Skip to main content

Advertisement

Log in

Premise, Promise, and Potential Limitations of Invasive Devices to Treat Hypertension

  • Published:
Current Cardiology Reports Aims and scope Submit manuscript

Abstract

Invasive device-based therapies for drug-resistant hypertension are undergoing active clinical investigation. The two approaches are 1) permanent implantation of a carotid baroreceptor pacemaker and 2) radiofrequency catheter ablation of the renal nerves. Both are designed to reduce the sympathetic nervous system component of drug-resistant hypertension. Several excellent comprehensive articles have reviewed each of these devices separately. In contrast, this brief article aims to provide a conceptual framework for evaluating the premise, promise, and potential limitations of both invasive antihypertensive therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. •• Heusser K, Tank J, Engeli S et al. Carotid baroreceptor stimulation, sympathetic activity, baroreflex function, and blood pressure in hypertensive patients. Hypertension 2010, 55:619–626. This study reports data showing decreases in blood pressure, heart rate, and sympathetic nerve activity following acute activation of a chronically implanted carotid baroreceptor pacemaker in 12 patients with drug-resistant hypertension.

    Article  CAS  PubMed  Google Scholar 

  2. Illig KA, Levy M, Sanchez L et al. An implantable carotid sinus stimulator for drug-resistant hypertension: surgical technique and short-term outcome from the multicenter phase II Rheos feasibility trial. J Vasc Surg 2006, 44:1213–1218.

    Article  PubMed  Google Scholar 

  3. Mohaupt MG, Schmidli J, Luft FC: Management of uncontrollable hypertension with a carotid sinus stimulation device. Hypertension 2007, 50:825–828.

    Article  CAS  PubMed  Google Scholar 

  4. Tordoir JH, Scheffers I, Schmidli J et al. An implantable carotid sinus baroreflex activating system: surgical technique and short-term outcome from a multi-center feasibility trial for the treatment of resistant hypertension. Eur J Vasc Endovasc Surg 2007, 33:414–421.

    Article  CAS  PubMed  Google Scholar 

  5. Wustmann K, Kucera JP, Scheffers I et al. Effects of chronic baroreceptor stimulation on the autonomic cardiovascular regulation in patients with drug-resistant arterial hypertension. Hypertension 2009, 54:530–536.

    Article  CAS  PubMed  Google Scholar 

  6. • Krum H, Schlaich M, Whitbourn R et al. Catheter-based renal sympathetic denervation for resistant hypertension: a multicentre safety and proof-of-principle cohort study. Lancet 2009, 373:1275–1281. This study reports initial safety and efficacy data from a phase 1 trial investigating blood pressure decreases following RF catheter ablation of the renal nerves. The study reports 3-month follow-up data in 39 patients and 12-month follow-up data in nine patients being treated for drug-resistant hypertension.

    Article  PubMed  Google Scholar 

  7. •• Esler MD, Krum H, Sobotka PA et al. Renal sympathetic denervation in patients with treatment-resistant hypertension (The Symplicity HTN-2 trial): randomised controlled trial. Lancet 2010. doi:10.1016/s0140-6736(10)62039-9. This study reports data from a multicenter, prospective, randomized trial investigating blood pressure decreases following RF catheter ablation of the renal nerves. The study reports 6-month efficacy data in 106 patients being treated for drug-resistant hypertension,49 of which underwent RF catheter ablation of the renal nerves and 52 who were randomized to control treatment alone.

    Article  CAS  PubMed  Google Scholar 

  8. Dibona GF and Esler M: Translational medicine: the antihypertensive effect of renal denervation. Am J Physiol Regul Integr Comp Physiol 2010, 298:R245–R253.

    CAS  PubMed  Google Scholar 

  9. Doumas M, Faselis C, Papademetriou V: Renal sympathetic denervation and systemic hypertension. Am J Cardiol 2010, 105:570–576.

    Article  PubMed  Google Scholar 

  10. Mancia G, Parati G, Zanchetti A: Electrical carotid baroreceptor stimulation in resistant hypertension. Hypertension 2010, 55:607–609.

    Article  CAS  PubMed  Google Scholar 

  11. Schlaich MP, Sobotka PA, Krum H et al. Renal denervation as a therapeutic approach for hypertension: novel implications for an old concept. Hypertension 2009, 54:1195–1201.

    Article  CAS  PubMed  Google Scholar 

  12. Schlaich MP, Krum H, Sobotka PA: Renal sympathetic nerve ablation: the new frontier in the treatment of hypertension. Curr Hypertens Rep 2010, 12:39–46.

    Article  PubMed  Google Scholar 

  13. Campese VM and Kogosov E: Renal afferent denervation prevents hypertension in rats with chronic renal failure. Hypertension 1995, 25:878–882.

    CAS  PubMed  Google Scholar 

  14. Kopp UC, Jones SY, Dibona GF: Afferent renal denervation impairs baroreflex control of efferent renal sympathetic nerve activity. Am J Physiol Regul Integr Comp Physiol 2008, 295:R1882–R1890.

    CAS  PubMed  Google Scholar 

  15. Zucker IH, Hackley JF, Cornish KG et al. Chronic baroreceptor activation enhances survival in dogs with pacing-induced heart failure. Hypertension 2007, 50:904–910.

    Article  CAS  PubMed  Google Scholar 

  16. Major cardiovascular events in hypertensive patients randomized to doxazosin vs chlorthalidone: the antihypertensive and lipid-lowering treatment to prevent heart attack trial (ALLHAT). ALLHAT Collaborative Research Group. JAMA 2000, 283:1967–1975.

  17. Diuretic versus alpha-blocker as first-step antihypertensive therapy: final results from the Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial (ALLHAT). Hypertension 2003, 42:239–246.

    Article  CAS  Google Scholar 

  18. Cushman WC: Are there benefits to specific antihypertensive drug therapy? Am J Hypertens 2003, 16:31S–35S.

    Article  PubMed  Google Scholar 

  19. Bangalore S, Kamalakkannan G, Messerli FH: Beta-blockers: no longer an option for uncomplicated hypertension. Curr Cardiol Rep 2007, 9:441–446.

    Article  PubMed  Google Scholar 

  20. Lindholm LH, Carlberg B, Samuelsson O: Should beta blockers remain first choice in the treatment of primary hypertension? A meta-analysis. Lancet 2005, 366:1545–1553.

    Article  CAS  PubMed  Google Scholar 

  21. Esler M, Jennings G, Biviano B et al. Mechanism of elevated plasma noradrenaline in the course of essential hypertension. J Cardiovasc Pharmacol 1986, 8 Suppl 5:S39–S43.

    Article  PubMed  Google Scholar 

  22. Schlaich MP, Lambert E, Kaye DM et al. Sympathetic augmentation in hypertension: role of nerve firing, norepinephrine reuptake, and Angiotensin neuromodulation. Hypertension 2004, 43:169–175.

    Article  CAS  PubMed  Google Scholar 

  23. Guyenet PG: The sympathetic control of blood pressure. Nat Rev Neurosci 2006, 7:335–346.

    Article  CAS  PubMed  Google Scholar 

  24. Julius S, Krause L, Schork NJ et al. Hyperkinetic borderline hypertension in Tecumseh, Michigan. J Hypertens 1991, 9:77–84.

    CAS  PubMed  Google Scholar 

  25. Schlaich MP, Kaye DM, Lambert E et al. Relation between cardiac sympathetic activity and hypertensive left ventricular hypertrophy. Circulation 2003, 108:560–565.

    Article  PubMed  Google Scholar 

  26. Schlaich MP, Kaye DM, Lambert E et al. Angiotensin II and norepinephrine release: interaction and effects on the heart. J Hypertens 2005, 23:1077–1082.

    Article  CAS  PubMed  Google Scholar 

  27. Esler M, Rumantir M, Wiesner G et al. Sympathetic nervous system and insulin resistance: from obesity to diabetes. Am J Hypertens 2001, 14:304S–309S.

    Article  CAS  PubMed  Google Scholar 

  28. Victor RG and Shafiq MM: Sympathetic neural mechanisms in human hypertension. Curr Hypertens Rep 2008, 10:241–247.

    Article  CAS  PubMed  Google Scholar 

  29. Epstein SE, Beiser GD, Goldstein RE et al. Circulatory effects of electrical stimulation of the carotid sinus nerves in man. Circulation 1969, 40:269–276.

    CAS  PubMed  Google Scholar 

  30. Richter DW, Keck W, Seller H: The course of inhibition of sympathetic activity during various patterns of carotid sinus nerve stimulation. Pflugers Arch 1970, 317:110–123.

    Article  CAS  PubMed  Google Scholar 

  31. Welcome to CVRx, Inc. Available at http://www.cvrx.com. Accessed June 2010.

  32. Calhoun DA, Jones D, Textor S et al. Resistant hypertension: diagnosis, evaluation, and treatment. A scientific statement from the American Heart Association Professional Education Committee of the Council for High Blood Pressure Research. Hypertension 2008, 51:1403–1419.

    Article  CAS  PubMed  Google Scholar 

  33. •• Scheffers IJM, Kroon AA, Schmidli J et al., Novel baroreflex activation therapy in resistant hypertension. J Am Coll Cardiol 2010, 56:1254–1258. This study presents 3-month, 1-year, and 2-year follow-up data from the DEBuT-HT trial showing decreases in blood pressure following activation of a chronically implanted carotid baroreceptor pacemaker in 45 patients with drug-resistant hypertension.

    Article  PubMed  Google Scholar 

  34. Georgakopoulos D, Little WC, Abraham WT, et al. Chronic baroreflex activation: a potential therapeutic approach to heart failure with preserved ejection fraction. J Cardiac Fail 2010. doi:10.1016/j.cardfail.2010.09.004.

  35. Sanders JS, Ferguson DW, Mark AL: Arterial baroreflex control of sympathetic nerve activity during elevation of blood pressure in normal man: dominance of aortic baroreflexes. Circulation 1988, 77:279-288.

    CAS  PubMed  Google Scholar 

  36. Esler M: The sympathetic system and hypertension. Am J Hypertens 2000, 13:99S–105S.

    Article  CAS  PubMed  Google Scholar 

  37. Grassi G, Seravalle G, Quarti-Trevano F et al. Sympathetic and baroreflex cardiovascular control in hypertension-related left ventricular dysfunction. Hypertension 2009, 53:205–209.

    Article  CAS  PubMed  Google Scholar 

  38. Mancia G, Grassi G, Parati G et al. The sympathetic nervous system in human hypertension. Acta Physiol Scand Suppl 1997, 640:117–121.

    CAS  PubMed  Google Scholar 

  39. Dibona GF: Physiology in perspective: The Wisdom of the Body. Neural control of the kidney. Am J Physiol Regul Integr Comp Physiol 2005, 289:R633–R641.

    CAS  PubMed  Google Scholar 

  40. Kopp UC and Buckley-Bleiler RL: Impaired renorenal reflexes in two-kidney, one clip hypertensive rats. Hypertension 1989, 14:445–452.

    CAS  PubMed  Google Scholar 

  41. Dibona GF and Kopp UC: Neural control of renal function. Physiol Rev 1997, 77:75–197.

    CAS  PubMed  Google Scholar 

  42. Katholi RE, Whitlow PL, Hageman GR et al. Intrarenal adenosine produces hypertension by activating the sympathetic nervous system via the renal nerves in the dog. J Hypertens 1984, 2:349–359.

    CAS  PubMed  Google Scholar 

  43. Ryuzaki M, Stahl LK, Lyson T et al. Sympathoexcitatory response to cyclosporin A and baroreflex resetting. Hypertension 1997, 29:576–582.

    CAS  PubMed  Google Scholar 

  44. Klein IH, Ligtenberg G, Oey PL et al. Sympathetic activity is increased in polycystic kidney disease and is associated with hypertension. J Am Soc Nephrol 2001, 12:2427–2433.

    CAS  PubMed  Google Scholar 

  45. Klein IH, Ligtenberg G, Neumann J et al. Sympathetic nerve activity is inappropriately increased in chronic renal disease. J Am Soc Nephrol 2003, 14:3239–3244.

    Article  PubMed  Google Scholar 

  46. Morrissey DM, Brookes VS, Cooke WT: Sympathectomy in the treatment of hypertension; review of 122 cases. Lancet 1953, 1:403–408.

    Article  CAS  PubMed  Google Scholar 

  47. Ardian, Inc. http://www.ardian.com/medical-professionals/system.shtml. Accessed June 2010.

  48. Osborn JW and Fink GD: Region-specific changes in sympathetic nerve activity in angiotensin II-salt hypertension in the rat. Exp Physiol 2010, 95:61–68.

    Article  CAS  PubMed  Google Scholar 

Download references

Disclosure

Conflicts of interest: E.A. Martin: none; R.G. Victor: has received grants from the following companies: Pfizer, National Institutes of Health, Muscular Dystrophy Association, NicOx, and Novartis; has received research support from the Lincy Foundation and the Donald W. Reynolds Foundation; is on the Advisory Board for St. Jude’s and CVRx; has been on the External Advisory Board for Emory University (Cardiology Training Grant program) and the University of Iowa (Clinical Translational Science award); and has been on the speakers’ bureau for Pfizer, GlaxoSmithKline, and Novartis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronald G. Victor.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martin, E.A., Victor, R.G. Premise, Promise, and Potential Limitations of Invasive Devices to Treat Hypertension. Curr Cardiol Rep 13, 86–92 (2011). https://doi.org/10.1007/s11886-010-0156-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11886-010-0156-z

Keywords

Navigation