Skip to main content
Log in

Options for the Failing Ventricle in Pediatric Heart Disease

  • Congenital Heart Disease (J Deanfield, Section Editor)
  • Published:
Current Cardiology Reports Aims and scope Submit manuscript

Abstract

The management of the pediatric patient with the failing ventricle poses its own therapeutic challenges, not least because patient size limits options available. Once medical management has hit its ceiling, attention is turned to surgical options for mechanical support. The approach to these options has to bear in mind that there may be many potential causes for pump failure, and that these occur often in the context of pulmonary hypertension and poor gas exchange. Although extracorporeal life support has been the mainstay of treatment for acute heart failure, in the last decade, attention has been focusing on longer-term options to bridge to recovery or eventual transplant. Added to this are more novel applications of ventricular assist devices, notable in the management of the failing Fontan circulation where there are no perfect solutions. There is growing interest in the use of such devices to power this delicate circulation and extend the functional capacity of patients without resorting to transplantation. In this review article, we explore the role each of these surgical modalities has to play in the management of the child with acute and chronic heart failure, and explore the recent developments in the rapidly growing field of pediatric ventricular assist.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Cohen G, Permut L. Decision making for mechanical cardiac assistance in pediatric cardiac surgery. Semin Thorac Cardiovasc Surg Pediatr Card Surg Annu. 2005;8:41–50.

    Article  Google Scholar 

  2. Towbin JA, Lowe AM, Colan SD, Sleeper LA, Orav EJ, Clunie S, et al. Incidence, causes, and outcomes of dilated cardiomyopathy in children. JAMA. 2006;296:1867–76.

    Article  PubMed  CAS  Google Scholar 

  3. Almond CS, Thiagarajan RR, Piercey GE, Gauvreau K, Blume ED, Bastardi HJ, et al. Waiting list mortality among children listed for heart transplantation in the United States. Circulation. 2009;119:717–27.

    Article  PubMed  Google Scholar 

  4. Mah D, Singh TP, Thiagarajan RR, Gauvreau K, Piercey GE, Blume ED, et al. Incidence and risk factors for mortality in infants awaiting heart transplantation in the USA. J Heart Lung Transplant. 2009;28:1292–8.

    Article  PubMed  Google Scholar 

  5. Rosenthal DN, Dubin AM, Chin C, Falco D, Gamberg P, Bernstein D. Outcome while awaiting heart transplantation in children: a comparison of congenital heart disease and cardiomyopathy. J Heart Lung Transplant. 2000;19:751–5.

    Article  PubMed  CAS  Google Scholar 

  6. Duncan BW. Mechanical cardiac support in the young. Short-term support: ECMO. Semin Thorac Cardiovasc Surg Pediatr Card Surg Annu. 2006;9:75–82.

    Article  Google Scholar 

  7. del Nido PJ. Extracorporeal membrane oxygenation for cardiac support in children. Ann Thorac Surg. 1996;61:336–9.

    Article  PubMed  Google Scholar 

  8. Parra DA, Totapally BR, Zahn E, Jacobs J, Aldousany A, Burke RP, et al. Outcome of cardiopulmonary resuscitation in a pediatric cardiac intensive care unit. Crit Care Med. 2000;28:3296–300.

    Article  PubMed  CAS  Google Scholar 

  9. Slonim AD, Patel KM, Ruttimann UE, Pollack MM. Cardiopulmonary resuscitation in pediatric intensive care units. Crit Care Med. 1997;25:1951–5.

    Article  PubMed  CAS  Google Scholar 

  10. Reis AG, Nadkarni V, Perondi MB, Grisi S, Berg RA. A prospective investigation into the epidemiology of in-hospital pediatric cardiopulmonary resuscitation using the international Utstein reporting style. Pediatrics. 2002;109:200–9.

    Article  PubMed  Google Scholar 

  11. • Raymond TT, Cunnyngham CB, Thompson MT, Thomas JA, Dalton HJ, Nadkarni VM, et al. Outcomes among neonates, infants, and children after extracorporeal cardiopulmonary resuscitation for refractory in-hospital pediatric cardiac arrest: a report from the National Registry of Cardiopulmonary Resuscitation. Pediatr Crit Care Med. 2010;11:362–71. Discusses data from the registry and outlines the problems of ECMO for resuscitation. Their registry from 2000 to 2007 covered 285 hospitals and nearly 7000 cardiac arrests.

    PubMed  Google Scholar 

  12. Prodhan P, Fiser RT, Dyamenahalli U, Gossett J, Imamura M, Jaquiss RD, et al. Outcomes after extracorporeal cardiopulmonary resuscitation (ECPR) following refractory pediatric cardiac arrest in the intensive care unit. Resuscitation. 2009;80:1124–9.

    Article  PubMed  Google Scholar 

  13. Kane DA, Thiagarajan RR, Wypij D, Scheurer MA, Fynn-Thompson F, Emani S, et al. Rapid-response extracorporeal membrane oxygenation to support cardiopulmonary resuscitation in children with cardiac disease. Circulation. 2010;122(11 Suppl):S241–8.

    Article  PubMed  CAS  Google Scholar 

  14. • Wolf MJ, Kanter KR, Kirshbom PM, Kogon BE, Wagoner SF. Extracorporeal cardiopulmonary resuscitation for pediatric cardiac patients. Ann Thorac Surg. 2012;94:874–9. This large study of 160 ECMO runs in 159 patients found a 71% survival in nonpost-operative patients receiving ECMO resuscitation, with the highest recovery in cardiomyopathy patients at 89%.

    Article  PubMed  Google Scholar 

  15. Jen HC, Shew SB. Hospital readmissions and survival after non-neonatal pediatric ECMO. Pediatrics. 2010;125:1217–23.

    Article  PubMed  Google Scholar 

  16. Karamlou T, Vafaeezadeh M, Parrish AM, Cohen GA, Welke KF, Permut L, et al. Increased extracorporeal membrane oxygenation center case volume is associated with improved extracorporeal membrane oxygenation survival among pediatric patients. J Thorac Cardiovasc Surg. 2013;145:470–5.

    Article  PubMed  Google Scholar 

  17. Kolovos NS, Bratton SL, Moler FW, Bove EL, Ohye RG, Bartlett RH, et al. Outcome of pediatric patients treated with extracorporeal life support after cardiac surgery. Ann Thorac Surg. 2003;76:1435–41.

    Article  PubMed  Google Scholar 

  18. Kumar TK, Zurakowski D, Dalton H, Talwar S, Allard-Picou A, Duebener LF, et al. Extracorporeal membrane oxygenation in postcardiotomy patients: factors influencing outcome. J Thorac Cardiovasc Surg. 2010;140:330–6.

    Article  PubMed  Google Scholar 

  19. Cengiz P, Seidel K, Rycus PT, Brogan TV, Roberts JS. Central nervous system complications during pediatric extracorporeal life support: incidence and risk factors. Crit Care Med. 2005;33:2817–24.

    Article  PubMed  Google Scholar 

  20. Kang N, de Leval MR, Elliott M, Tsang V, Kocyildirim E, Sehic I, et al. Extending the boundaries of the primary arterial switch operation in patients with transposition of the great arteries and intact ventricular septum. Circulation. 2004;110(11 Suppl 1):II123–7.

    PubMed  Google Scholar 

  21. Hoskote A, Bohn D, Gruenwald C, Edgell D, Cai S, Adatia I, et al. Extracorporeal life support after staged palliation of a functional single ventricle: subsequent morbidity and survival. J Thorac Cardiovasc Surg. 2006;131:1114–21.

    Article  PubMed  Google Scholar 

  22. Allan CK, Thiagarajan RR, del Nido PJ, Roth SJ, Almodovar MC, Laussen PC. Indication for initiation of mechanical circulatory support impacts survival of infants with shunted single-ventricle circulation supported with extracorporeal membrane oxygenation. J Thorac Cardiovasc Surg. 2007;133:660–7.

    Article  PubMed  Google Scholar 

  23. Hintz SR, Benitz WE, Colby CE, Sheehan AM, Rycus P, Van Meurs KP, et al. Utilization and outcomes of neonatal cardiac extracorporeal life support: 1996–2000. Pediatr Crit Care Med. 2005;6:33–8.

    Article  PubMed  Google Scholar 

  24. International ELSO (Extracorporeal Life Support Organization) registry report, January 2010, Ann Arbor, Michigan. Available at: https://elso.med.umich.edu.

  25. • Sherwin ED, Gauvreau K, Scheurer MA, Rycus PT, Salvin JW, Almodovar MC, et al. Extracorporeal membrane oxygenation after stage 1 palliation for hypoplastic left heart syndrome. J Thorac Cardiovasc Surg. 2012;144:1337–43. One of the largest studies outlining the risk factors associated with ECMO in HLH. They also discussed some of the most important ECMO complications.

    Article  PubMed  Google Scholar 

  26. Chen JM, Richmond ME, Charette K, Takayama H, Williams M, Gilmore L, et al. A decade of pediatric mechanical circulatory support before and after cardiac transplantation. J Thorac Cardiovasc Surg. 2012;143:344–51.

    Article  PubMed  Google Scholar 

  27. Tissot C, Buckvold S, Phelps CM, Ivy DD, Campbell DN, Mitchell MB, et al. Outcome of extracorporeal membrane oxygenation for early primary graft failure after pediatric heart transplantation. J Am Coll Cardiol. 2009;54:730–7.

    Article  PubMed  Google Scholar 

  28. Goland S, Czer LS, Kass RM, De Robertis MA, Mirocha J, Coleman B, et al. Pre-existing pulmonary hypertension in patients with end-stage heart failure: impact on clinical outcome and hemodynamic follow-up after orthotopic heart transplantation. Ann Thorac Surg. 2006;82:1770–3.

    Article  Google Scholar 

  29. Perri G, Hasan A, Cassidy J, Kirk R, Haynes S, Smith J, et al. Mechanical circulatory support after pediatric heart transplantation. Eur J Cardiothorac Surg. 2012;42:696–701.

    Article  PubMed  Google Scholar 

  30. Bae JO, Frischer JS, Waich M, Addonizio LJ, Lazar EL, Stolar CJ. Extracorporeal membrane oxygenation in pediatric cardiac transplantation. J Pediatr Surg. 2005;40:1051–6.

    Article  PubMed  Google Scholar 

  31. Mihaljevic T, Jarrett CM, Gonzalez-Stawinski G, Smedira NG, Nowicki ER, Thuita L, et al. Mechanical circulatory support after heart transplantation. Eur J Cardiothorac Surg. 2012;41:200–6.

    PubMed  Google Scholar 

  32. Hall CW. When did artificial heart implants begin? JAMA. 1988;259:1650.

    Article  PubMed  CAS  Google Scholar 

  33. Rose EA, Gelijns AC, Moskowitz AJ, Heitjan DF, Stevenson LW, Dembitsky W, et al. Long-term use of a left ventricular assist device for end-stage heart failure. N Engl J Med. 2001;345:1435–43.

    Article  PubMed  CAS  Google Scholar 

  34. Blume ED, Naftel DC, Bastardi HJ, Duncan BW, Kirklin JK, Webber SA, et al. Outcomes of children bridged to heart transplantation with ventricular assist devices: a multi-institutional study. Circulation. 2006;113:2313–9.

    Article  PubMed  Google Scholar 

  35. Adachi I, Fraser Jr CD. Mechanical circulatory support for infants and small children. Semin Thorac Cardiovasc Surg Pediatr Card Surg Annu. 2011;14:38–44.

    Article  PubMed  Google Scholar 

  36. Brancaccio G, Amodeo A, Ricci Z, Morelli S, Gagliardi MG, Iacobelli R, et al. Mechanical assist device as a bridge to heart transplantation in children less than 10 kilograms. Ann Thorac Surg. 2010;90:58–62.

    Article  PubMed  Google Scholar 

  37. Karimova A, Van Doorn C, Brown K, Giardini A, Kostolny M, Mathias M, et al. Mechanical bridging to orthotopic heart transplantation in children weighing less than 10 kg: feasibility and limitations. Eur J Cardiothorac Surg. 2011;39:304–9.

    Article  PubMed  Google Scholar 

  38. •• Fraser Jr CD, Jaquiss RD, Rosenthal DN, Humpl T, Canter CE, Blackstone EH, et al. Prospective trial of a pediatric ventricular assist device. N Engl J Med. 2012;367:532–41. This is the first prospective trial looking at the risks and benefits of the Berlin Heart EXCOR over conventional ECMO. This will be a paper that will cited in many other subsequent investigations.

    Article  PubMed  CAS  Google Scholar 

  39. Goldman AP, Cassidy J, de Leval M, Haynes S, Brown K, Whitmore P, et al. The waiting game: bridging to pediatric heart transplantation. Lancet. 2003;362:1967–70.

    Article  PubMed  Google Scholar 

  40. Hetzer R, Alexi-Meskishvili V, Weng Y, Hübler M, Potapov E, Drews T, et al. Mechanical cardiac support in the young with the Berlin Heart EXCOR pulsatile ventricular assist device: 15 years' experience. Semin Thorac Cardiovasc Surg Pediatr Card Surg Annu. 2006:99–108.

  41. Clark JB, Pauliks LB, Myers JL, Undar A. Mechanical circulatory support for end-stage heart failure in repaired and palliated congenital heart disease. Curr Cardiol Rev. 2011;7:102–9.

    Article  PubMed  Google Scholar 

  42. • Morales DL, Almond CS, Jaquiss RD, Rosenthal DN, Naftel DC, Massicotte MP, et al. Bridging children of all sizes to cardiac transplantation: the initial multicenter North American experience with the Berlin Heart EXCOR ventricular assist device. J Heart Lung Transplant. 2011;30:1–8. This is one of the largest series describing the use of the Berlin EXCOR in North America.

    Article  PubMed  Google Scholar 

  43. Kirklin JK. Mechanical circulatory support as a bridge to pediatric cardiac transplantation. Semin Thorac Cardiovasc Surg Pediatr Card Surg Annu. 2008:80–5.

  44. Humpl T, Furness S, Gruenwald C, Hyslop C, Van Arsdell G. The Berlin Heart EXCOR Pediatrics-The SickKids Experience 2004–2008. Artif Organs. 2010;34:1082–6.

    Article  PubMed  Google Scholar 

  45. Rockett SR, Bryant JC, Morrow WR, Frazier EA, Fiser WP, McKamie WA, et al. Preliminary single center North American experience with the Berlin Heart pediatric EXCOR device. ASAIO J. 2008;54:479–82.

    Article  PubMed  Google Scholar 

  46. Malaisrie SC, Pelletier MP, Yun JJ, Sharma K, Timek TA, Rosenthal DN, et al. Pneumatic paracorporeal ventricular assist device in infants and children: initial Stanford experience. J Heart Lung Transplant. 2008;27:173–7.

    Article  PubMed  Google Scholar 

  47. Kumpati GS, Cook DJ, Blackstone EH, Rajeswaran J, Abdo AS, Young JB, et al. HLA sensitization in ventricular assist device recipients: does type of device make a difference? J Thorac Cardiovasc Surg. 2004;127:1800–7.

    Article  PubMed  Google Scholar 

  48. Helman DN, Addonizio LJ, Morales DL, Catanese KA, Flannery MA, Quagebeur JM, et al. Implantable left ventricular assist devices can successfully bridge adolescent patients to transplant. J Heart Lung Transplant. 2000;19:121–6.

    Article  PubMed  CAS  Google Scholar 

  49. • Rychik J. Forty years of the Fontan operation: a failed strategy. Semin Thorac Cardiovasc Surg Pediatr Card Surg Annu. 2010;13:96–100. This review describes clearly the evolution of the Fontan and argues why its physiology is designed to fail.

    Article  PubMed  Google Scholar 

  50. Khairy P, Fernandes SM, Mayer Jr JE, Triedman JK, Walsh EP, Lock JE, et al. Long-term survival, modes of death, and predictors of mortality in patients with Fontan surgery. Circulation. 2008;117:85–92.

    Article  PubMed  Google Scholar 

  51. Anderson PA, Sleeper LA, Mahony L, Colan SD, Atz AM, Breitbart RE, et al. Contemporary outcomes after the Fontan procedure: a Pediatric Heart Network multicenter study. J Am Coll Cardiol. 2008;52:85–98.

    Article  PubMed  Google Scholar 

  52. Feldt RH, Driscoll DJ, Offord KP, Cha RH, Perrault J, Schaff HV, et al. Protein-losing enteropathy after the Fontan operation. J Thorac Cardiovasc Surg. 1996;112:672–80.

    Article  PubMed  CAS  Google Scholar 

  53. Starnes SL, Duncan BW, Kneebone JM, Rosenthal GL, Patterson K, Fraga CH, et al. Angiogenic proteins in the lungs of children after cavopulmonary anastomosis. J Thorac Cardiovasc Surg. 2001;122:518–23.

    Article  PubMed  CAS  Google Scholar 

  54. • Rodefeld MD, Frankel SH, Giridharan GA. Cavopulmonary assist: (em)powering the univentricular fontan circulation. Semin Thorac Cardiovasc Surg Pediatr Card Surg Annu. 2011;14:45–54. This review describes the detailed physiologic principles behind the mechanical support of the failing ventricle following the Fontan operation.

    Article  PubMed  Google Scholar 

  55. Mavroudis C, Deal BJ, Backer CL. The beneficial effects of total cavopulmonary conversion and arrhythmia surgery for the failed Fontan. Semin Thorac Cardiovasc Surg Pediatr Card Surg Annu. 2002;5:12–24.

    Article  PubMed  Google Scholar 

  56. Riemer RK, Amir G, Reichenbach SH, Reinhartz O. Mechanical support of total cavopulmonary connection with an axial flow pump. J Thorac Cardiovasc Surg. 2005;130:351–4.

    Article  PubMed  Google Scholar 

  57. Throckmorton AL, Ballman KK, Myers CD, Frankel SH, Brown JW, Rodefeld MD. Performance of a 3-bladed propeller pump to provide cavopulmonary assist in the failing Fontan circulation. Ann Thorac Surg. 2008;86:1343–7.

    Article  PubMed  Google Scholar 

  58. Nathan M, Baird C, Fynn-Thompson F, Almond C, Thiagarajan R, Laussen P, et al. Successful implantation of a Berlin heart biventricular assist device in a failing single ventricle. J Thorac Cardiovasc Surg. 2006;131:1407–8.

    Article  PubMed  Google Scholar 

  59. Morales DL, Adachi I, Heinle JS, Fraser Jr CD. A new era: use of an intracorporeal systemic ventricular assist device to support a patient with a failing Fontan circulation. J Thorac Cardiovasc Surg. 2011;142:e138–40.

    Article  PubMed  Google Scholar 

  60. Haggerty CM, Fynn-Thompson F, McElhinney DB, Valente AM, Saikrishnan N, Del Nido PJ, et al. Experimental and numeric investigation of Impella pumps as cavopulmonary assistance for a failing Fontan. J Thorac Cardiovasc Surg. 2012;144:563–9.

    Article  PubMed  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Mazyar Kanani and Tain-Yen Hsia declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tain-Yen Hsia.

Additional information

This article is part of the Topical Collection on Congenital Heart Disease

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kanani, M., Hsia, TY. Options for the Failing Ventricle in Pediatric Heart Disease. Curr Cardiol Rep 15, 404 (2013). https://doi.org/10.1007/s11886-013-0404-0

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11886-013-0404-0

Keywords

Navigation