Skip to main content

Advertisement

Log in

Longitudinal and Circumferential Strain in Patients with Regional LV Dysfunction

  • Echocardiography (RM Lang, Section Editor)
  • Published:
Current Cardiology Reports Aims and scope Submit manuscript

Abstract

The multilayer, helical arrangement of myofibers within the left ventricular myocardium forms the fundamental basis of the complex, multidimensional deformation of the left ventricle during the cardiac cycle. Echocardiographic characterization of the different components of this dynamic process not only provides a means to quantify the myocardial contractile function but also facilitates improved understanding of the pathophysiological mechanisms. Longitudinal deformation, which is more sensitive to the cardiac pathologies and is also easier to measure, has emerged as a reliable measure of the extent of the myocardial damage and may be helpful in the diagnosis and management of the patients with regional left ventricular dysfunction. Circumferential deformation, on the other hand, is affected relatively late in the disease process and therefore serves mainly as a marker of the transmural extent of the damage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: •• Of major importance

  1. •• Mor-Avi V, Lang RM, Badano LP, et al. Current and evolving echocardiographic techniques for the quantitative evaluation of cardiac mechanics: ASE/EAE consensus statement on methodology and indications endorsed by the Japanese Society of Echocardiography. J Am Soc Echocardiogr. 2011;24:277–313. The guideline document published by the American Society of Echocardiography, European Society of Echocardiography and the Japanese Society of Echocardiography. Provides detailed description of the fundamental basis of cardiac mechanics and the clinical utility, advantages and the limitations of different echocardiographic approaches available for measurement of myocardial deformation.

    Article  PubMed  Google Scholar 

  2. •• Sengupta PP, Korinek J, Belohlavek M, et al. Left ventricular structure and function: basic science for cardiac imaging. J Am Coll Cardiol. 2006;48:1988–2001. Excellent review describing myocardial architecture and its functional significance and relevance to cardiac imaging.

    Article  PubMed  Google Scholar 

  3. •• Geyer H, Caracciolo G, Abe H, et al. Assessment of myocardial mechanics using speckle tracking echocardiography: fundamentals and clinical applications. J Am Soc Echocardiogr. 2010;23:351–69. quiz 453-5. Excellent review on the fundamentals and clinical applications of speckle tracking echocardiography.

    Article  PubMed  Google Scholar 

  4. •• Blessberger H, Binder T. Non-invasive imaging: two dimensional speckle tracking echocardiography: basic principles. Heart. 2010;96:716–22. Excellent review on the basic principles of two-dimensional speckle tracking echocardiography.

    Article  PubMed  Google Scholar 

  5. Saito K, Okura H, Watanabe N, et al. Comprehensive evaluation of left ventricular strain using speckle tracking echocardiography in normal adults: comparison of three-dimensional and two-dimensional approaches. J Am Soc Echocardiogr. 2009;22:1025–30.

    Article  PubMed  Google Scholar 

  6. Perezde Isla L, Balcones DV, Fernandez-Golfin C, et al. Three-dimensional-wall motion tracking: a new and faster tool for myocardial strain assessment: comparison with two-dimensional-wall motion tracking. J Am Soc Echocardiogr. 2009;22:325–30.

    Article  Google Scholar 

  7. Nesser HJ, Mor-Avi V, Gorissen W, et al. Quantification of left ventricular volumes using three-dimensional echocardiographic speckle tracking: comparison with MRI. Eur Heart J. 2009;30:1565–73.

    Article  PubMed  Google Scholar 

  8. Maffessanti F, Nesser HJ, Weinert L, et al. Quantitative evaluation of regional left ventricular function using three-dimensional speckle tracking echocardiography in patients with and without heart disease. Am J Cardiol. 2009;104:1755–62.

    Article  PubMed  Google Scholar 

  9. Yodwut C, Weinert L, Klas B, et al. Effects of frame rate on three-dimensional speckle-tracking-based measurements of myocardial deformation. J Am Soc Echocardiogr. 2012;25:978–85.

    Article  PubMed  Google Scholar 

  10. Kusunose K, Yamada H, Nishio S, et al. Validation of longitudinal peak systolic strain by speckle tracking echocardiography with visual assessment and myocardial perfusion SPECT in patients with regional asynergy. Circ J. 2011;75:141–7.

    Article  PubMed  Google Scholar 

  11. Yang ZR, Zhou QC, Lee L, et al. Quantitative assessment of left ventricular systolic function in patients with coronary heart disease by velocity vector imaging. Echocardiography. 2012;29:340–5.

    Article  PubMed  Google Scholar 

  12. Mistry N, Beitnes JO, Halvorsen S, et al. Assessment of left ventricular function in ST-elevation myocardial infarction by global longitudinal strain: a comparison with ejection fraction, infarct size, and wall motion score index measured by non-invasive imaging modalities. Eur J Echocardiogr. 2011;12:678–83.

    Article  PubMed  Google Scholar 

  13. Brown J, Jenkins C, Marwick TH. Use of myocardial strain to assess global left ventricular function: a comparison with cardiac magnetic resonance and 3-dimensional echocardiography. Am Heart J. 2009;157:102 e1–5.

    Article  Google Scholar 

  14. Sjoli B, Orn S, Grenne B, et al. Diagnostic capability and reproducibility of strain by Doppler and by speckle tracking in patients with acute myocardial infarction. JACC Cardiovasc Imag. 2009;2:24–33.

    Article  Google Scholar 

  15. Thorstensen A, Amundsen BH, Dalen H, et al. Strain rate imaging combined with wall motion analysis gives incremental value in direct quantification of myocardial infarct size. Eur Heart J Cardiovasc Imag. 2012;13(11):914–21.

    Article  Google Scholar 

  16. Grenne B, Eek C, Sjoli B, et al. Mean strain throughout the heart cycle by longitudinal two-dimensional speckle-tracking echocardiography enables early prediction of infarct size. J Am Soc Echocardiogr. 2011;24:1118–25.

    Article  PubMed  Google Scholar 

  17. Gjesdal O, Vartdal T, Hopp E, et al. Left ventricle longitudinal deformation assessment by mitral annulus displacement or global longitudinal strain in chronic ischemic heart disease: are they interchangeable? J Am Soc Echocardiogr. 2009;22:823–30.

    Article  PubMed  Google Scholar 

  18. Bertini M, Mollema SA, Delgado V, et al. Impact of time to reperfusion after acute myocardial infarction on myocardial damage assessed by left ventricular longitudinal strain. Am J Cardiol. 2009;104:480–5.

    Article  PubMed  Google Scholar 

  19. Ersboll M, Valeur N, Mogensen UM, et al. Global left ventricular longitudinal strain is closely associated with increased neurohormonal activation after acute myocardial infarction in patients with both reduced and preserved ejection fraction: a two-dimensional speckle tracking study. Eur J Heart Fail. 2012;14:1121–9.

    Article  PubMed  CAS  Google Scholar 

  20. Cho JS, Kim KH, Lee WS, et al. Usefulness of peak systolic strain measurement by automated function imaging in the prediction of coronary perfusion in patients with acute myocardial infarction. Korean J Intern Med. 2010;25:260–8.

    Article  PubMed  Google Scholar 

  21. Grenne B, Eek C, Sjoli B, et al. Changes of myocardial function in patients with non-ST-elevation acute coronary syndrome awaiting coronary angiography. Am J Cardiol. 2010;105:1212–8.

    Article  PubMed  Google Scholar 

  22. Kalay N, Celik A, Inanc T, et al. Left ventricular strain and strain rate echocardiography analysis in patients with total and subtotal occlusion in the infarct-related left anterior descending artery. Echocardiography. 2011;28:203–9.

    Article  PubMed  Google Scholar 

  23. Eek C, Grenne B, Brunvand H, et al. Strain echocardiography predicts acute coronary occlusion in patients with non-ST-segment elevation acute coronary syndrome. Eur J Echocardiogr. 2010;11:501–8.

    Article  PubMed  Google Scholar 

  24. Hanekom L, Jenkins C, Jeffries L, et al. Incremental value of strain rate analysis as an adjunct to wall-motion scoring for assessment of myocardial viability by dobutamine echocardiography: a follow-up study after revascularization. Circulation. 2005;112:3892–900.

    Article  PubMed  Google Scholar 

  25. Bansal M, Jeffriess L, Leano R, et al. Assessment of myocardial viability at dobutamine echocardiography by deformation analysis using tissue velocity and speckle-tracking. JACC Cardiovasc Imag. 2010;3:121–31.

    Article  Google Scholar 

  26. Ran H, Zhang PY, Fang LL, et al. Clinic value of two-dimensional speckle tracking combined with adenosine stress echocardiography for assessment of myocardial viability. Echocardiography. 2012;29:688–94.

    Article  PubMed  Google Scholar 

  27. Abate E, Hoogslag GE, Antoni ML, et al. Value of three-dimensional speckle-tracking longitudinal strain for predicting improvement of left ventricular function after acute myocardial infarction. Am J Cardiol. 2012;110:961–7.

    Article  PubMed  Google Scholar 

  28. Mollema SA, Delgado V, Bertini M, et al. Viability assessment with global left ventricular longitudinal strain predicts recovery of left ventricular function after acute myocardial infarction. Circ Cardiovasc Imag. 2010;3:15–23.

    Article  Google Scholar 

  29. Ingul CB, Malm S, Refsdal E, et al. Recovery of function after acute myocardial infarction evaluated by tissue Doppler strain and strain rate. J Am Soc Echocardiogr. 2010;23:432–8.

    Article  PubMed  Google Scholar 

  30. Antoni ML, Mollema SA, Atary JZ, et al. Time course of global left ventricular strain after acute myocardial infarction. Eur Heart J. 2010;31:2006–13.

    Article  PubMed  Google Scholar 

  31. Zaliaduonyte-Peksiene D, Vaskelyte JJ, Mizariene V, et al. Does longitudinal strain predict left ventricular remodeling after myocardial infarction? Echocardiography. 2012;29:419–27.

    Article  PubMed  Google Scholar 

  32. D'Andrea A, Cocchia R, Caso P, et al. Global longitudinal speckle-tracking strain is predictive of left ventricular remodeling after coronary angioplasty in patients with recent non-ST elevation myocardial infarction. Int J Cardiol. 2011;153:185–91.

    Article  PubMed  Google Scholar 

  33. Bochenek T, Wita K, Tabor Z, et al. Value of speckle-tracking echocardiography for prediction of left ventricular remodeling in patients with ST-elevation myocardial infarction treated by primary percutaneous intervention. J Am Soc Echocardiogr. 2011;24:1342–8.

    Article  PubMed  Google Scholar 

  34. Logstrup BB, Hofsten DE, Christophersen TB, et al. Correlation between left ventricular global and regional longitudinal systolic strain and impaired microcirculation in patients with acute myocardial infarction. Echocardiography. 2012.

  35. Park SM, Hong SJ, Park JS, et al. Relationship between strain rate imaging and coronary flow reserve in assessing myocardial viability after acute myocardial infarction. Echocardiography. 2010;27:977–84.

    Article  PubMed  Google Scholar 

  36. Park SM, Hong SJ, Kim YH, et al. Predicting myocardial functional recovery after acute myocardial infarction: relationship between myocardial strain and coronary flow reserve. Korean Circ J. 2010;40:639–44.

    Article  PubMed  Google Scholar 

  37. Roes SD, Mollema SA, Lamb HJ, et al. Validation of echocardiographic two-dimensional speckle tracking longitudinal strain imaging for viability assessment in patients with chronic ischemic left ventricular dysfunction and comparison with contrast-enhanced magnetic resonance imaging. Am J Cardiol. 2009;104:312–7.

    Article  PubMed  Google Scholar 

  38. Vartdal T, Pettersen E, Helle-Valle T, et al. Identification of viable myocardium in acute anterior infarction using duration of systolic lengthening by tissue Doppler strain: a preliminary study. J Am Soc Echocardiogr. 2012;25:718–25.

    Article  PubMed  Google Scholar 

  39. Fujimoto H, Honma H, Ohno T, et al. Longitudinal Doppler strain measurement for assessment of damaged and/or hibernating myocardium by dobutamine stress echocardiography in patients with old myocardial infarction. J Cardiol. 2010;55:309–16.

    Article  PubMed  Google Scholar 

  40. Voigt JU, Exner B, Schmiedehausen K, et al. Strain-rate imaging during dobutamine stress echocardiography provides objective evidence of inducible ischemia. Circulation. 2003;107:2120–6.

    Article  PubMed  Google Scholar 

  41. Hanekom L, Cho GY, Leano R, et al. Comparison of two-dimensional speckle and tissue Doppler strain measurement during dobutamine stress echocardiography: an angiographic correlation. Eur Heart J. 2007;28:1765–72.

    Article  PubMed  Google Scholar 

  42. Ng AC, Sitges M, Pham PN, et al. Incremental value of 2-dimensional speckle tracking strain imaging to wall motion analysis for detection of coronary artery disease in patients undergoing dobutamine stress echocardiography. Am Heart J. 2009;158:836–44.

    Article  PubMed  Google Scholar 

  43. Celutkiene J, Zakarkaite D, Skorniakov V, et al. Quantitative approach using multiple single parameters versus visual assessment in dobutamine stress echocardiography. Cardiovasc Ultrasound. 2012;10:31.

    Article  PubMed  Google Scholar 

  44. Ingul CB, Stoylen A, Slordahl SA, et al. Automated analysis of myocardial deformation at dobutamine stress echocardiography: an angiographic validation. J Am Coll Cardiol. 2007;49:1651–9.

    Article  PubMed  Google Scholar 

  45. Heggemann F, Hamm K, Kaelsch T, et al. Global and regional myocardial function quantification in Takotsubo cardiomyopathy in comparison to acute anterior myocardial infarction using two-dimensional (2D) strain echocardiography. Echocardiography. 2011;28:715–9.

    Article  PubMed  Google Scholar 

  46. Kataoka A, Funabashi N, Yajima R, et al. Differentiation of pseudodyskinesis of inferior left ventricular wall from inferior myocardial infarction by assessment of regional myocardial strain using two-dimensional speckle tracking echocardiography. Int J Cardiol. 2011;152:362–8.

    Article  PubMed  Google Scholar 

  47. Bertini M, Ng AC, Antoni ML, et al. Global longitudinal strain predicts long-term survival in patients with chronic ischemic cardiomyopathy. Circ Cardiovasc Imag. 2012;5:383–91.

    Article  Google Scholar 

  48. Munk K, Andersen NH, Terkelsen CJ, et al. Global left ventricular longitudinal systolic strain for early risk assessment in patients with acute myocardial infarction treated with primary percutaneous intervention. J Am Soc Echocardiogr. 2012;25:644–51.

    Article  PubMed  Google Scholar 

  49. Woo JS, Kim WS, Yu TK, et al. Prognostic value of serial global longitudinal strain measured by two-dimensional speckle tracking echocardiography in patients with ST-segment elevation myocardial infarction. Am J Cardiol. 2011;108:340–7.

    Article  PubMed  Google Scholar 

  50. Haugaa KH, Smedsrud MK, Steen T, et al. Mechanical dispersion assessed by myocardial strain in patients after myocardial infarction for risk prediction of ventricular arrhythmia. JACC Cardiovasc Imag. 2010;3:247–56.

    Article  Google Scholar 

  51. Bertini M, Ng AC, Borleffs CJ, et al. Longitudinal mechanics of the periinfarct zone and ventricular tachycardia inducibility in patients with chronic ischemic cardiomyopathy. Am Heart J. 2010;160:729–36.

    Article  PubMed  Google Scholar 

  52. Ren M, Tian JW, Leng XP, et al. Assessment of global and regional left ventricular function after surgical revascularization in patients with coronary artery disease by real-time triplane echocardiography. J Ultrasound Med. 2009;28:1175–84.

    PubMed  Google Scholar 

  53. Caracciolo G, Eleid MF, Abe H, et al. Non-uniform recovery of left ventricular transmural mechanics in ST-segment elevation myocardial infarction. Cardiovasc Ultrasound. 2010;8:31.

    Article  PubMed  Google Scholar 

  54. Beitnes JO, Gjesdal O, Lunde K, et al. Left ventricular systolic and diastolic function improve after acute myocardial infarction treated with acute percutaneous coronary intervention, but are not influenced by intracoronary injection of autologous mononuclear bone marrow cells: a 3 year serial echocardiographic sub-study of the randomized-controlled ASTAMI study. Eur J Echocardiogr. 2011;12:98–106.

    Article  PubMed  Google Scholar 

  55. Bansal M, Chan J, Leano R, et al. Effects of perhexiline on myocardial deformation in patients with ischaemic left ventricular dysfunction. Int J Cardiol. 2010;139:107–12.

    Article  PubMed  Google Scholar 

  56. Pouleur AC, Knappe D, Shah AM, et al. Relationship between improvement in left ventricular dyssynchrony and contractile function and clinical outcome with cardiac resynchronization therapy: the MADIT-CRT trial. Eur Heart J. 2011;32:1720–9.

    Article  PubMed  Google Scholar 

  57. Jessup M, Abraham WT, Casey DE, et al. 2009 focused update: ACCF/AHA Guidelines for the Diagnosis and Management of Heart Failure in Adults: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines: developed in collaboration with the International Society for Heart and Lung Transplantation. Circulation. 2009;119:1977–2016.

    Article  PubMed  Google Scholar 

  58. Abraham WT, Fisher WG, Smith AL, et al. Cardiac resynchronization in chronic heart failure. N Engl J Med. 2002;346:1845–53.

    Article  PubMed  Google Scholar 

  59. Young JB, Abraham WT, Smith AL, et al. Combined cardiac resynchronization and implantable cardioversion defibrillation in advanced chronic heart failure: the MIRACLE ICD Trial. JAMA. 2003;289:2685–94.

    Article  PubMed  Google Scholar 

  60. Gorcsan 3rd J, Abraham T, Agler DA, et al. Echocardiography for cardiac resynchronization therapy: recommendations for performance and reporting—a report from the American Society of Echocardiography Dyssynchrony Writing Group endorsed by the Heart Rhythm Society. J Am Soc Echocardiogr. 2008;21:191–213.

    Article  PubMed  Google Scholar 

  61. Chung ES, Leon AR, Tavazzi L, et al. Results of the predictors of response to CRT (PROSPECT) trial. Circulation. 2008;117:2608–16.

    Article  PubMed  Google Scholar 

  62. Shi H, Shu X, Wang F, et al. Longitudinal two-dimensional strain rate imaging: a potential approach to predict the response to cardiac resynchronization therapy. Int J Cardiovasc Imag. 2009;25:677–87.

    Article  Google Scholar 

  63. Reant P, Zaroui A, Donal E, et al. Identification and characterization of super-responders after cardiac resynchronization therapy. Am J Cardiol. 2010;105:1327–35.

    Article  PubMed  Google Scholar 

  64. Mele D, Toselli T, Capasso F, et al. Comparison of myocardial deformation and velocity dyssynchrony for identification of responders to cardiac resynchronization therapy. Eur J Heart Fail. 2009;11:391–9.

    Article  PubMed  Google Scholar 

  65. Carasso S, Rakowski H, Witte KK, et al. Left ventricular strain patterns in dilated cardiomyopathy predict response to cardiac resynchronization therapy: timing is not everything. J Am Soc Echocardiogr. 2009;22:242–50.

    Article  PubMed  Google Scholar 

  66. Lim P, Donal E, Lafitte S, et al. Multicentre study using strain delay index for predicting response to cardiac resynchronization therapy (MUSIC study). Eur J Heart Fail. 2011;13:984–91.

    Article  PubMed  Google Scholar 

  67. Tatsumi K, Tanaka H, Matsumoto K, et al. Relation between strain dyssynchrony index determined by comprehensive assessment using speckle-tracking imaging and long-term outcome after cardiac resynchronization therapy for patients with heart failure. Am J Cardiol. 2012;109:1187–93.

    Article  PubMed  Google Scholar 

  68. Tatsumi K, Tanaka H, Tsuji T, et al. Strain dyssynchrony index determined by three-dimensional speckle area tracking can predict response to cardiac resynchronization therapy. Cardiovasc Ultrasound. 2011;9:11.

    Article  PubMed  Google Scholar 

  69. Lim P, Buakhamsri A, Popovic ZB, et al. Longitudinal strain delay index by speckle tracking imaging: a new marker of response to cardiac resynchronization therapy. Circulation. 2008;118:1130–7.

    Article  PubMed  Google Scholar 

  70. Miyazaki C, Redfield MM, Powell BD, et al. Dyssynchrony indices to predict response to cardiac resynchronization therapy: a comprehensive prospective single-center study. Circ Heart Fail. 2010;3:565–73.

    Article  PubMed  Google Scholar 

  71. D'Andrea A, Caso P, Scarafile R, et al. Effects of global longitudinal strain and total scar burden on response to cardiac resynchronization therapy in patients with ischaemic dilated cardiomyopathy. Eur J Heart Fail. 2009;11:58–67.

    Article  PubMed  Google Scholar 

  72. Knappe D, Pouleur AC, Shah AM, et al. Dyssynchrony, contractile function, and response to cardiac resynchronization therapy. Circ Heart Fail. 2011;4:433–40.

    Article  PubMed  Google Scholar 

  73. Norisada K, Kawai H, Tanaka H, et al. Myocardial contractile function in the region of the left ventricular pacing lead predicts the response to cardiac resynchronization therapy assessed by two-dimensional speckle tracking echocardiography. J Am Soc Echocardiogr. 2010;23:181–9.

    Article  PubMed  Google Scholar 

  74. Chan J, Hanekom L, Wong C, et al. Differentiation of subendocardial and transmural infarction using two-dimensional strain rate imaging to assess short-axis and long-axis myocardial function. J Am Coll Cardiol. 2006;48:2026–33.

    Article  PubMed  Google Scholar 

  75. Kansal MM, Panse PM, Abe H, et al. Relationship of contrast-enhanced magnetic resonance imaging-derived intramural scar distribution and speckle tracking echocardiography-derived left ventricular two-dimensional strains. Eur Heart J Cardiovasc Imag. 2012;13:152–8.

    Article  Google Scholar 

  76. Zito C, Sengupta PP, Di Bella G, et al. Myocardial deformation and rotational mechanics in revascularized single vessel disease patients 2 years after ST-elevation myocardial infarction. J Cardiovasc Med (Hagerstown). 2011;12:635–42.

    Article  Google Scholar 

  77. Becker M, Ocklenburg C, Altiok E, et al. Impact of infarct transmurality on layer-specific impairment of myocardial function: a myocardial deformation imaging study. Eur Heart J. 2009;30:1467–76.

    Article  PubMed  Google Scholar 

  78. Grenne B, Eek C, Sjoli B, et al. Acute coronary occlusion in non-ST-elevation acute coronary syndrome: outcome and early identification by strain echocardiography. Heart. 2010;96:1550–6.

    Article  PubMed  Google Scholar 

  79. Cho GY, Marwick TH, Kim HS, et al. Global 2-dimensional strain as a new prognosticator in patients with heart failure. J Am Coll Cardiol. 2009;54:618–24.

    Article  PubMed  Google Scholar 

  80. Gorcsan 3rd J, Tanabe M, Bleeker GB, et al. Combined longitudinal and radial dyssynchrony predicts ventricular response after resynchronization therapy. J Am Coll Cardiol. 2007;50:1476–83.

    Article  PubMed  Google Scholar 

  81. Tanaka H, Nesser HJ, Buck T, et al. Dyssynchrony by speckle-tracking echocardiography and response to cardiac resynchronization therapy: results of the Speckle Tracking and Resynchronization (STAR) study. Eur Heart J. 2010;31:1690–700.

    Article  PubMed  Google Scholar 

  82. Artis NJ, Oxborough DL, Birch KM, et al. Short-axis 2D strain from speckle tracking predicts echocardiographic response to cardiac resynchronization therapy. Echocardiography. 2011;28:76–84.

    Article  PubMed  Google Scholar 

  83. Silva E, Sitges M, Doltra A, et al. Analysis of temporal delay in myocardial deformation throughout the cardiac cycle: utility for selecting candidates for cardiac resynchronization therapy. Hear Rhythm. 2010;7:1580–6.

    Article  Google Scholar 

  84. Becker M, Zwicker C, Kaminski M, et al. Dependency of cardiac resynchronization therapy on myocardial viability at the LV lead position. JACC Cardiovasc Imag. 2011;4:366–74.

    Article  Google Scholar 

  85. Becker M, Altiok E, Ocklenburg C, et al. Analysis of LV lead position in cardiac resynchronization therapy using different imaging modalities. JACC Cardiovasc Imag. 2010;3:472–81.

    Article  Google Scholar 

  86. Marwick TH. Consistency of myocardial deformation imaging between vendors. Eur J Echocardiogr. 2010;11:414–6.

    Article  PubMed  Google Scholar 

Download references

Disclosure

Conflicts of interest: M. Bansal: none; P.P. Sengupta: has board membership with the American Society of Echocardiography; has received grant support from Forest Laboratories; and has a pending patent for a method for imaging intracavity blood flow patterns.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Partho P. Sengupta.

Additional information

This article is part of the Topical Collection on Echocardiography

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bansal, M., Sengupta, P.P. Longitudinal and Circumferential Strain in Patients with Regional LV Dysfunction. Curr Cardiol Rep 15, 339 (2013). https://doi.org/10.1007/s11886-012-0339-x

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11886-012-0339-x

Keywords

Navigation