Skip to main content

Advertisement

Log in

Interventional CMR: Clinical Applications and Future Directions

  • Cardiac PET, CT, and MRI (SE Petersen, Section Editor)
  • Published:
Current Cardiology Reports Aims and scope Submit manuscript

Abstract

Interventional cardiovascular magnetic resonance (iCMR) promises to enable radiation-free catheterization procedures and to enhance contemporary image guidance for structural heart and electrophysiological interventions. However, clinical translation of exciting pre-clinical interventions has been limited by availability of devices that are safe to use in the magnetic resonance (MR) environment. We discuss challenges and solutions for clinical translation, including MR-conditional and MR-safe device design, and how to configure an interventional suite. We review the recent advances that have already enabled diagnostic MR right heart catheterization and simple electrophysiologic ablation to be performed in humans and explore future clinical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. de Silva R, Gutierrez LF, Raval AN, McVeigh ER, Ozturk C, Lederman RJ. X-ray fused with magnetic resonance imaging (XFM) to target endomyocardial injections: validation in a swine model of myocardial infarction. Circulation. 2006;114(22):2342–50. doi:10.1161/CIRCULATIONAHA.105.598524.

    Article  PubMed Central  PubMed  Google Scholar 

  2. Dori Y, Sarmiento M, Glatz AC, Gillespie MJ, Jones VM, Harris MA, et al. X-ray magnetic resonance fusion to internal markers and utility in congenital heart disease catheterization. Circ: Cardiovascular Imaging. 2011;4(4):415–24. doi:10.1161/circimaging.111.963868.

    PubMed Central  PubMed  Google Scholar 

  3. Faranesh AZ, Kellman P, Ratnayaka K, Lederman RJ. Integration of cardiac and respiratory motion into MRI roadmaps fused with x-ray. Med Phys. 2013;40(3):032302. doi:10.1118/1.4789919.

    Article  PubMed Central  PubMed  Google Scholar 

  4. Abu Hazeem AA, Dori Y, Whitehead KK, Harris MA, Fogel MA, Gillespie MJ, et al. X-ray magnetic resonance fusion modality may reduce radiation exposure and contrast dose in diagnostic cardiac catheterization of congenital heart disease. Catheter Cardiovasc Interv. 2014. doi:10.1002/ccd.25473.

    PubMed  Google Scholar 

  5. Avula S, Mallucci CL, Pizer B, Garlick D, Crooks D, Abernethy LJ. Intraoperative 3-Tesla MRI in the management of paediatric cranial tumours–initial experience. Pediatr Radiol. 2012;42(2):158–67. doi:10.1007/s00247-011-2261-6.

    Article  PubMed  Google Scholar 

  6. Ratnayaka K, Faranesh AZ, Hansen MS, Stine AM, Halabi M, Barbash IM, et al. Real-time MRI-guided right heart catheterization in adults using passive catheters. Eur Heart J. 2013;34(5):380–9. doi:10.1093/eurheartj/ehs189. This paper shows that MRI right heart catheterization can be implemented into a clinically-realistic workflow for standard clinical practice.

    Article  PubMed Central  PubMed  Google Scholar 

  7. Rogers T, Ratnayaka K, Lederman RJ. MRI catheterization in cardiopulmonary disease. Chest. 2014;145(1):30–6. doi:10.1378/chest. 13-1759.

    Article  PubMed Central  PubMed  Google Scholar 

  8. Dukkipati SR, Mallozzi R, Schmidt EJ, Holmvang G, d’Avila A, Guhde R, et al. Electroanatomic mapping of the left ventricle in a porcine model of chronic myocardial infarction with magnetic resonance-based catheter tracking. Circulation. 2008;118(8):853–62. doi:10.1161/CIRCULATIONAHA.107.738229.

    Article  PubMed  Google Scholar 

  9. Yutzy SR, Duerk JL. Pulse sequences and system interfaces for interventional and real-time MRI. J Magn Resonance Imaging: JMRI. 2008;27(2):267–75. doi:10.1002/jmri.21268.

    Article  PubMed  Google Scholar 

  10. Pruessmann KP, Weiger M, Scheidegger MB, Boesiger P. SENSE: sensitivity encoding for fast MRI. Magn Resonance Med: Off J Soc Magn Resonance Med/Soc Magn Resonance Med. 1999;42(5):952–62.

    Article  CAS  Google Scholar 

  11. Kellman P, Epstein FH, McVeigh ER. Adaptive sensitivity encoding incorporating temporal filtering (TSENSE). Magn Resonance Med: Off J Soc Magn Resonance Med/Soc Magn Resonance Med. 2001;45(5):846–52. doi:10.1002/mrm.1113.

    Article  CAS  Google Scholar 

  12. Griswold MA, Jakob PM, Heidemann RM, Nittka M, Jellus V, Wang J, et al. Generalized autocalibrating partially parallel acquisitions (GRAPPA). Magn Resonance Med: Off J Soc Magn Resonance Med/Soc Magn Resonance Med. 2002;47(6):1202–10. doi:10.1002/mrm.10171.

    Article  Google Scholar 

  13. Johnson JN, Hornik CP, Li JS, Benjamin Jr DK, Yoshizumi TT, Reiman RE, et al. Cumulative radiation exposure and cancer risk estimation in children with heart disease. Circulation. 2014;130(2):161–7. doi:10.1161/CIRCULATIONAHA.113.005425.

    Article  PubMed  Google Scholar 

  14. Fratz S, Chung T, Greil G, Samyn M, Taylor A, Valsangiacomo Buechel E, et al. Guidelines and protocols for cardiovascular magnetic resonance in children and adults with congenital heart disease: SCMR expert consensus group on congenital heart disease. J Cardiovasc Magn Reson. 2013;15(1):51.

    Article  PubMed Central  PubMed  Google Scholar 

  15. Venneri L, Rossi F, Botto N, Andreassi MG, Salcone N, Emad A, et al. Cancer risk from professional exposure in staff working in cardiac catheterization laboratory: insights from the National Research Council’s Biological Effects of Ionizing Radiation VII Report. Am Heart J. 2009;157(1):118–24. doi:10.1016/j.ahj.2008.08.009.

    Article  PubMed  Google Scholar 

  16. Chambers CE, Fetterly KA, Holzer R, Lin PJ, Blankenship JC, Balter S, et al. Radiation safety program for the cardiac catheterization laboratory. Catheterization Cardiovascular Interv: Off J Soc Cardiac Angiography Interv. 2011;77(4):546–56. doi:10.1002/ccd.22867.

    Article  Google Scholar 

  17. Barbash IM, Saikus CE, Faranesh AZ, Ratnayaka K, Kocaturk O, Chen MY, et al. Direct percutaneous left ventricular access and port closure: pre-clinical feasibility. J Am Coll Cardiol Intv. 2011;4(12):1318–25. doi:10.1016/j.jcin.2011.07.017.

    Article  Google Scholar 

  18. Halabi M, Ratnayaka K, Faranesh AZ, Hansen MS, Barbash IM, Eckhaus MA, et al. Transthoracic delivery of large devices into the left ventricle through the right ventricle and interventricular septum: preclinical feasibility. J Cardiovascular Magn Resonance: Off J Soc Cardiovascular Magn Resonance. 2013;15(1):10. doi:10.1186/1532-429X-15-10.

    Article  Google Scholar 

  19. Ratnayaka K, Saikus CE, Faranesh AZ, Bell JA, Barbash IM, Kocaturk O, et al. Closed-chest transthoracic magnetic resonance imaging-guided ventricular septal defect closure in swine. J Am Coll Cardiol Intv. 2011;4(12):1326–34. doi:10.1016/j.jcin.2011.09.012.

    Article  Google Scholar 

  20. Raval AN, Telep JD, Guttman MA, Ozturk C, Jones M, Thompson RB, et al. Real-time magnetic resonance imaging-guided stenting of aortic coarctation with commercially available catheter devices in swine. Circulation. 2005;112(5):699–706. doi:10.1161/CIRCULATIONAHA.105.542647.

    Article  PubMed Central  PubMed  Google Scholar 

  21. Raman VK, Karmarkar PV, Guttman MA, Dick AJ, Peters DC, Ozturk C, et al. Real-time magnetic resonance-guided endovascular repair of experimental abdominal aortic aneurysm in swine. J Am Coll Cardiol. 2005;45(12):2069–77. doi:10.1016/j.jacc.2005.03.029.

    Article  PubMed Central  PubMed  Google Scholar 

  22. Eggebrecht H, Kuhl H, Kaiser GM, Aker S, Zenge MO, Stock F, et al. Feasibility of real-time magnetic resonance-guided stent-graft placement in a swine model of descending aortic dissection. Eur Heart J. 2006;27(5):613–20. doi:10.1093/eurheartj/ehi732.

    Article  PubMed  Google Scholar 

  23. Buecker A, Spuentrup E, Grabitz R, Freudenthal F, Muehler E, Schaeffter T, et al. Magnetic resonance-guided placement of atrial septal closure device in animal model of patent foramen ovale. Circulation. 2002;106:511–5.

    Article  PubMed  Google Scholar 

  24. Rickers C, Jerosch-Herold M, Hu X, Murthy N, Wang X, Kong H, et al. Magnetic resonance image-guided transcatheter closure of atrial septal defects. Circulation. 2003;107(1):132–8.

    Article  PubMed  Google Scholar 

  25. Raval AN, Karmarkar PV, Guttman MA, Ozturk C, Desilva R, Aviles RJ, et al. Real-time MRI guided atrial septal puncture and balloon septostomy in swine. Catheterization Cardiovascular Interv: Off J Soc Cardiac Angiography Interv. 2006;67(4):637–43. doi:10.1002/ccd.20579.

    Article  Google Scholar 

  26. Bucker A, Neuerburg JM, Adam GB, Glowinski A, Schaeffter T, Rasche V, et al. Real-time MR guidance for inferior vena cava filter placement in an animal model. J Vascular Interv Radiol: JVIR. 2001;12(6):753–6.

    Article  CAS  PubMed  Google Scholar 

  27. Shih MC, Rogers WJ, Bonatti H, Hagspiel KD. Real-time MR-guided retrieval of inferior vena cava filters: an in vitro and animal model study. J Vascular Interv Radiol: JVIR. 2011;22(6):843–50. doi:10.1016/j.jvir.2011.01.428.

    Article  Google Scholar 

  28. Buecker A, Neuerburg JM, Adam GB, Glowinski A, Schaeffter T, Rasche V, et al. Real-time MR fluoroscopy for MR-guided iliac artery stent placement. J Magn Resonance Imaging: JMRI. 2000;12(4):616–22.

    Article  CAS  PubMed  Google Scholar 

  29. Feng L, Dumoulin CL, Dashnaw S, Darrow RD, Delapaz RL, Bishop PL, et al. Feasibility of stent placement in carotid arteries with real-time MR imaging guidance in pigs. Radiology. 2005;234(2):558–62.

    Article  PubMed  Google Scholar 

  30. Elgort DR, Hillenbrand CM, Zhang S, Wong EY, Rafie S, Lewin JS, et al. Image-guided and -monitored renal artery stenting using only MRI. J Magn Resonance Imaging: JMRI. 2006;23(5):619–27. doi:10.1002/jmri.20554.

    Article  PubMed  Google Scholar 

  31. Fink C, Bock M, Umathum R, Volz S, Zuehlsdorff S, Grobholz R, et al. Renal embolization: feasibility of magnetic resonance-guidance using active catheter tracking and intraarterial magnetic resonance angiography. Investig Radiol. 2004;39(2):111–9.

    Article  Google Scholar 

  32. Seppenwoolde JH, Bartels LW, van der Weide R, Nijsen JF, van het Schip AD, Bakker CJ. Fully MR-guided hepatic artery catheterization for selective drug delivery: a feasibility study in pigs. J Magn Resonance Imaging: JMRI. 2006;23(2):123–9. doi:10.1002/jmri.20479.

    Article  PubMed  Google Scholar 

  33. Kuehne T, Saeed M, Higgins CB, Gleason K, Krombach GA, Weber OM, et al. Endovascular stents in pulmonary valve and artery in swine: feasibility study of MR imaging-guided deployment and postinterventional assessment. Radiology. 2003;226(2):475–81.

    Article  PubMed  Google Scholar 

  34. Kahlert P, Parohl N, Albert J, Schafer L, Reinhardt R, Kaiser GM, et al. Real-time magnetic resonance imaging-guided transarterial aortic valve implantation: in vivo evaluation in swine. J Am Coll Cardiol. 2012;59(2):192–3. doi:10.1016/j.jacc.2011.09.046.

    Article  PubMed  Google Scholar 

  35. Spuentrup E, Ruebben A, Schaeffter T, Manning WJ, Gunther RW, Buecker A. Magnetic resonance–guided coronary artery stent placement in a swine model. Circulation. 2002;105(7):874–9.

    Article  PubMed  Google Scholar 

  36. Omary RA, Green JD, Schirf BE, Li Y, Finn JP, Li D. Real-time magnetic resonance imaging-guided coronary catheterization in swine. Circulation. 2003;107(21):2656–9.

    Article  PubMed  Google Scholar 

  37. Unal O, Li J, Cheng W, Yu H, Strother CM. MR-visible coatings for endovascular device visualization. J Magn Resonance Imaging: JMRI. 2006;23(5):763–9.

    Article  PubMed  Google Scholar 

  38. Dumoulin CL, Souza SP, Darrow RD. Real-time position monitoring of invasive devices using magnetic resonance. Magn Resonance Med: Off J Soc Magn Resonance Med/Soc Magn Resonance Med. 1993;29(3):411–5.

    Article  CAS  Google Scholar 

  39. Ladd ME, Zimmermann GG, Quick HH, Debatin JF, Boesiger P, von Schulthess GK, et al. Active MR visualization of a vascular guidewire in vivo. J Magn Resonance Imaging: JMRI. 1998;8(1):220–5.

    Article  CAS  PubMed  Google Scholar 

  40. McKinnon GC, Debatin JF, Leung DA, Wildermuth S, Holtz DJ, von Schulthess GK. Towards active guidewire visualization in interventional magnetic resonance imaging. Magma. 1996;4(1):13–8.

    Article  CAS  PubMed  Google Scholar 

  41. Ocali O, Atalar E. Intravascular magnetic resonance imaging using a loopless catheter antenna. Magn Resonance Med: Off J Soc Magn Resonance Med/Soc Magn Resonance Med. 1997;37(1):112–8.

    Article  CAS  Google Scholar 

  42. Nitz W, Oppelt A, Renz W, Manke C, Lenhart M, Link J. On the heating of linear conductive structures as guide wires and catheters in interventional MRI. J Magn Resonance Imaging: JMRI. 2001;13:105–14.

    Article  CAS  PubMed  Google Scholar 

  43. Nordbeck P, Fidler F, Weiss I, Warmuth M, Friedrich MT, Ehses P, et al. Spatial distribution of RF-induced E-fields and implant heating in MRI. Magn Resonance Med: Off J Soc Magn Resonance Med/Soc Magn Resonance Med. 2008;60(2):312–9. doi:10.1002/mrm.21475.

    Article  Google Scholar 

  44. Ladd ME, Quick HH. Reduction of resonant RF heating in intravascular catheters using coaxial chokes. Magn Resonance Med: Off J Soc Magn Resonance Med/Soc Magn Resonance Med. 2000;43(4):615–9.

    Article  CAS  Google Scholar 

  45. Weiss S, Vernickel P, Schaeffter T, Schulz V, Gleich B. Transmission line for improved RF safety of interventional devices. Magn Resonance Med: Off J Soc Magn Resonance Med/Soc Magn Resonance Med. 2005;54:182–9.

    Article  Google Scholar 

  46. Quick HH, Kuehl H, Kaiser G, Bosk S, Debatin JF, Ladd ME. Inductively coupled stent antennas in MRI. Magn Resonance Med: Off J Soc Magn Resonance Med/Soc Magn Resonance Med. 2002;48(5):781–90.

    Article  Google Scholar 

  47. Yeung C, Susil R, Atalar E. RF safety of wires in interventional MRI: using a safety index. Magn Resonance Med: Off J Soc Magn Resonance Med/Soc Magn Resonance Med. 2002;47:187–93.

    Article  Google Scholar 

  48. Armenean C, Perrin E, Armenean M, Beuf O, Pilleul F, Saint-Jalmes H. RF-induced temperature elevation along metallic wires in clinical magnetic resonance imaging: influence of diameter and length. Magn Resonance Med: Off J Soc Magn Resonance Med/Soc Magn Resonance Med. 2004;52(5):1200–6. doi:10.1002/mrm.20246.

    Article  Google Scholar 

  49. Srinivasan S, Ennis DB. Variable flip angle balanced steady-state free precession for lower SAR or higher contrast cardiac cine imaging. Magn Resonance Med: Off J Soc Magn Resonance Med/Soc Magn Resonance Med. 2013. doi:10.1002/mrm.24764.

    Google Scholar 

  50. Wu X, Akgun C, Vaughan JT, Andersen P, Strupp J, Ugurbil K, et al. Adapted RF pulse design for SAR reduction in parallel excitation with experimental verification at 9.4 T. J Magn Reson. 2010;205(1):161–70.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  51. Tzifa A, Krombach GA, Kramer N, Kruger S, Schutte A, von Walter M, et al. Magnetic resonance-guided cardiac interventions using magnetic resonance-compatible devices: a preclinical study and first-in-man congenital interventions. Circ Cardiovasc Interv. 2010;3(6):585–92. doi:10.1161/CIRCINTERVENTIONS.110.957209.

    Article  PubMed  Google Scholar 

  52. Dick AJ, Raman VK, Raval AN, Guttman MA, Thompson RB, Ozturk C, et al. Invasive human magnetic resonance imaging during angioplasty: feasibility in a combined XMR suite. Catheterization Cardiovascular Interv: Off J Soc Cardiac Angiography Interv. 2005;64(3):265–74.

    Article  Google Scholar 

  53. Sonmez M, Saikus CE, Bell JA, Franson DN, Halabi M, Faranesh AZ, et al. MRI active guidewire with an embedded temperature probe and providing a distinct tip signal to enhance clinical safety. J Cardiovascular Magn Resonance: Off J Soc Cardiovascular Magn Resonance. 2012;14:38. doi:10.1186/1532-429X-14-38.

    Article  Google Scholar 

  54. Kocaturk O, Kim AH, Saikus CE, Guttman MA, Faranesh AZ, Ozturk C, et al. Active two-channel 0.035″ guidewire for interventional cardiovascular MRI. J Magn Resonance Imaging: JMRI. 2009;30(2):461–5. doi:10.1002/jmri.21844.

    Article  PubMed Central  PubMed  Google Scholar 

  55. Razavi R, Hill DL, Keevil SF, Miquel ME, Muthurangu V, Hegde S, et al. Cardiac catheterisation guided by MRI in children and adults with congenital heart disease. Lancet. 2003;362(9399):1877–82. doi:10.1016/S0140-6736(03)14956-2.

    Article  PubMed  Google Scholar 

  56. Kuehne T, Yilmaz S, Schulze-Neick I, Wellnhofer E, Ewert P, Nagel E, et al. Magnetic resonance imaging guided catheterisation for assessment of pulmonary vascular resistance: in vivo validation and clinical application in patients with pulmonary hypertension. Heart. 2005;91(8):1064–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  57. Muthurangu V, Taylor A, Andriantsimiavona R, Hegde S, Miquel ME, Tulloh R, et al. Novel method of quantifying pulmonary vascular resistance by use of simultaneous invasive pressure monitoring and phase-contrast magnetic resonance flow. Circulation. 2004;110(7):826–34. doi:10.1161/01.CIR.0000138741.72946.84. This is a seminal demonstration of the enhanced accuracy of MRI catheterization over conventional indicator-dilution techniques for measuring blood flow required to determine pulmonary vascular resistance.

    Article  PubMed  Google Scholar 

  58. Muthurangu V, Atkinson D, Sermesant M, Miquel ME, Hegde S, Johnson R, et al. Measurement of total pulmonary arterial compliance using invasive pressure monitoring and MR flow quantification during MR-guided cardiac catheterization. Am J Phys Heart Circ Phys. 2005;289(3):H1301–6. doi:10.1152/ajpheart.00957.2004.

    CAS  Google Scholar 

  59. Nishimura RA, Carabello BA. Hemodynamics in the cardiac catheterization laboratory of the 21st century. Circulation. 2012;125(17):2138–50. doi:10.1161/CIRCULATIONAHA.111.060319.

    Article  PubMed  Google Scholar 

  60. Ohno Y, Hatabu H, Murase K, Higashino T, Nogami M, Yoshikawa T, et al. Primary pulmonary hypertension: 3D dynamic perfusion MRI for quantitative analysis of regional pulmonary perfusion. AJR Am J Roentgenol. 2007;188(1):48–56. doi:10.2214/AJR.05.0135.

    Article  PubMed  Google Scholar 

  61. Blomström Lundqvist C, Auricchio A, Brugada J, Boriani G, Bremerich J, Cabrera JA et al. The use of imaging for electrophysiological and devices procedures: a report from the first European Heart Rhythm Association Policy Conference, jointly organized with the European Association of Cardiovascular Imaging (EACVI), the Council of Cardiovascular Imaging and the European Society of Cardiac Radiology. Europace: European pacing, arrhythmias, and cardiac electrophysiology: journal of the working groups on cardiac pacing, arrhythmias, and cardiac cellular electrophysiology of the European Society of Cardiology. 2013;15(7):927–36. doi:10.1093/europace/eut084

  62. Lardo AC, McVeigh ER, Jumrussirikul P, Berger RD, Calkins H, Lima J, et al. Visualization and temporal/spatial characterization of cardiac radiofrequency ablation lesions using magnetic resonance imaging. Circulation. 2000;102(6):698–705.

    Article  CAS  PubMed  Google Scholar 

  63. Dickfeld T, Kato R, Zviman M, Lai S, Meininger G, Lardo AC, et al. Characterization of radiofrequency ablation lesions with gadolinium-enhanced cardiovascular magnetic resonance imaging. J Am Coll Cardiol. 2006;47(2):370–8.

    Article  PubMed Central  PubMed  Google Scholar 

  64. Arujuna A, Karim R, Caulfield D, Knowles B, Rhode K, Schaeffter T, et al. Acute pulmonary vein isolation is achieved by a combination of reversible and irreversible atrial injury after catheter ablation: evidence from magnetic resonance imaging. Circ: Arrhythmia Electrophysiol. 2012;5(4):691–700. doi:10.1161/circep.111.966523.

    Google Scholar 

  65. Harrison JL, Jensen HK, Peel SA, Chiribiri A, Grøndal AK, Bloch LØ, et al. Cardiac magnetic resonance and electroanatomical mapping of acute and chronic atrial ablation injury: a histological validation study. Eur Heart J. 2014. doi:10.1093/eurheartj/eht560.

    PubMed  Google Scholar 

  66. Celik H, Ramanan V, Barry J, Ghate S, Leber V, Oduneye S, et al. Intrinsic contrast for characterization of acute radiofrequency ablation lesions. Circ Arrhythmia Electrophysiol. 2014. doi:10.1161/CIRCEP.113.001163.

    Google Scholar 

  67. Ranjan R, Kato R, Zviman MM, Dickfeld TM, Roguin A, Berger RD, et al. Gaps in the ablation line as a potential cause of recovery from electrical isolation and their visualization using MRI. Circ Arrhythmia Electrophysiol. 2011;4(3):279–86. doi:10.1161/CIRCEP.110.960567.

    Article  Google Scholar 

  68. Ranjan R, Kholmovski EG, Blauer J, Vijayakumar S, Volland NA, Salama ME, et al. Identification and acute targeting of gaps in atrial ablation lesion sets using a real-time magnetic resonance imaging system. Circ Arrhythmia Electrophysiol. 2012;5(6):1130–5. doi:10.1161/CIRCEP.112.973164.

    Article  Google Scholar 

  69. Peters DC, Wylie JV, Hauser TH, Nezafat R, Han Y, Woo JJ, et al. Recurrence of atrial fibrillation correlates with the extent of post-procedural late gadolinium enhancement: a pilot study. J Am Coll Cardiol Img. 2009;2(3):308–16. doi:10.1016/j.jcmg.2008.10.016.

    Article  Google Scholar 

  70. Hoffmann BA, Koops A, Rostock T, Mullerleile K, Steven D, Karst R, et al. Interactive real-time mapping and catheter ablation of the cavotricuspid isthmus guided by magnetic resonance imaging in a porcine model. Eur Heart J. 2010;31(4):450–6. doi:10.1093/eurheartj/ehp460.

    Article  PubMed Central  PubMed  Google Scholar 

  71. Ganesan AN, Selvanayagam JB, Mahajan R, Grover S, Nayyar S, Brooks AG, et al. Mapping and ablation of the pulmonary veins and cavo-tricuspid isthmus with a magnetic resonance imaging-compatible externally irrigated ablation catheter and integrated electrophysiology system. Circ Arrhythmia Electrophysiol. 2012;5(6):1136–42. doi:10.1161/CIRCEP.112.974436.

    Article  Google Scholar 

  72. Neizel M, Kramer N, Schutte A, Schnackenburg B, Kruger S, Kelm M, et al. Magnetic resonance imaging of the cardiac venous system and magnetic resonance-guided intubation of the coronary sinus in swine: a feasibility study. Investig Radiol. 2010;45(8):502–6. doi:10.1097/RLI.0b013e3181e45578.

    Article  Google Scholar 

  73. Nazarian S, Kolandaivelu A, Zviman MM, Meininger GR, Kato R, Susil RC, et al. Feasibility of real-time magnetic resonance imaging for catheter guidance in electrophysiology studies. Circulation. 2008;118(3):223–9. doi:10.1161/CIRCULATIONAHA.107.742452.

    Article  PubMed Central  PubMed  Google Scholar 

  74. Eitel C, Piorkowski C, Hindricks G, Gutberlet M. Electrophysiology study guided by real-time magnetic resonance imaging. Eur Heart J. 2012;33(15):1975. doi:10.1093/eurheartj/ehr414.

    Article  PubMed  Google Scholar 

  75. Grothoff M, Piorkowski C, Eitel C, Gaspar T, Lehmkuhl L, Lucke C, et al. MR imaging-guided electrophysiological ablation studies in humans with passive catheter tracking: initial results. Radiology. 2014;271(3):695–702. doi:10.1148/radiol.13122671.

    Article  PubMed  Google Scholar 

  76. Krueger JJ, Ewert P, Yilmaz S, Gelernter D, Peters B, Pietzner K, et al. Magnetic resonance imaging-guided balloon angioplasty of coarctation of the aorta: a pilot study. Circulation. 2006;113(8):1093–100. doi:10.1161/CIRCULATIONAHA.105.578112.

    Article  PubMed  Google Scholar 

  77. Paetzel C, Zorger N, Bachthaler M, Hamer OW, Stehr A, Feuerbach S, et al. Magnetic resonance-guided percutaneous angioplasty of femoral and popliteal artery stenoses using real-time imaging and intra-arterial contrast-enhanced magnetic resonance angiography. Investig Radiol. 2005;40(5):257–62.

    Article  Google Scholar 

  78. Lurz P, Nordmeyer J, Muthurangu V, Khambadkone S, Derrick G, Yates R, et al. Comparison of bare metal stenting and percutaneous pulmonary valve implantation for treatment of right ventricular outflow tract obstruction: use of an x-ray/magnetic resonance hybrid laboratory for acute physiological assessment. Circulation. 2009;119(23):2995–3001. doi:10.1161/CIRCULATIONAHA.108.836312.

    Article  PubMed  Google Scholar 

  79. White MJ, Thornton JS, Hawkes DJ, Hill DL, Kitchen N, Mancini L, et al. Design, operation, and safety of single-room interventional MRI suites: practical experience from two centers. J Magn Resonance Imaging: JMRI. 2014. doi:10.1002/jmri.24577.

    Google Scholar 

  80. Hoult DI, Saunders JK, Sutherland GR, Sharp J, Gervin M, Kolansky HG, et al. The engineering of an interventional MRI with a movable 1.5 Tesla magnet. J Magn Resonance Imaging: JMRI. 2001;13(1):78–86. doi:10.1002/1522-2586(200101)13:1<78::AID-JMRI1012>3.0.CO;2-1.

    Article  CAS  PubMed  Google Scholar 

  81. Guttman MA, Ozturk C, Raval AN, Raman VK, Dick AJ, DeSilva R, et al. Interventional cardiovascular procedures guided by real-time MR imaging: an interactive interface using multiple slices, adaptive projection modes and live 3D renderings. J Magn Resonance Imaging: JMRI. 2007;26(6):1429–35. doi:10.1002/jmri.21199.

    Article  PubMed Central  PubMed  Google Scholar 

  82. Bennett MK, Gilotra NA, Harrington C, Rao S, Dunn JM, Freitag TB, et al. Evaluation of the role of endomyocardial biopsy in 851 patients with unexplained heart failure from 2000–2009. Circ: Heart Failure. 2013;6(4):676–84. doi:10.1161/circheartfailure.112.000087.

    PubMed  Google Scholar 

  83. Leone O, Veinot JP, Angelini A, Baandrup UT, Basso C, Berry G, et al. 2011 consensus statement on endomyocardial biopsy from the Association for European Cardiovascular Pathology and the Society for Cardiovascular Pathology. Cardiovascular Pathol: Off J Soc Cardiovascular Pathol. 2012;21(4):245–74. doi:10.1016/j.carpath.2011.10.001.

    Article  Google Scholar 

  84. Hundley WG, Bluemke DA, Finn JP, Flamm SD, Fogel MA, Friedrich MG, et al. ACCF/ACR/AHA/NASCI/SCMR 2010 expert consensus document on cardiovascular magnetic resonance: a report of the American College of Cardiology Foundation Task Force on Expert Consensus Documents. J Am Coll Cardiol. 2010;55(23):2614–62. doi:10.1016/j.jacc.2009.11.011.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Division of Intramural Research, National Heart Lung and Blood Institute, National Institutes of Health (Z01-HL005062).

We thank Kanishka Ratnayaka for thoughtful comments and Anthony Faranesh, Michael Hansen, and Adrienne Campbell-Washburn for their help with technical aspects of iCMR.

Compliance with Ethics Guidelines

Conflict of Interest

Toby Rogers and Robert J. Lederman are full-time employees of NHLBI, NIH.

Robert J. Lederman is a co-inventor on patents, assigned to NIH, for catheter devices to be used under MR guidance.

Human and Animal Rights and Informed Consent

All human subjects provided informed consent. This article does not contain any studies with animal subjects.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert J. Lederman.

Additional information

This article is part of the Topical Collection on Cardiac PET, CT, and MRI

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rogers, T., Lederman, R.J. Interventional CMR: Clinical Applications and Future Directions. Curr Cardiol Rep 17, 31 (2015). https://doi.org/10.1007/s11886-015-0580-1

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11886-015-0580-1

Keywords

Navigation