 

  92. Nagai R, Murray DB, Metz TO, Baynes JW. Chelation: a fundamental mechanism of action of AGE inhibitors, AGE breakers, and other inhibitors of diabetes complications. Diabetes. 2012;61:549–59. Hypothesis-generating article that details the drugs commonly prescribed for patients with diabetes and heart disease, such as angiotensinogen-converting enzyme inhibitor (ACEI), chelates metal at low concentration. The article provokes thought that their clinical effectiveness, which is especially marked in patients with diabetes, may be due in part to their chelating properties.

  93. Gustafsson I, Torp-Pedersen C, Kober L, Gustafsson F, Hildebrandt P. Effect of the angiotensin-converting enzyme inhibitor trandolapril on mortality and morbidity in diabetic patients with left ventricular dysfunction after acute myocardial infarction. Trace Study Group. J Am Coll Cardiol. 1999;34:83–9.

    CAS  Article  PubMed  Google Scholar 

  94. Logie L, Harthill J, Patel K, et al. Cellular responses to the metal-binding properties of metformin. Diabetes. 2012;61:1423–33. Metformin, a biguanide, is recommended as the initial oral hypoglycemic agent for treatment of type 2 diabetes not controlled with diet and exercise. The mechanism by which metformin inhibits gluconeogenesis is complex, with several putative targets. This well-done in vitro study documents that metformin complexes with copper to initiate the cascade which produces its pharmacologic effect.

Download references

Acknowledgments

We appreciate the support provided by Carrie Price, MLS, Clinical Informationist, in developing the literature search.

Compliance with Ethics Guidelines

Conflict of Interest

Pamela Ouyang has received grant support from NIH and was a site investigator for the TACT trial.

Sheldon H. Gottlieb, Valerie L. Culotta, and Ana Navas-Acien declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pamela Ouyang.

Additional information

This article is part of the Topical Collection on Diabetes and Cardiovascular Disease

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ouyang, P., Gottlieb, S.H., Culotta, V.L. et al. EDTA Chelation Therapy to Reduce Cardiovascular Events in Persons with Diabetes. Curr Cardiol Rep 17, 96 (2015). https://doi.org/10.1007/s11886-015-0656-y

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11886-015-0656-y

Keywords

  • Diabetes
  • Chelation
  • Cardiovascular disease
  • Oxidative stress
  • Metals