Skip to main content
Log in

Advanced Neuroimaging to Guide Acute Stroke Therapy

  • Stroke (C Sila, Section Editor)
  • Published:
Current Cardiology Reports Aims and scope Submit manuscript

Abstract

Traditionally non-contrast CT has been considered the first choice imaging modality for acute stroke. Acute ischemic stroke patients presenting to the hospital within 3-hours from symptom onset and without any visible hemorrhages or large lesions on CT images are considered optimum reperfusion therapy candidates. However, non-contrast CT alone has been unable to identify best reperfusion therapy candidates outside this window. New advanced imaging techniques are now being used successfully for this purpose. Non-invasive CT or MR angiography images can be obtained during initial imaging evaluation for identification and characterization of vascular lesions, including occlusions, aneurysms, and malformations. Either CT-based perfusion imaging or MRI-based diffusion and perfusion imaging performed immediately upon arrival of a patient to the hospital helps estimate the extent of fixed core and penumbra in ischemic lesions. Patients having occlusive lesions with small fixed cores and large penumbra are preferred reperfusion therapy candidates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Roger VL, Go AS, Lloyd-Jones DM, et al. Heart disease and stroke statistics-update: a report from the American Heart Association. Circulation. 2011;123:e18–209.

    Article  PubMed  Google Scholar 

  2. Latchaw RE, Alberts MJ, Lev MH, et al. Recommendations for imaging of acute ischemic stroke: a scientific statement from the American Heart Association. Stroke. 2009;40:3646–78.

    Article  PubMed  Google Scholar 

  3. Sattin JA, Olson SE, Liu L, Raman R, Lyden PD. An expedited code stroke protocol is feasible and safe. Stroke. 2006;37:2935–9.

    Article  PubMed  Google Scholar 

  4. •• De Los Rios la Rosa F, Khoury J, Kissela BM, et al. Eligibility for intravenous recombinant tissue-type plasminogen activator within a population: the effect of the European Cooperative Acute Stroke Study (ECASS) III Trial. Stroke. 2012;43:1591–5. This study demonstrates that extension of the time window from 3 hours to 4.5 hours has not improved the eligibility rate for iv r-tPA significantly.

    Article  PubMed  Google Scholar 

  5. Lees KR, Bluhmki E, von Kummer R, et al. Time to treatment with intravenous alteplase and outcome in stroke: an updated pooled analysis of ECASS, ATLANTIS, NINDS, and EPITHET trials. Lancet. 2010;375:1695–703.

    Article  CAS  PubMed  Google Scholar 

  6. Bluhmki E, Chamorro A, Davalos A, et al. Stroke treatment with alteplase given 3.0-4.5 h after onset of acute ischaemic stroke (ECASS III): additional outcomes and subgroup analysis of a randomized controlled trial. Lancet Neurol. 2009;8:1095–102.

    Article  CAS  PubMed  Google Scholar 

  7. Hacke W, Kaste M, Bluhmki E, et al. Thrombolysis with alteplase 3 to 4.5 hours after acute ischemic stroke. N Engl J Med. 2008;359:1317–29.

    Article  CAS  PubMed  Google Scholar 

  8. Kalafut MA, Schriger DL, Saver JL, Starkman S. Detection of early CT signs of >1/3 middle cerebral artery infarctions: interrater reliability and sensitivity of CT interpretation by physicians involved in acute stroke care. Stroke. 2000;31:1667–71.

    Article  CAS  PubMed  Google Scholar 

  9. Lev MH, Segal AZ, Farkas J, et al. Utility of perfusion-weighted CT imaging in acute middle cerebral artery stroke treated with intra-arterial thrombolysis: prediction of final infarct volume and clinical outcome. Stroke. 2001;32:2021–8.

    Article  CAS  PubMed  Google Scholar 

  10. Truwit CL, Barkovich AJ, Gean-Marton A, Hibri N, Norman D. Loss of the insular ribbon: another early CT sign of acute middle cerebral artery infarction. Radiology. 1990;176:801–6.

    CAS  PubMed  Google Scholar 

  11. Tomura N, Uemura K, Inugami A, Fujita H, Higano S, Shishido F. Early CT finding in cerebral infarction: obscuration of the lentiform nucleus. Radiology. 1988;168:463–7.

    CAS  PubMed  Google Scholar 

  12. Schellinger PD, Fiebach JB, Hacke W. Imaging-based decision making in thrombolytic therapy for ischemic stroke: present status. Stroke. 2003;34:575–83.

    Article  PubMed  Google Scholar 

  13. Barber PA, Demchuk AM, Zhang J, Buchan AM. Validity and reliability of a quantitative computed tomography score in predicting outcome of hyperacute stroke before thrombolytic therapy. ASPECTS Study Group. Alberta Stroke Programme Early CT Score. Lancet. 2000;355:1670–4.

    Article  CAS  PubMed  Google Scholar 

  14. Lin K, Lee SA, Zink WE. What ASPECTS value best predicts the 100-mL threshold on diffusion weighted imaging? Study of 150 patients with middle cerebral artery stroke. J Neuroimaging. 2011;21:229–31.

    Article  PubMed  Google Scholar 

  15. Ezzeddine MA, Lev MH, McDonald CT, et al. CT angiography with whole brain perfused blood volume imaging: added clinical value in the assessment of acute stroke. Stroke. 2002;33:959–66.

    Article  PubMed  Google Scholar 

  16. Scharf J, Brockmann MA, Daffertshofer M, et al. Improvement of sensitivity and interrater reliability to detect acute stroke by dynamic perfusion computed tomography and computed tomography angiography. J Comput Assist Tomogr. 2006;30:105–10.

    Article  PubMed  Google Scholar 

  17. Fiebach JB, Schellinger PD, Jansen O, et al. CT and diffusion-weighted MR imaging in randomized order: diffusion-weighted imaging results in higher accuracy and lower interrater variability in the diagnosis of hyperacute ischemic stroke. Stroke. 2002;33:2206–10.

    Article  CAS  PubMed  Google Scholar 

  18. Chalela JA, Kidwell CS, Nentwich LM, et al. Magnetic resonance imaging and computed tomography in emergency assessment of patients with suspected acute stroke: a prospective comparison. Lancet. 2007;369:293–8.

    Article  PubMed  Google Scholar 

  19. Schramm P, Schellinger PD, Klotz E, et al. Comparison of perfusion computed tomography and computed tomography angiography source images with perfusion-weighted imaging and diffusion-weighted imaging in patients with acute stroke of less than 6 hours' duration. Stroke. 2004;35:1652–8.

    Article  PubMed  Google Scholar 

  20. Schramm P, Schellinger PD, Fiebach JB, et al. Comparison of CT and CT angiography source images with diffusion-weighted imaging in patients with acute stroke within 6 hours after onset. Stroke. 2002;33:2426–32.

    Article  PubMed  Google Scholar 

  21. Barber PA, Hill MD, Eliasziw M, et al. Imaging of the brain in acute ischaemic stroke: comparison of computed tomography and magnetic resonance diffusion-weighted imaging. J Neurol Neurosurg Psychiatry. 2005;76:1528–33.

    Article  CAS  PubMed  Google Scholar 

  22. Tei H, Uchiyama S, Usui T, Ohara K. Diffusion-weighted ASPECTS as an independent marker for predicting functional outcome. J Neurol. 2011;258:559–65.

    Article  CAS  PubMed  Google Scholar 

  23. Tei H, Uchiyama S, Usui T, Ohara K. Posterior circulation ASPECTS on diffusion-weighted MRI can be a powerful marker for predicting functional outcome. J Neurol. 2010;257:767–73.

    Article  PubMed  Google Scholar 

  24. Kidwell CS, Chalela JA, Saver JL, et al. Comparison of MRI and CT for detection of acute intracerebral hemorrhage. JAMA. 2004;292:1823–30.

    Article  CAS  PubMed  Google Scholar 

  25. Kidwell CS, Wintermark M. Imaging of intracranial hemorrhage. Lancet Neurol. 2008;7:256–67.

    Article  PubMed  Google Scholar 

  26. Morgenstern LB, Hemphill 3rd JC, Anderson C, et al. Guidelines for the management of spontaneous intracerebral hemorrhage: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2010;41:2108–29.

    Article  PubMed  Google Scholar 

  27. Bederson JB, Connolly Jr ES, Batjer HH, et al. Guidelines for the management of aneurysmal subarachnoid hemorrhage: a statement for healthcare professionals from a special writing group of the Stroke Council, American Heart Association. Stroke. 2009;40:994–1025.

    Article  PubMed  Google Scholar 

  28. Greenberg SM, Vernooij MW, Cordonnier C, et al. Cerebral microbleeds: a guide to detection and interpretation. Lancet Neurol. 2009;8:165–74.

    Article  PubMed  Google Scholar 

  29. Nandigam RN, Viswanathan A, Delgado P, et al. MR imaging detection of cerebral microbleeds: effect of susceptibility-weighted imaging, section thickness, and field strength. AJNR Am J Neuroradiol. 2009;30:338–43.

    Article  CAS  PubMed  Google Scholar 

  30. Jeerakathil T, Wolf PA, Beiser A, et al. Cerebral microbleeds: prevalence and associations with cardiovascular risk factors in the Framingham Study. Stroke. 2004;35:1831–5.

    Article  PubMed  Google Scholar 

  31. Kwa VI, Franke CL, Verbeeten Jr B, Stam J. Silent intracerebral microhemorrhages in patients with ischemic stroke. Amsterdam Vascular Medicine Group. Ann Neurol. 1998;44:372–7.

    Article  CAS  PubMed  Google Scholar 

  32. Tanaka A, Ueno Y, Nakayama Y, Takano K, Takebayashi S. Small chronic hemorrhages and ischemic lesions in association with spontaneous intracerebral hematomas. Stroke. 1999;30:1637–42.

    Article  CAS  PubMed  Google Scholar 

  33. Poels MM, Ikram MA, van der Lugt A, et al. Incidence of cerebral microbleeds in the general population: the Rotterdam Scan Study. Stroke. 2011;42:656–61.

    Article  PubMed  Google Scholar 

  34. Viswanathan A, Chabriat H. Cerebral microhemorrhage. Stroke. 2006;37:550–5.

    Article  PubMed  Google Scholar 

  35. Greenberg SM, Eng JA, Ning M, Smith EE, Rosand J. Hemorrhage burden predicts recurrent intracerebral hemorrhage after lobar hemorrhage. Stroke. 2004;35:1415–20.

    Article  PubMed  Google Scholar 

  36. Soo YO, Yang SR, Lam WW, et al. Risk vs benefit of anti-thrombotic therapy in ischaemic stroke patients with cerebral microbleeds. J Neurol. 2008;255:1679–86.

    Article  PubMed  Google Scholar 

  37. Fiehler J, Albers GW, Boulanger JM, et al. Bleeding risk analysis in stroke imaging before thromboLysis (BRASIL): pooled analysis of T2*-weighted magnetic resonance imaging data from 570 patients. Stroke. 2007;38:2738–44.

    Article  PubMed  Google Scholar 

  38. Vernooij MW, van der Lugt A, Breteler MM. Risk of thrombolysis-related hemorrhage associated with microbleed presence. Stroke. 2008;39:e115. author reply e116.

    Article  PubMed  Google Scholar 

  39. Long A, Lepoutre A, Corbillon E, Branchereau A. Critical review of non- or minimally invasive methods (duplex ultrasonography, MR- and CT-angiography) for evaluating stenosis of the proximal internal carotid artery. Eur J Vasc Endovasc Surg. 2002;24:43–52.

    Article  CAS  PubMed  Google Scholar 

  40. Bash S, Villablanca JP, Jahan R, et al. Intracranial vascular stenosis and occlusive disease: evaluation with CT angiography, MR angiography, and digital subtraction angiography. AJNR. 2005;26:1012–21.

    PubMed  Google Scholar 

  41. Moll R, Dinkel HP. Value of the CT angiography in the diagnosis of common carotid artery bifurcation disease: CT angiography versus digital subtraction angiography and color flow Doppler. Eur J Radiol. 2001;39:155–62.

    Article  CAS  PubMed  Google Scholar 

  42. Lev MH, Romero JM, Goodman DN, et al. Total occlusion versus hairline residual lumen of the internal carotid arteries: accuracy of single section helical CT angiography. AJNR. 2003;24:1123–9.

    PubMed  Google Scholar 

  43. Tomsick T, Brott T, Barsan W, et al. Prognostic value of the hyperdense middle cerebral artery sign and stroke scale score before ultra-early thrombolytic therapy. AJNR. 1996;17:79–85.

    CAS  PubMed  Google Scholar 

  44. Flacke S, Urbach H, Keller E, et al. Middle cerebral artery (MCA) susceptibility sign at susceptibility-based perfusion MR imaging: clinical importance and comparison with hyperdense MCA sign at CT. Radiology. 2000;215:476–82.

    CAS  PubMed  Google Scholar 

  45. • Hirano T, Sasaki M, Mori E, Minematsu K, Nakagawara J, Yamaguchi T. Residual vessel length on magnetic resonance angiography identifies poor responders to alteplase in acute middle cerebral artery occlusion patients: exploratory analysis of the Japan Alteplase Clinical Trial II. Stroke. 2010;41:2828–33. This study demonstrates that patients with proximal MCA occlusion respond poorly to intravenous reperfusion therapy, even during the three-hour window.

    Article  PubMed  Google Scholar 

  46. Mattle HP, Arnold M, Georgiadis D, et al. Comparison of intraarterial and intravenous thrombolysis for ischemic stroke with hyperdense middle cerebral artery sign. Stroke. 2008;39:379–83.

    Article  PubMed  Google Scholar 

  47. Assouline E, Benziane K, Reizine D, et al. Intra-arterial thrombus visualized on T2* gradient echo imaging in acute ischemic stroke. Cerebrovasc Dis. 2005;20:6–11.

    Article  CAS  PubMed  Google Scholar 

  48. Young N, Dorsch NW, Kingston RJ, Markson G, McMahon J. Intracranial aneurysms: evaluation in 200 patients with spiral CT angiography. Eur Radiol. 2001;11:123–30.

    Article  CAS  PubMed  Google Scholar 

  49. Kokkinis C, Vlychou M, Zavras GM, Hadjigeorgiou GM, Papadimitriou A, Fezoulidis IV. The role of 3D-computed tomography angiography (3D-CTA) in investigation of spontaneous subarachnoid hemorrhage: comparison with digital subtraction angiography (DSA) and surgical findings. Br J Neurosurg. 2008;22:71–8.

    Article  CAS  PubMed  Google Scholar 

  50. White PM, Wardlaw JM, Easton V. Can noninvasive imaging accurately depict intracranial aneurysms? A systematic review. Radiology. 2000;217:361–70.

    CAS  PubMed  Google Scholar 

  51. • Eddleman CS, Jeong HJ, Hurley MC, et al. 4D radial acquisition contrast-enhanced MR angiography and intracranial arteriovenous malformations: quickly approaching digital subtraction angiography. Stroke. 2009;40:2749–53. This study demonstrates that new non-invasive MR angiography techniques can be used effectively for evaluation of intracranial vascular malformations.

    Article  PubMed  Google Scholar 

  52. Kukuk GM, Hadizadeh DR, Bostrom A, et al. Cerebral arteriovenous malformations at 3.0 T: intraindividual comparative study of 4D-MRA in combination with selective arterial spin labeling and digital subtraction angiography. Invest Radiol. 2010;45:126–32.

    Article  PubMed  Google Scholar 

  53. Bandera E, Botteri M, Minelli C, Sutton A, Abrams KR, Latronico N. Cerebral blood flow threshold of ischemic penumbra and infarct core in acute ischemic stroke: a systematic review. Stroke. 2006;37:1334–9.

    Article  PubMed  Google Scholar 

  54. Astrup J, Siesjo BK, Symon L. Thresholds in cerebral ischemia - the ischemic penumbra. Stroke. 1981;12:723–5.

    Article  CAS  PubMed  Google Scholar 

  55. Allmendinger AM, Tang ER, Lui YW, Spektor V. Imaging of stroke: Part 1, Perfusion CT–overview of imaging technique, interpretation pearls, and common pitfalls. AJR. 2012;198:52–62.

    Article  PubMed  Google Scholar 

  56. Baumgartner C, Gautsch K, Bohm C, Felber S. Functional cluster analysis of CT perfusion maps: a new tool for diagnosis of acute stroke? J Digit Imaging. 2005;18:219–26.

    Article  PubMed  Google Scholar 

  57. Wechsler LR. Imaging evaluation of acute ischemic stroke. Stroke. 2011;42:S12–5.

    Article  PubMed  Google Scholar 

  58. Sobesky J. Zaro Weber O, Lehnhardt FG, et al. Does the mismatch match the penumbra? Magnetic resonance imaging and positron emission tomography in early ischemic stroke. Stroke. 2005;36:980–5.

    Article  PubMed  Google Scholar 

  59. Arakawa S, Wright PM, Koga M, et al. Ischemic thresholds for gray and white matter: a diffusion and perfusion magnetic resonance study. Stroke. 2006;37:1211–6.

    Article  PubMed  Google Scholar 

  60. Turk A, Magarik JA, Chaudry I, et al. CT perfusion-guided patient selection for endovascular treatment of acute ischemic stroke is safe and effective. J Neurointerv Surg. 2012;4:261–5.

    Article  PubMed  Google Scholar 

  61. Hassan AE, Zacharatos H, Rodriguez GJ, et al. A comparison of computed tomography perfusion-guided and time-guided endovascular treatments for patients with acute ischemic stroke. Stroke. 2010;41:1673–8.

    Article  PubMed  Google Scholar 

  62. Gonzalez RG. Low signal, high noise and large uncertainty make CT perfusion unsuitable for acute ischemic stroke patient selection for endovascular therapy. J Neurointerv Surg. 2012;4:242–5.

    Article  PubMed  Google Scholar 

  63. Hassan AE, Zacharatos H, Chaudhry SA, et al. Agreement in endovascular thrombolysis patient selection based on interpretation of presenting CT and CT-P changes in ischemic stroke patients. Neurocrit Care. 2012;16:88–94.

    Article  PubMed  Google Scholar 

  64. Deipolyi AR, Wu O, Schaefer PW, et al. Cerebral blood volume measurements in acute ischemic stroke are technique-dependent and cannot substitute for DW imaging. In: Annual Conference of ASNR. 2010; abstract #135.

  65. Kudo K, Sasaki M, Ogasawara K, Terae S, Ehara S, Shirato H. Difference in tracer delay-induced effect among deconvolution algorithms in CT perfusion analysis: quantitative evaluation with digital phantoms. Radiology. 2009;251:241–9.

    Article  PubMed  Google Scholar 

  66. • Kudo K, Sasaki M, Yamada K, et al. Differences in CT perfusion maps generated by different commercial software: quantitative analysis by using identical source data of acute stroke patients. Radiology. 2010;254:200–9. This study demonstrates that CT perfusion needs further refinement and validation before its routine clinical application.

    Article  PubMed  Google Scholar 

  67. Fahmi F, Marquering HA, Streekstra GJ, et al. Differences in CT perfusion summary maps for patients with acute ischemic stroke generated by 2 software packages. AJNR. 2012. Epub ahead of print.

  68. Kamalian S, Konstas AA, Maas MB, et al. CT perfusion mean transit time maps optimally distinguish benign oligemia from true "at-risk" ischemic penumbra, but thresholds vary by postprocessing technique. AJNR. 2012;33:545–9.

    Article  PubMed  Google Scholar 

  69. Pulli B, Schaefer PW, Hakimelahi R, et al. Acute ischemic stroke: infarct core estimation on CT angiography source images depends on CT angiography protocol. Radiology. 2012;262:593–604.

    Article  PubMed  Google Scholar 

  70. Rubin G, Firlik AD, Levy EI, Pindzola RR, Yonas H. Xenon-enhanced computed tomography cerebral blood flow measurements in acute cerebral ischemia: Review of 56 cases. J Stroke Cerebrovasc Dis. 1999;8:404–11.

    Article  CAS  PubMed  Google Scholar 

  71. Albers GW, Diffusion-weighted MRI. for evaluation of acute stroke. Neurology. 1998;51:S47–9.

    Article  CAS  PubMed  Google Scholar 

  72. •• Campbell BC, Purushotham A, Christensen S, et al. The infarct core is well represented by the acute diffusion lesion: sustained reversal is infrequent. J Cereb Blood Flow Metab. 2012;32:50–6. This study demonstrates that the part of an ischemic lesion with restricted diffusivity on MR images is a true representative of the ischemic core.

    Article  PubMed  Google Scholar 

  73. Ostergaard L. Cerebral perfusion imaging by bolus tracking. Top Magn Reson Imaging. 2004;15:3–9.

    Article  PubMed  Google Scholar 

  74. Wu O, Ostergaard L, Sorensen AG. Technical aspects of perfusion-weighted imaging. Neuroimaging Clin N Am. 2005;15:623–37. xi.

    Article  PubMed  Google Scholar 

  75. Boxerman JL, Schmainda KM, Weisskoff RM. Relative cerebral blood volume maps corrected for contrast agent extravasation significantly correlate with glioma tumor grade, whereas uncorrected maps do not. AJNR. 2006;27:859–67.

    CAS  PubMed  Google Scholar 

  76. Sourbron S. Technical aspects of MR perfusion. Eur J Radiol. 2010;76:304–13.

    Article  PubMed  Google Scholar 

  77. Sourbron S, Ingrisch M, Siefert A, Reiser M, Herrmann K. Quantification of cerebral blood flow, cerebral blood volume, and blood–brain-barrier leakage with DCE-MRI. Magn Reson Med. 2009;62:205–17.

    Article  PubMed  Google Scholar 

  78. Zaharchuk G. Better late than never: the long journey of noncontrast arterial spin labeling perfusion imaging in acute stroke. Stroke. 2012;43:Epub ahead of print.

  79. Wang DA, Alger JR, Qiao JX, et al. The value of arterial spin-labeled perfusion imaging in acute ischemic stroke - comparison with dynamic susceptibility contrast enhanced MRI. Stroke. 2012;43(4):1018–24..

    Google Scholar 

  80. Darby DG, Barber PA, Gerraty RP, et al. Pathophysiological topography of acute ischemia by combined diffusion-weighted and perfusion MRI. Stroke. 1999;30:2043–52.

    Article  CAS  PubMed  Google Scholar 

  81. Schellinger PD, Thomalla G, Fiehler J, et al. MRI-based and CT-based thrombolytic therapy in acute stroke within and beyond established time windows: an analysis of 1210 patients. Stroke. 2007;38:2640–5.

    Article  PubMed  Google Scholar 

  82. Kohrmann M, Juttler E, Fiebach JB, et al. MRI versus CT-based thrombolysis treatment within and beyond the 3 h time window after stroke onset: a cohort study. Lancet Neurol. 2006;5:661–7.

    Article  PubMed  Google Scholar 

  83. Thomalla G, Schwark C, Sobesky J, et al. Outcome and symptomatic bleeding complications of intravenous thrombolysis within 6 hours in MRI-selected stroke patients: comparison of a German multicenter study with the pooled data of ATLANTIS, ECASS, and NINDS tPA trials. Stroke. 2006;37:852–8.

    Article  PubMed  Google Scholar 

  84. Davis SM, Donnan GA, Parsons MW, et al. Effects of alteplase beyond 3 h after stroke in the Echoplanar Imaging Thrombolytic Evaluation Trial (EPITHET): a placebo-controlled randomized trial. Lancet Neurol. 2008;7:299–309.

    Article  PubMed  Google Scholar 

  85. Albers GW, Thijs VN, Wechsler L, et al. Magnetic resonance imaging profiles predict clinical response to early reperfusion: the diffusion and perfusion imaging evaluation for understanding stroke evolution (DEFUSE) study. Ann Neurol. 2006;60:508–17.

    Article  PubMed  Google Scholar 

  86. • Yoo AJ, Verduzco LA, Schaefer PW, Hirsch JA, Rabinov JD, Gonzalez RG. MRI-based selection for intra-arterial stroke therapy: value of pretreatment diffusion-weighted imaging lesion volume in selecting patients with acute stroke who will benefit from early recanalization. Stroke. 2009;40:2046–54. The results of this study supports that the upper limit of diffusion lesion volume for reperfusion therapy can be reduced to 70 cc.

    Article  PubMed  Google Scholar 

  87. Hacke W, Albers G, Al-Rawi Y, et al. The Desmoteplase in Acute Ischemic Stroke Trial (DIAS): a phase II MRI-based 9-hour window acute stroke thrombolysis trial with intravenous desmoteplase. Stroke. 2005;36:66–73.

    Article  CAS  PubMed  Google Scholar 

  88. Hacke W, Furlan AJ, Al-Rawi Y, et al. Intravenous desmoteplase in patients with acute ischaemic stroke selected by MRI perfusion-diffusion weighted imaging or perfusion CT (DIAS-2): a prospective, randomized, double-blind, placebo-controlled study. Lancet Neurol. 2009;8:141–50.

    Article  CAS  PubMed  Google Scholar 

  89. •• Lansberg MG, Lee J, Christensen S, et al. RAPID automated patient selection for reperfusion therapy: a pooled analysis of the Echoplanar Imaging Thrombolytic Evaluation Trial (EPITHET) and the Diffusion and Perfusion Imaging Evaluation for Understanding Stroke Evolution (DEFUSE) Study. Stroke. 2011;42:1608–14. This study demonstrates that a successful reperfusion in patients with a significant penumbra and small ischemic core improves the functional improvement rate and reduces the infarct growth rate.

    Article  PubMed  Google Scholar 

  90. Sandhu GS, Parikh PT, Hsu DP, Blackham KA, Tarr RW, Sunshine JL. Outcomes of intra-arterial thrombolytic treatment in acute ischemic stroke patients with a matched defect on diffusion and perfusion MR images. J Neurointerv Surg. 2012;4:105–9.

    Article  PubMed  Google Scholar 

  91. Natarajan SK, Snyder KV, Siddiqui AH, Ionita CC, Hopkins LN, Levy EI. Safety and effectiveness of endovascular therapy after 8 hours of acute ischemic stroke onset and wake-up strokes. Stroke. 2009;40:3269–74.

    Article  CAS  PubMed  Google Scholar 

  92. Forster A, Gass A, Kern R, Wolf ME, Hennerici MG, Szabo K. MR imaging-guided intravenous thrombolysis in posterior cerebral artery stroke. AJNR. 2011;32:419–21.

    Article  CAS  PubMed  Google Scholar 

  93. Kohrmann M, Sauer R, Huttner HB, Engelhorn T, Doerfler A, Schellinger PD. MRI mismatch-based intravenous thrombolysis for isolated cerebellar infarction. Stroke. 2009;40:1897–9.

    Article  PubMed  Google Scholar 

  94. Lago A, Geffner D, Tembl J, Landete L, Valero C, Baquero M. Circadian variation in acute ischemic stroke: a hospital-based study. Stroke. 1998;29:1873–5.

    Article  CAS  PubMed  Google Scholar 

  95. Chaturvedi S, Adams Jr HP, Woolson RF. Circadian variation in ischemic stroke subtypes. Stroke. 1999;30:1792–5.

    Article  CAS  PubMed  Google Scholar 

  96. Sunshine JL, Tarr RW, Lanzieri CF, Landis DM, Selman WR, Lewin JS. Hyperacute stroke: ultrafast MR imaging to triage patients prior to therapy. Radiology. 1999;212:325–32.

    CAS  PubMed  Google Scholar 

  97. • Straka M, Albers GW, Bammer R. Real-time diffusion-perfusion mismatch analysis in acute stroke. J Magn Reson Imaging. 2010;32:1024–37. This study demonstrates that diffusion and perfusion MR images can be analyzed in very short time using a new automated software program.

    Article  PubMed  Google Scholar 

  98. Lev MH, Farkas J, Rodriguez VR, et al. CT angiography in the rapid triage of patients with hyperacute stroke to intra-arterial thrombolysis: accuracy in the detection of large vessel thrombus. J Comput Assist Tomogr. 2001;25:520–8.

    Article  CAS  PubMed  Google Scholar 

  99. Furlan AJ, Eyding D, Albers GW, et al. Dose Escalation of Desmoteplase for Acute Ischemic Stroke (DEDAS): evidence of safety and efficacy 3 to 9 hours after stroke onset. Stroke. 2006;37:1227–31.

    Article  CAS  PubMed  Google Scholar 

Download references

Disclosure

Conflicts of interest: G.S. Sandhu: has received research grant support in development of MRI from Siemens Medical Solutions; J.L. Sunshine: has received research grant support in development of MRI from Siemens Medical Solutions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey L. Sunshine.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sandhu, G.S., Sunshine, J.L. Advanced Neuroimaging to Guide Acute Stroke Therapy. Curr Cardiol Rep 14, 741–753 (2012). https://doi.org/10.1007/s11886-012-0315-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11886-012-0315-5

Keywords

Navigation