Skip to main content
Log in

The Role of Cardiac MR in New-Onset Heart Failure

  • Published:
Current Cardiology Reports Aims and scope Submit manuscript

Abstract

In patients with heart failure, cardiovascular magnetic resonance imaging (CMR) allows a multifaceted approach to cardiac evaluation by enabling an assessment of morphology, function, perfusion, viability, tissue characterization, and blood flow during a single comprehensive examination. Given its accuracy and reproducibility, many believe CMR is the reference standard for the noninvasive assessment of ventricular volumes, mass, and function, and offers an ideal means for the serial assessment of disease progression or treatment response in individual patients. Delayed-enhancement (DE)-CMR provides a direct assessment of myopathic processes. This permits a fundamentally different approach than that traditionally taken to ascertaining the etiology of cardiomyopathy, which is vital in patients with nonischemic cardiomyopathy and incidental coronary artery disease and patients with mixed, ischemic and nonischemic cardiomyopathy. Precise tissue characterization with DE-CMR also improves the diagnosis of left ventricular thrombus, for which it is the emerging clinical reference standard. There is a growing body of literature on the utility of CMR for patient risk stratification, and its potential role in important management decisions such as for cardiac resynchronization therapy and defibrillator placement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Kim HW, Farzaneh-Far A, Kim RJ. Cardiovascular magnetic resonance in patients with myocardial infarction – current and emerging applications. J Am Coll Cardiol. 2010;55:1–16.

    Article  Google Scholar 

  2. Holman ER, Buller VG, Roos A, et al. Detection and quantification of dysfunctional myocardium by magnetic resonance imaging. A new three-dimensional method for quantitative wall-thickening analysis. Circulation. 1997;95:924–31.

    PubMed  CAS  Google Scholar 

  3. Bellenger NG, Davies LC, Francis JM, et al. Reduction in sample size for studies of remodelling in heart failure by the use of cardiovascular magnetic resonance. J Cardiovasc Magn Reson. 2000;2:271–8.

    Article  PubMed  CAS  Google Scholar 

  4. Follath F, Cleland JG, Klein W, Murphy R. Etiology and response to drug treatment in heart failure. J Am Coll Cardiol. 1998;32:1167–72.

    Article  PubMed  CAS  Google Scholar 

  5. Felker GM, Shaw LK, O’Connor CM. A standardized definition of ischemic cardiomyopathy for use in clinical research. J Am Coll Cardiol. 2002;39:210–8.

    Article  PubMed  Google Scholar 

  6. Felker GM, Thompson RE, Hare JM, et al. Underlying causes and long-term survival in patients with initially unexplained cardiomyopathy. N Engl J Med. 2000;342:1077–84.

    Article  PubMed  CAS  Google Scholar 

  7. Uretsky BF, Thygessen K, Armstron PW, et al. Acute coronary findings at autopsy in heart failure patients with sudden death: results from the assessment of treatment with lisinopril and survival (ATLAS) trial. Circulation. 2000;102:611–6.

    PubMed  CAS  Google Scholar 

  8. Kim RJ, Fieno DS, Parrish TB, et al. Relationship of MRI delayed contrast enhancement to irreversible injury, infarct age and contractile function. Circulation. 1999;100:1992–2002.

    PubMed  CAS  Google Scholar 

  9. Marholdt H, Goedecke C, Wagner A, et al. Cardiovascular magnetic resonance assessment of human myocarditis: a comparison to histology and molecular pathology. Circulation. 2004;109:1250–8.

    Article  Google Scholar 

  10. Mahrholdt H, Wagner A, Judd RM, Sechtem U, Kim RJ. Delayed enhancement cardiovascular magnetic resonance assessment of non-ischemic cardiomyopathies. Eur Heart J. 2005;26:1461–74. Epub 2005 Apr 14.

    Article  PubMed  Google Scholar 

  11. Reimer KA, Lowe JE, Rasmussen MM, Jennings RB. The wavefront phenomenon of ischemic cell death. 1. Myocardial infarct size vs duration of coronary occlusion in dogs. Circulation. 1977;56:786–94.

    PubMed  CAS  Google Scholar 

  12. Bello D, Shah DJ, Farah GM, et al. Gadolinium cardiovascular magnetic resonance predicts reversible myocardial dysfunction and remodeling in patients with heart failure undergoing beta-blocker therapy. Circulation. 2003;108:1945–53.

    Article  PubMed  CAS  Google Scholar 

  13. Soriano CJ, Ridocci F, Estornell J, et al. Noninvasive diagnosis of coronary artery disease in patients with heart failure and systolic dysfunction of uncertain etiology, using late gadolinium-enhanced cardiovascular magnetic resonance. J Am Coll Cardiol. 2005;45:743–8.

    Article  PubMed  Google Scholar 

  14. Soriano CJ, Ridocci F, Estornell J, et al. Late gadolinium-enhanced cardiovascular magnetic resonance identifies patients with standardized definition of ischemic cardiomyopathy: A single center experience. Int J Cardiol. 2007;116:167–73.

    Article  PubMed  Google Scholar 

  15. Hombach V, Merkle N, Torzewski J, et al. Electrocardiographic and cardiac magnetic resonance imaging parameters as predictors of a worse outcome in patients with idiopathic dilated cardiomyopathy. Eur Heart J. 2009;30:2011–8.

    Article  PubMed  Google Scholar 

  16. Hombach V, Merkle N, Kestler HA, et al. Characterization of patients with acute chest pain using cardiac magnetic resonance imaging. Clin Res Cardiol. 2008;97:760–7.

    Article  PubMed  Google Scholar 

  17. McCrohon JA, Moon JC, Prasad SK, et al. Differentiation of heart failure related to dilated cardiomyopathy and coronary artery disease using gadolinium-enhanced cardiovascular magnetic resonance. Circulation. 2003;108:54–9.

    Article  PubMed  CAS  Google Scholar 

  18. Roberts WC, Siegel RJ, McManus BM. Idiopathic dilated cardiomyopathy: analysis of 152 necropsy patients. Am J Cardiol. 1987;60:1340–55.

    Article  PubMed  CAS  Google Scholar 

  19. Choudhury L, Mahrholdt H, Wagner A, et al. Myocardial scarring in asymptomatic or mildly symptomatic patients with hypertrophic cardiomyopahty. J Am Coll Cardiol. 2002;40:2156–64.

    Article  PubMed  Google Scholar 

  20. Moon JC, Sachdev B, Elkington AG, et al. Gadolinium enhanced cardiovascular magnetic resonance in Anderson-Fabry disease. Evidence for a disease specific abnormality of the myocardial interstitium. Eur Heart J. 2003;24:2151–5.

    Article  PubMed  Google Scholar 

  21. Rochitte CE, Oliveira PF, Andrade JM, et al. Myocardial delayed enhancement by magnetic resonance imaging in patients with Chagas’ disease: a marker of disease severity. J Am Coll Cardiol. 2005;46:1553–8.

    Article  PubMed  Google Scholar 

  22. Shah DJ, Judd RM, Kim RJ. Myocardial viability. In: Edelman RR, Hesselinik JR, Zlatkin MB, editors. Clinical magnetic resonance imaging. 3rd ed. New York: Elsevier; 2006.

    Google Scholar 

  23. •• Senthilkumar A, Majmudar MD, Shenoy C, Kim HW, Kim RJ. Identifying the etiology: A systematic approach using delayed-enhancement cardiovascular magnetic resonance. Heart Fail Clin. 2009;5:349–67. This review paper outlines a systematic stepwise approach to determining the etiology cardiomyopathy, accounting for the possibility of nonischemic cardiomyopathy with incidental coronary disease and mixed cardiomyopathy.

    Article  PubMed  Google Scholar 

  24. Boucher CA, Fallon JT, Johnson RA, Yurchak PM. Cardiomyopathic syndrome caused by coronary artery disease. III: Prospective clinicopathological study of its prevalence among patients with clinically unexplained chronic heart failure. Br Heart J. 1979;41:613–20.

    Article  PubMed  CAS  Google Scholar 

  25. Schuster EH, Bulkley BH. Ischemic cardiomyopathy: a clinicopathologic study of fourteen patients. Am Heart J. 1980;100:506–12.

    Article  PubMed  CAS  Google Scholar 

  26. Mollet NR, Dymarkowski S, Volders W, et al. Visualization of ventricular thrombi with contrast-enhanced magnetic resonance imaging in patients with ischemic heart disease. Circulation. 2002;106:2873–6.

    Article  PubMed  Google Scholar 

  27. Srichai MB, Junor C, Rodriguez LL, et al. Clinical, imaging, and pathological characteristics of left ventricular thrombus: a comparison of contrast-enhanced magnetic resonance imaging, transthoracic echocardiography, and transesophageal echocardiography with surgical or pathological validation. Am Heart J. 2006;152:75–84.

    Article  PubMed  Google Scholar 

  28. Weinsaft JW, Kim HW, Shah DJ, et al. Detection of left ventricular thrombus by delayed-enhancement cardiovascular magnetic resonance prevalence and markers in patients with systolic dysfunction. J Am Coll Cardiol. 2008;52:148–57.

    Article  PubMed  Google Scholar 

  29. Weinsaft JW, Kim RJ, Ross M, et al. Contrast-enhanced anatomic imaging as compared to contrast-enhanced tissue characterization for detection of left ventricular thrombus. JACC Cardiovasc Imaging. 2009;2:969–79.

    Article  PubMed  Google Scholar 

  30. Iles L, Pfluger H, Phrommintikus A, et al. Evaluation of diffuse myocardial fibrosis in heart failure with cardiac magnetic resonance contrast-enhaced T1 mapping. J Am Coll Cardiol. 2008;52:1574–80.

    Article  PubMed  Google Scholar 

  31. Sueyoshi E, Sakamoto I, Uetani M. Contrast-enhanced myocardial inversion time at the null point for detection of left ventricular myocardial fibrosis in patients with dilated and hypertrophic cardiomyopathy: A pilot study. AJR. 2010;194:W293–8.

    Article  PubMed  Google Scholar 

  32. Flett AS, Hayward MP, Ashworth MT, et al. Equilibrium contrast cardiovascular magnetic resonance for the measurement of diffuse myocardial fibrosis. Circulation. 2010;122:138–44.

    Article  PubMed  Google Scholar 

  33. Maceira AM, Prasad SK, Khan M, Pennell DJ. Normalized left ventricular systolic and diastolic function by steady state free precession cardiovascular magnetic resonance. J Cardiovasc Magn Reson. 2006;8:417–26.

    Article  PubMed  CAS  Google Scholar 

  34. Rubinshtein R, Glockner JF, Feng D, et al. Comparison of magnetic resonance imaging versus Doppler echocardiography for the evaluation of left ventricular diastolic function in patients with cardiac amyloidosis. Am J Cardiol. 2009;103:718–23.

    Article  PubMed  Google Scholar 

  35. Edvardsen T, Rosen BD, Pan L, et al. Regional diastolic dysfunction in individuals with left ventricular hypertrophy measured by tagged magnetic resonance imaging—the Multi-Ethnic Study of Atherosclerosis (MESA). Am Heart J. 2006;151:109–14.

    Article  PubMed  Google Scholar 

  36. • Chung ES, Leon AR, Tavazzi L, et al. Results of the Predictors of Response to CRT (PROSPECT) trial. Circulation. 2008;117:2608–16. This is a landmark, albeit negative trial prospectively testing multiple echocardiographic predictors of response to CRT.

    Article  PubMed  Google Scholar 

  37. Westenberg JJM, Lamb HJ, van der Geest RJ, et al. Assessment of left ventricular dyssynchrony in patients with conduction delay and idiopathic dilated cardiomyopathy. Head-to-head comparison between tissue Doppler imaging and velocity-encoded magnetic resonance imaging. J Am Coll Cardiol. 2006;47:2042–8.

    Article  PubMed  Google Scholar 

  38. Koos R, Neizel M, Schummers G, et al. Feasibility and initial experience of assessment of mechanical dyssynchrony using cardiovascular magnetic resonance semi-automatic border detection. J Cardiovasc Magn Res. 2008;10:49–54.

    Article  Google Scholar 

  39. Bilchick KC, Dimaano V, Wu KC, et al. Cardiac magnetic resonance assessment of dyssynchrony and myocardial scar predicts function class improvement following cardiac resynchronization therapy. JACC Cardiovasc Imaging. 2008;1:561–8.

    Article  PubMed  Google Scholar 

  40. Marsan NA, Westenberg JJ, Ypenburg C, et al. Magnetic resonance imaging and response to cardiac resynchronization therapy: relative merits of left ventricular dyssynchrony and scar tissue. Eur Heart J. 2009;30:2360–7.

    Article  PubMed  Google Scholar 

  41. White JA, Yee R, Yuan X, et al. Delayed enhancement magnetic resonance imaging predicts response to cardiac resynchronisation therapy in patients with intraventricular dyssynchrony. J Am Coll Cardiol. 2006;48:1953–60.

    Article  PubMed  Google Scholar 

  42. Bleeker GB, Kaandorp TAM, Lamb HJ, et al. Effect of posterolateral scar tissue on clinical and echocardiographic improvment after cardiac resynchronisation therapy. Circulation. 2006;113:969–76.

    Article  PubMed  Google Scholar 

  43. Chalil S, Foley PW, Muyhaldeen SA, et al. Late gadolinium enhancement-cardiovascular magnetic resonance as a predictor of response to cardiac resynchronization therapy in patients with ischaemic cardiomyopathy. Europace. 2007;9:1031–7.

    Article  PubMed  Google Scholar 

  44. Bello D, Fieno DS, Kim RJ, et al. Infarct morphology identifies patients with substrate for sustained ventricular tachycardia. J Am Coll Cardiol. 2005;45:1104–8.

    Article  PubMed  Google Scholar 

  45. Wu KC, Zerhouni EA, Judd RM, et al. Prognostic significance of microvascular obstruction by magnetic resonance imaging in patients with acute myocardial infarction. Circulation. 1998;97:765–72.

    PubMed  CAS  Google Scholar 

  46. Kwong RY, Chan AK, Brown KA, et al. Impact of unrecognized myocardial scar detected by cardiac magnetic resonance imaging on event-free survival in patients presenting with signs or symptoms of coronary artery disease. Circulation. 2006;113:2733–43.

    Article  PubMed  Google Scholar 

  47. • Kim HW, Klem I, Shah DJ, Wu E, Meyers SN, Parker MA, et al. Unrecognized non-Q-wave myocardial infarction: prevalence and prognostic significance in patients with suspected coronary disease. PLoS Med. 2009;6(e1000057):1–11. This study systematically evaluates the prevalence and prognostic implications of patients with unrecognized, non-Q-wave myocardial infarction.

    Google Scholar 

  48. Assomull RG, Prasad SK, Lyne J, et al. Cardiovascular magnetic resonance, fibrosis, and prognosis in dilated cardiomyopathy. J Am Coll Cardiol. 2006;48:1977–85.

    Article  PubMed  Google Scholar 

  49. Wu KC, Weiss RG, Thiemann DR, et al. Late gadolinium enhancement by cardiovascular magnetic resonance heralds an adverse prognosis in nonischemic cardiomyopathy. J Am Coll Cardiol. 2008;51:2414–21.

    Article  PubMed  Google Scholar 

  50. O’Hanlon R, Grasso A, Roughton M, et al. Prognostic significance of myocardial fibrosis in hypertrophic cardiomyopathy. J Am Coll Cardiol. 2010;56:867–74.

    Article  PubMed  Google Scholar 

  51. Bruder O, Wagner A, Jensen CJ, et al. Myocardial scar visualized by cardiovascular magnetic resonance imaging predicts major adverse events in patients with hypertrophic cardiomyopathy. J Am Coll Cardiol. 2010;56:875–87.

    Article  PubMed  Google Scholar 

  52. Maceira AM, Prasad SK, Hawkins PN, Roughton M, Pennell DJ. Cardiovascular magnetic resonance and prognosis in cardiac amyloidosis. J Cardiovasc Magn Reson. 2008;10:54–9.

    Article  PubMed  Google Scholar 

  53. Austin BA, Tang WH, Rodriguez ER, et al. Delayed hyperenhancement magnetic resonance imaging provides incremental diagnostic and prognostic utility in suspected cardiac amyloidosis. JACC Cardiovasc Imaging. 2009;2:1369–77.

    Article  PubMed  Google Scholar 

  54. • Patel MR, Cawley PF, Heitner JF, et al. Detection of myocardial damage in patients with sarcoidosis. Circulation. 2009;120:1969–77. This paper describes the utility of DE-CMR to diagnosis cardiac involvement in patients with sarcoidosis and its clinical implications.

    Article  PubMed  Google Scholar 

  55. Kim HW, Farzaneh-Far A, Kim RJ. Cardiovascular magnetic resonance in patients with myocardial infarction: current and emerging applications. J Am Coll Cardiol. 2009 Dec 29;55(1):1–16.

Download references

Disclosure

Conflicts of interest: Y.-J Kim: none; R.J. Kim: has received an educational grant from Siemens Medical Systems.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raymond J. Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, YJ., Kim, R.J. The Role of Cardiac MR in New-Onset Heart Failure. Curr Cardiol Rep 13, 185–193 (2011). https://doi.org/10.1007/s11886-011-0179-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11886-011-0179-0

Keywords

Navigation