Skip to main content

Advertisement

Log in

Therapeutic Potential of microRNAs in Heart Failure

  • Published:
Current Cardiology Reports Aims and scope Submit manuscript

Abstract

There is an ongoing explosion of information about microRNAs (miRs) in cardiac disease. These small noncoding RNAs regulate protein expression by destabilization and translational inhibition of target mRNAs. Similar to mRNAs, miRs are regulated in cardiac hypertrophy and heart failure, but miR expression profiles appear to be more sensitive than mRNA signatures to changes in clinical status, suggesting that miR levels in myocardium or plasma could enhance clinical diagnostics. Single miRs can target dozens or hundreds of different mRNAs, complicating attempts to determine their individual physiologic effects. However, manipulating individual miRs by overexpression or gene ablation in experimental models has begun to unravel this conundrum: Single miRs tend to regulate numerous effectors within the same functional pathway, producing a coherent physiologic response via multiple parallel perturbations. miRs are attractive nodal therapeutic targets, and stable miR mimetics (agomiRs) and antagonists (antagomiRs) are being evaluated to prevent or reverse heart failure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as follows: •• Of major importance

  1. Latronico MV, Condorelli G: MicroRNAs and cardiac pathology. Nat Rev Cardiol 2009, 6:419–429.

    Article  PubMed  Google Scholar 

  2. Standart N, Jackson RJ: MicroRNAs repress translation of m7Gppp-capped target mRNAs in vitro by inhibiting initiation and promoting deadenylation. Genes Dev 2007, 21:1975–1982.

    Article  CAS  PubMed  Google Scholar 

  3. Ambros V: The functions of animal microRNAs. Nature 2004, 431:350–355.

    Article  CAS  PubMed  Google Scholar 

  4. Nakao K, Minobe W, Roden R, et al.: Myosin heavy chain gene expression in human heart failure. J Clin Invest 1997, 100:2362–2370.

    Article  CAS  PubMed  Google Scholar 

  5. •• van Rooij E, Sutherland LB, Qi X, et al.: Control of stress-dependent cardiac growth and gene expression by a microRNA. Science 2007, 316:575–579. This landmark paper describes a role for miR-208, embedded within one of the MHC genes, in counterregulation of the two MHC genes. This established a mechanism relating the genetic locus of a miR to its primary function.

    Article  PubMed  Google Scholar 

  6. Callis TE, Pandya K, Seok HY, et al.: MicroRNA-208a is a regulator of cardiac hypertrophy and conduction in mice. J Clin Invest 2009, 119:2772–2786.

    Article  CAS  PubMed  Google Scholar 

  7. Chien KR, Knowlton KU, Zhu H, Chien S: Regulation of cardiac gene expression during myocardial growth and hypertrophy: molecular studies of an adaptive physiologic response. FASEB J 1991, 5:3037–3046.

    CAS  PubMed  Google Scholar 

  8. Heidecker B, Kasper EK, Wittstein IS, et al.: Transcriptomic biomarkers for individual risk assessment in new-onset heart failure. Circulation 2008, 118:238–246.

    Article  CAS  PubMed  Google Scholar 

  9. Margulies KB, Bednarik DP, Dries DL: Genomics, transcriptional profiling, and heart failure. J Am Coll Cardiol 2009, 53:1752–1759.

    Article  CAS  PubMed  Google Scholar 

  10. Dorn GW 2nd, Matkovich SJ: Put your chips on transcriptomics. Circulation 2008, 118:216–218.

    Article  PubMed  Google Scholar 

  11. Condorelli G, Latronico MVG, Dorn GW 2nd: microRNAs in cardiovascular disease: putative novel therapeutic targets? Eur Heart J 2010 Jan 29 [Epub ahead of print].

  12. van Rooij E, Sutherland LB, Liu N, et al.: A signature pattern of stress-responsive microRNAs that can evoke cardiac hypertrophy and heart failure. Proc Natl Acad Sci U S A 2006, 103:18255–18260.

    Article  PubMed  Google Scholar 

  13. Thum T, Galuppo P, Wolf C, et al.: MicroRNAs in the human heart: a clue to fetal gene reprogramming in heart failure. Circulation 2007, 116:258–267.

    Article  CAS  PubMed  Google Scholar 

  14. Ikeda S, Kong SW, Lu J, et al.: Altered microRNA expression in human heart disease. Physiol Genomics 2007, 31:367–373.

    Article  CAS  PubMed  Google Scholar 

  15. Sucharov C, Bristow MR, Port JD: miRNA expression in the failing human heart: functional correlates. J Mol Cell Cardiol 2008, 45:185–192.

    Article  CAS  PubMed  Google Scholar 

  16. Naga Prasad SV, Duan ZH, Gupta MK, et al.: Unique microRNA profile in end-stage heart failure indicates alterations in specific cardiovascular signaling networks. J Biol Chem 2009, 284:27487–27499.

    Google Scholar 

  17. •• Matkovich SJ, Van Booven DJ, Youker KA, et al.: Reciprocal regulation of myocardial microRNAs and messenger RNA in human cardiomyopathy and reversal of the microRNA signature by biomechanical support. Circulation 2009, 119:1263–1271, This is the only study to date comparing mRNA and miR expression profiles in different stages of heart failure. It established greater sensitivity of the miR signature for clinical status.

    Article  CAS  PubMed  Google Scholar 

  18. Margulies KB, Matiwala S, Cornejo C, et al.: Mixed messages: transcription patterns in failing and recovering human myocardium. Circ Res 2005, 96:592–599.

    Article  CAS  PubMed  Google Scholar 

  19. •• Mitchell PS, Parkin RK, Kroh EM, et al.: Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci U S A 2008, 105:10513–10518, This paper established that circulating miRs are stable for extended periods of time in blood, and can be accurately measured in a manner that reflects their regulated expression in tissue. This important finding suggests that a blood test may provide the same miR expression signature information as myocardial biopsy.

    Article  CAS  PubMed  Google Scholar 

  20. •• Care A, Catalucci D, Felicetti F, et al.: MicroRNA-133 controls cardiac hypertrophy. Nat Med 2007, 13:613–618, Information in this paper indicates that synthetic miR agonists and antagonists (in the form of a complementary single strand sequence) can be useful to mimic or oppose specific miR effects in the in vivo heart.

    Article  CAS  PubMed  Google Scholar 

  21. Liu N, Bezprozvannaya S, Williams AH, et al.: microRNA-133a regulates cardiomyocyte proliferation and suppresses smooth muscle gene expression in the heart. Genes Dev 2008, 22:3242–3254.

    Article  CAS  PubMed  Google Scholar 

  22. Bernstein E, Kim SY, Carmell MA, et al.: Dicer is essential for mouse development. Nat Genet 2003, 35:215–217.

    Article  CAS  PubMed  Google Scholar 

  23. Chen JF, Murchison EP, Tang R, et al.: Targeted deletion of Dicer in the heart leads to dilated cardiomyopathy and heart failure. Proc Natl Acad Sci U S A 2008, 105:2111–2116.

    Article  CAS  PubMed  Google Scholar 

  24. da Costa Martins PA, Bourajjaj M, Gladka M, et al.: Conditional dicer gene deletion in the postnatal myocardium provokes spontaneous cardiac remodeling. Circulation 2008, 118:1567–1576.

    Article  PubMed  Google Scholar 

  25. Rao PK, Toyama Y, Chiang HR, et al.: Loss of cardiac microRNA-mediated regulation leads to dilated cardiomyopathy and heart failure. Circ Res 2009, 105:585–594.

    Article  CAS  PubMed  Google Scholar 

  26. Suckau L, Fechner H, Chemaly E, et al.: Long-term cardiac-targeted RNA interference for the treatment of heart failure restores cardiac function and reduces pathological hypertrophy. Circulation 2009, 119:1241–1252.

    Article  CAS  PubMed  Google Scholar 

  27. Zhao Y, Ransom JF, Li A, et al.: Dysregulation of cardiogenesis, cardiac conduction, and cell cycle in mice lacking miRNA-1-2. Cell 2007, 129:303–317.

    Article  CAS  PubMed  Google Scholar 

  28. Lin Z, Murtaza I, Wang K, et al.: miR-23a functions downstream of NFATc3 to regulate cardiac hypertrophy. Proc Natl Acad Sci U S A 2009, 106:12103–12108.

    Article  CAS  PubMed  Google Scholar 

  29. van Rooij E, Marshall WS, Olson EN: Toward microRNA-based therapeutics for heart disease: the sense in antisense. Circ Res 2008, 103:919–928.

    Article  PubMed  Google Scholar 

  30. Wang S, Olson EN: AngiomiRs–key regulators of angiogenesis. Curr Opin Genet Dev 2009, 19:205–211.

    Article  CAS  PubMed  Google Scholar 

  31. Wang S, Aurora AB, Johnson BA, et al.: The endothelial-specific microRNA miR-126 governs vascular integrity and angiogenesis. Dev Cell 2008, 15:261–271.

    Article  PubMed  Google Scholar 

  32. Ren XP, Wu J, Wang X, et al.: MicroRNA-320 is involved in the regulation of cardiac ischemia/reperfusion injury by targeting heat-shock protein 20. Circulation 2009, 119:2357–2366.

    Article  CAS  PubMed  Google Scholar 

  33. Rane S, He M, Sayed D, et al.: Downregulation of miR-199a derepresses hypoxia-inducible factor-1alpha and Sirtuin 1 and recapitulates hypoxia preconditioning in cardiac myocytes. Circ Res 2009, 104:879–886.

    Article  CAS  PubMed  Google Scholar 

  34. Thum T, Gross C, Fiedler J, et al.: MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts. Nature 2008, 456:980–984.

    Article  CAS  PubMed  Google Scholar 

  35. van Rooij E, Sutherland LB, Thatcher JE, et al.: Dysregulation of microRNAs after myocardial infarction reveals a role of miR-29 in cardiac fibrosis. Proc Natl Acad Sci U S A 2008, 105:13027–13032.

    Article  PubMed  Google Scholar 

Download references

Disclosure

No potential conflict of interest relevant to this article was reported.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerald W. Dorn II.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dorn, G.W. Therapeutic Potential of microRNAs in Heart Failure. Curr Cardiol Rep 12, 209–215 (2010). https://doi.org/10.1007/s11886-010-0096-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11886-010-0096-7

Keywords

Navigation