Skip to main content

CT Coronary Angiography: 256-Slice and 320-Detector Row Scanners

Abstract

Multidetector computed tomography (MDCT) has rapidly evolved from 4-detector row systems in 1998 to 256-slice and 320-detector row CT systems. With smaller detector element size and faster gantry rotation speed, spatial and temporal resolution of the 64-detector MDCT scanners have made coronary artery imaging a reliable clinical test. Wide-area coverage MDCT, such as the 256-slice and 320-detector row MDCT scanners, has enabled volumetric imaging of the entire heart free of stair-step artifacts at a single time point within one cardiac cycle. It is hoped that these improvements will be realized with greater diagnostic accuracy of CT coronary angiography. Such scanners hold promise in performing a rapid high quality “triple rule-out” test without high contrast load, improved myocardial perfusion imaging, and even four-dimensional CT subtraction angiography. These emerging technical advances and novel applications will continue to change the way we study coronary artery disease beyond detecting luminal stenosis.

This is a preview of subscription content, access via your institution.

Fig. 1

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.

    Lawler LP, Pannu HK, Fishman EK: MDCT evaluation of the coronary arteries, 2004: how we do it—data acquisition, postprocessing, display, and interpretation. AJR Am J Roentgenol 2005, 184:1402–1412.

    PubMed  Google Scholar 

  2. 2.

    •• Budoff M, Dowe D, Jollis J, et al.: Diagnostic performance of 64-multidetector row coronary computed tomographic angiography for evaluation of coronary artery stenosis in individuals without known coronary artery disease: results from the prospective multicenter ACCURACY (Assessment by Coronary Computed Tomographic Angiography of Individuals Undergoing Invasive Coronary Angiography) trial. J Am Coll Cardiol 2008, 52:1724–1732. This is a major trial in the diagnostic accuracy of 64-MDCT CT coronary angiography.

    Article  PubMed  Google Scholar 

  3. 3.

    •• Miller JM, Rochitte CE, Dewey M, et al.: Diagnostic performance of coronary angiography by 64-row CT. N Engl J Med 2008, 359:2324–2336. This is another major trial in the diagnostic accuracy of 64-MDCT CT coronary angiography.

    Article  CAS  PubMed  Google Scholar 

  4. 4.

    American College of Radiology; Society of Cardiovascular Computed Tomography; Society for Cardiovascular Magnetic Resonance; American Society of Nuclear Cardiology; North American Society for Cardiac Imaging; Society for Cardiovascular Angiography and Interventions; Society of Interventional Radiology: ACCF/ACR/SCCT/SCMR/ASNC/NASCI/SCAI/SIR 2006 appropriateness criteria for cardiac computed tomography and cardiac magnetic resonance imaging. A report of the American College of Cardiology Foundation Quality Strategic Directions Committee Appropriateness Criteria Working Group. J Am Coll Radiol 2006, 3:751–771.

    Article  Google Scholar 

  5. 5.

    Voros S: What are the potential advantages and disadvantages of volumetric CT scanning? J Cardiovasc Comput Tomogr 2009, 3:67–70.

    Article  PubMed  Google Scholar 

  6. 6.

    Hara AK, Paden RG, Silva AC, et al.: Iterative reconstruction technique for reducing body radiation dose at CT: feasibility study. AJR Am J Roentgenol 2009, 193:764–771.

    Article  PubMed  Google Scholar 

  7. 7.

    Min JK, Swaminathan RV, Vass M, et al.: High-definition multidetector computed tomography for evaluation of coronary artery stents: comparison to standard-definition 64-detector row computed tomography. J Cardiovasc Comput Tomogr 2009, 3:246–251.

    Article  PubMed  Google Scholar 

  8. 8.

    Achenbach S, Ropers D, Kuettner A, et al.: Contrast-enhanced coronary artery visualization by dual-source computed tomography—initial experience. Eur J Radiol 2006, 57:331–335.

    Article  PubMed  Google Scholar 

  9. 9.

    Dey D, Lee CJ, Ohba M, et al.: Image quality and artifacts in coronary CT angiography with dual-source CT: initial clinical experience. J Cardiovasc Comput Tomogr 2008, 2:105–114.

    Article  PubMed  Google Scholar 

  10. 10.

    Achenbach S, Marwan M, Schepis T, et al.: High-pitch spiral acquisition: a new scan mode for coronary CT angiography. J Cardiovasc Comput Tomogr 2009, 3:117–121.

    Article  PubMed  Google Scholar 

  11. 11.

    Kido T, Kurata A, Higashino H, et al.: Cardiac imaging using 256-detector row four-dimensional CT: preliminary clinical report. Radiat Med 2007, 25:38–44.

    Article  PubMed  Google Scholar 

  12. 12.

    Mori S, Endo M, Obata T, et al.: Clinical potentials of the prototype 256-detector row CT-scanner. Acad Radiol 2005, 12:148–154.

    Article  PubMed  Google Scholar 

  13. 13.

    Mori S, Endo M, Obata T, et al.: Properties of the prototype 256-row (cone beam) CT scanner. Eur Radiol 2006, 16:2100–2108.

    Article  PubMed  Google Scholar 

  14. 14.

    Mori S, Kondo C, Suzuki N, et al.: Volumetric cine imaging for cardiovascular circulation using prototype 256-detector row computed tomography scanner (4-dimensional computed tomography): a preliminary study with a porcine model. J Comput Assist Tomogr 2005, 29:26–30.

    Article  PubMed  Google Scholar 

  15. 15.

    Steigner ML, Mitsouras D, Whitmore AG, et al.: Iodinated contrast opacification gradients in normal coronary arteries imaged with prospectively ECG-gated single heart beat 320-detector row computed tomography. Circulation Cardiovascular Imaging 2010, in press.

  16. 16.

    Hameed T, Teague S, Vembar M, et al.: Low radiation dose ECG-gated chest CT angiography on a 256-slice multidetector CT scanner. Int J Cardiovasc Imaging 2009, 25:267–278.

    Article  Google Scholar 

  17. 17.

    Walker M, Olszewski M, Desai M, et al.: New radiation dose saving technologies for 256-slice cardiac computed tomography angiography. Int J Cardiovasc Imaging 2009, 25:189–199.

    Article  Google Scholar 

  18. 18.

    Steigner ML, Otero HJ, Cai T, et al.: Narrowing the phase window width in prospectively ECG-gated single heart beat 320-detector row coronary CT angiography. Int J Cardiovasc Imaging 2009, 25:85–90.

    Article  PubMed  Google Scholar 

  19. 19.

    Schwarz F, Ruzsics B, Schoepf UJ, et al.: Dual-energy CT of the heart—principles and protocols. Eur J Radiol 2008, 68:423–433.

    Article  PubMed  Google Scholar 

  20. 20.

    Ruzsics B, Lee H, Zwerner PL, et al.: Dual-energy CT of the heart for diagnosing coronary artery stenosis and myocardial ischemia-initial experience. Eur Radiol 2008, 18:2414–2424.

    Article  PubMed  Google Scholar 

  21. 21.

    •• Rybicki FJ, Otero HJ, Steigner ML, et al.: Initial evaluation of coronary images from 320-detector row computed tomography. Int J Cardiovasc Imaging 2008, 24:535–546. This is the first published clinical experience based on the 320-detector row MDCT system.

    Article  PubMed  Google Scholar 

  22. 22.

    Ruzsics B, Lee H, Powers ER, et al.: Images in cardiovascular medicine. Myocardial ischemia diagnosed by dual-energy computed tomography: correlation with single-photon emission computed tomography. Circulation 2008, 117:1244–1245.

    Article  PubMed  Google Scholar 

  23. 23.

    Achenbach S, Ropers D, Möhlenkamp S, et al.: Variability of repeated coronary artery calcium measurements by electron beam tomography. Am J Cardiol 2001, 87:210–213, A8.

    Article  CAS  PubMed  Google Scholar 

  24. 24.

    Budoff M, Achenbach S, Blumenthal R, et al.: Assessment of coronary artery disease by cardiac computed tomography: a scientific statement from the American Heart Association Committee on Cardiovascular Imaging and Intervention, Council on Cardiovascular Radiology and Intervention, and Committee on Cardiac Imaging, Council on Clinical Cardiology. Circulation 2006, 114:1761–1791.

    Article  PubMed  Google Scholar 

  25. 25.

    Mollet NR, Cademartiri F, van Mieghem CA, et al.: High-resolution spiral computed tomography coronary angiography in patients referred for diagnostic conventional coronary angiography. Circulation 2005, 112:2318–2323.

    Article  PubMed  Google Scholar 

  26. 26.

    • Einstein AJ, Henzlova MJ, Rajagopalan S: Estimating risk of cancer associated with radiation exposure from 64-slice computed tomography coronary angiography. JAMA 2007, 298:317–323. This is an excellent discussion of radiation dose from coronary CT angiography.

    Article  CAS  PubMed  Google Scholar 

  27. 27.

    Hausleiter J, Meyer T, Hadamitzky M, et al.: Radiation dose estimates from cardiac multislice computed tomography in daily practice: impact of different scanning protocols on effective dose estimates. Circulation 2006, 113:1305–1310.

    Article  PubMed  Google Scholar 

  28. 28.

    • Einstein A, Moser K, Thompson R, et al.: Radiation dose to patients from cardiac diagnostic imaging. Circulation 2007, 116:1290–1305. This is another excellent discussion of radiation dose from coronary CT angiography.

    Article  PubMed  Google Scholar 

  29. 29.

    Earls JP, Berman EL, Urban BA, et al.: Prospectively gated transverse coronary CT angiography versus retrospectively gated helical technique: improved image quality and reduced radiation dose. Radiology 2008, 246:742–753.

    Article  PubMed  Google Scholar 

  30. 30.

    Gutstein A, Wolak A, Lee C, et al.: Predicting success of prospective and retrospective gating with dual-source coronary computed tomography angiography: development of selection criteria and initial experience. J Cardiovasc Comput Tomogr 2008, 2:81–90.

    Article  PubMed  Google Scholar 

  31. 31.

    • Hirai N, Horiguchi J, Fujioka C, et al.: Prospective versus retrospective ECG-gated 64-detector coronary CT angiography: assessment of image quality, stenosis, and radiation dose. Radiology 2008, 248:424–430. This is a comparison between prospective and retrospective ECG gating.

    Article  PubMed  Google Scholar 

  32. 32.

    Hsieh J, Londt J, Vass M, et al.: Step-and-shoot data acquisition and reconstruction for cardiac x-ray computed tomography. Med Phys 2006, 33:4236–4248.

    Article  PubMed  Google Scholar 

  33. 33.

    Husmann L, Valenta I, Gaemperli O, et al.: Feasibility of low-dose coronary CT angiography: first experience with prospective ECG-gating. Eur Heart J 2008, 29:191–197.

    Article  PubMed  Google Scholar 

  34. 34.

    Klass O, Jeltsch M, Feuerlein S, et al.: Prospectively gated axial CT coronary angiography: preliminary experiences with a novel low-dose technique. Eur Radiol 2009, 19:829–836.

    Article  PubMed  Google Scholar 

  35. 35.

    Scheffel H, Alkadhi H, Leschka S, et al.: Low-dose CT coronary angiography in the step-and-shoot mode: diagnostic performance. Heart 2008, 94:1132–1137.

    Article  CAS  PubMed  Google Scholar 

  36. 36.

    • Shuman WP, Branch KR, May JM, et al.: Prospective versus retrospective ECG gating for 64-detector CT of the coronary arteries: comparison of image quality and patient radiation dose. Radiology 2008, 248:431–437. This is another comparison between prospective and retrospective ECG gating.

    Article  PubMed  Google Scholar 

  37. 37.

    •• Pontone G, Andreini D, Bartorelli AL, et al.: Diagnostic accuracy of coronary computed tomography angiography: a comparison between prospective and retrospective electrocardiogram triggering. J Am Coll Cardiol 2009, 54:346–355. This is another comparison between prospective and retrospective ECG gating.

    Article  PubMed  Google Scholar 

  38. 38.

    Stolzmann P, Leschka S, Scheffel H, et al. Dual-source CT in step-and-shoot mode: noninvasive coronary angiography with low radiation dose. Radiology 2008, 249:71–80.

    Article  PubMed  Google Scholar 

  39. 39.

    Weigold W, Olszewski M, Walker M: Low-dose prospectively gated 256-slice coronary computed tomographic angiography. Int J Cardiovasc Imaging 2009, 25:217–230.

    Article  Google Scholar 

  40. 40.

    Gerber BL, Belge B, Legros GJ, et al.: Characterization of acute and chronic myocardial infarcts by multidetector computed tomography: comparison with contrast-enhanced magnetic resonance. Circulation 2006, 113:823–833.

    Article  PubMed  Google Scholar 

  41. 41.

    •• Cury RC, Nieman K, Shapiro MD, et al.: Comprehensive assessment of myocardial perfusion defects, regional wall motion, and left ventricular function by using 64-section multidetector CT. Radiology 2008, 248:466–475. This paper discusses the use of MDCT in myocardial perfusion.

    Article  PubMed  Google Scholar 

  42. 42.

    Lessick J, Dragu R, Mutlak D, et al.: Is functional improvement after myocardial infarction predicted with myocardial enhancement patterns at multidetector CT? Radiology 2007, 244:736–744.

    Article  PubMed  Google Scholar 

  43. 43.

    Nieman K, Cury RC, Ferencik M, et al.: Differentiation of recent and chronic myocardial infarction by cardiac computed tomography. Am J Cardiol 2006, 98:303–308.

    Article  PubMed  Google Scholar 

  44. 44.

    Nieman K, Shapiro MD, Ferencik M, et al.: Reperfused myocardial infarction: contrast-enhanced 64-Section CT in comparison to MR imaging. Radiology 2008, 247:49–56.

    Article  PubMed  Google Scholar 

  45. 45.

    Nikolaou K, Sanz J, Poon M, et al.: Assessment of myocardial perfusion and viability from routine contrast-enhanced 16-detector-row computed tomography of the heart: preliminary results. Eur Radiol 2005, 15:864–871.

    Article  PubMed  Google Scholar 

  46. 46.

    Rubinshtein R, Miller TD, Williamson EE, et al.: Detection of myocardial infarction by dual-source coronary computed tomography angiography using quantitated myocardial scintigraphy as the reference standard. Heart 2009, 95:1419–1422.

    Article  CAS  PubMed  Google Scholar 

  47. 47.

    Pitts SR, Niska RW, Xu J, Burt CW: National Hospital Ambulatory Medical Care Survey: 2006 emergency department summary. Natl Health Stat Report 2008, 6:1–38.

    Google Scholar 

  48. 48.

    • Rubinshtein R, Halon DA, Gaspar T, et al.: Usefulness of 64-slice cardiac computed tomographic angiography for diagnosing acute coronary syndromes and predicting clinical outcome in emergency department patients with chest pain of uncertain origin. Circulation 2007, 115:1762–1768. This paper discusses the use of CT coronary angiography in emergency departments.

    Article  PubMed  Google Scholar 

  49. 49.

    Chang SA, Choi SI, Choi EK, et al.: Usefulness of 64-slice multidetector computed tomography as an initial diagnostic approach in patients with acute chest pain. Am Heart J 2008, 156:375–383.

    Article  PubMed  Google Scholar 

  50. 50.

    • Goldstein JA, Gallagher MJ, O‘Neill WW, et al.: A randomized controlled trial of multi-slice coronary computed tomography for evaluation of acute chest pain. J Am Coll Cardiol 2007, 49:863–871. This paper also discusses the use of CT coronary angiography in emergency departments.

    Article  PubMed  Google Scholar 

  51. 51.

    • Hoffmann U, Bamberg F, Chae C, et al.: Coronary computed tomography angiography for early triage of patients with acute chest pain. J Am Coll Cardiol 2009, 53:1642–1650. This paper also discusses the use of CT coronary angiography in emergency departments.

    Article  PubMed  Google Scholar 

  52. 52.

    Hein PA, Romano VC, Lembcke A, et al.: Initial experience with a chest pain protocol using 320-slice volume MDCT. Eur Radiol 2009, 19:1148–1155.

    Article  PubMed  Google Scholar 

  53. 53.

    •• Chatzizisis YS, Jonas M, Coskun AU, et al.: Prediction of the localization of high-risk coronary atherosclerotic plaques on the basis of low endothelial shear stress: an intravascular ultrasound and histopathology natural history study. Circulation 2008, 117:993–1002. This paper discusses an innovative noninvasive approach to measure endothelial shear stress.

    Article  PubMed  Google Scholar 

  54. 54.

    Coskun AU, Yeghiazarians Y, Kinlay S, et al.: Reproducibility of coronary lumen, plaque, and vessel wall reconstruction and of endothelial shear stress measurements in vivo in humans. Catheter Cardiovasc Interv 2003, 60:67–78.

    Article  PubMed  Google Scholar 

  55. 55.

    Frauenfelder T, Boutsianis E, Schertler T, et al.: In-vivo flow simulation in coronary arteries based on computed tomography datasets: feasibility and initial results. Eur Radiol 2007, 17:1291–1300.

    Article  PubMed  Google Scholar 

  56. 56.

    Rybicki FJ, Melchionna S, Mitsouras D, et al.: Prediction of coronary artery plaque progression and potential rupture from 320-detector row prospectively ECG-gated single heart beat CT angiography: Lattice Boltzmann evaluation of endothelial shear stress. Int J Cardiovasc Imaging 2009, 25:289–299.

    Google Scholar 

  57. 57.

    • Mori S, Endo M: Candidate image processing for real-time volumetric CT subtraction angiography. Eur J Radiol 2007, 61:335–341. This paper discusses the potential use of wide coverage area MDCT in performing four-dimensional CT subtraction angiography.

    Article  PubMed  Google Scholar 

  58. 58.

    Yahyavi-Firouz-Abadi N, Wynn BL, Rybicki FJ, et al.: Steroid-responsive large vessel vasculitis: application of whole-brain 320-detector row dynamic volume CT angiography and perfusion. AJNR Am J Neuroradiol 2009, 30:1409–1411.

    Article  CAS  PubMed  Google Scholar 

  59. 59.

    Ramkumar PG, Mitsouras D, Feldman CL, et al.: New advances in cardiac computed tomography. Curr Opin Cardiol 2009, 24:596–603.

    Article  PubMed  Google Scholar 

Download references

Disclosure

Dr. Frank Rybicki has received research grants from Toshiba Medical Systems and Bracco Diagnostics. No other potential conflicts of interest relevant to this article were reported.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Frank J. Rybicki.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hsiao, E.M., Rybicki, F.J. & Steigner, M. CT Coronary Angiography: 256-Slice and 320-Detector Row Scanners. Curr Cardiol Rep 12, 68–75 (2010). https://doi.org/10.1007/s11886-009-0075-z

Download citation

Keywords

  • Computed tomography
  • Coronary artery disease
  • Wide area detector
  • Imaging
  • Technology