Skip to main content

Advertisement

Log in

Emerging inflammatory markers for assessing coronary heart disease risk

  • Published:
Current Cardiology Reports Aims and scope Submit manuscript

Abstract

Although assessment of traditional coronary heart disease risk factors can often stratify individuals into low- or high-risk categories, additional means are needed to more precisely classify people clinically defined as intermediate-risk, to guide the intensity of risk-reducing therapies. The recognition that inflammatory pathways are important in the progression of atherosclerosis and its complications has prompted investigation to identify circulating risk markers that may be useful in risk stratification. This article summarizes recent studies on the current use of an emerging group of inflammatory markers: soluble CD-40 ligand, interleukin-18, myeloperoxidase, Btype natriuretic peptides, secretory phospholipase A2, lipoprotein-associated phospholipase A2, and C-reactive protein. The demonstration that lowering C-reactive protein along with low-density lipoprotein cholesterol with statins reduces events beyond cholesterol lowering alone suggests that titration of therapies using other emerging inflammatory markers may further reduce the toll of atherosclerosis in adult populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Pencina MJ, D’Agostino RB Sr, D’Agostino RB Jr, Vasan RS: Evaluating the added predictive ability of a new marker: from area under the ROC curve to reclassification and beyond. Stat Med 2008, 27:157–172.

    Article  PubMed  Google Scholar 

  2. Jönsson-Rylander AC, Lundin S, Rosengren B, et al.: Role of secretory phospholipases in atherogenesis. Curr Atheroscler Rep 2008, 10:252–259.

    Article  PubMed  Google Scholar 

  3. Koenig W, Khuseyinova N: Biomarkers of atherosclerotic plaque instability and rupture. Arterioscler Thromb Vasc Biol 2007, 27:15–26.

    Article  CAS  PubMed  Google Scholar 

  4. Packard RR, Libby P: Inflammation in atherosclerosis: from vascular biology to biomarker discovery and risk prediction. Clin Chem 2008, 54:24–38.

    Article  CAS  PubMed  Google Scholar 

  5. D’Agostino RB Sr, Vasan RS, Pencina MJ, et al.: General cardiovascular risk profile for use in primary care: the Framingham Heart Study. Circulation 2008, 117:743–753.

    Article  PubMed  Google Scholar 

  6. Ridker PM, Buring JE, Rifai N, Cook NR: Development and validation of improved algorithms for the assessment of global cardiovascular risk in women: the Reynolds Risk Score. JAMA 2007, 297:611–619.

    Article  CAS  PubMed  Google Scholar 

  7. Ridker PM, Paynter NP, Rifai N, et al.: C-reactive protein and parental history improve global cardiovascular risk prediction: the Reynolds Risk Score for men. Circulation 2008, 118:2243–2251.

    Article  CAS  PubMed  Google Scholar 

  8. Mosca L, Banka CL, Benjamin EJ, et al.: Evidence-based guidelines for cardiovascular disease prevention in women: 2007 update. Circulation 2007, 115:1481–1501.

    Article  PubMed  Google Scholar 

  9. Lloyd-Jones DM, Leip EP, Larson MG, et al.: Prediction of lifetime risk for cardiovascular disease by risk factor burden at 50 years of age. Circulation 2006, 113:791–798.

    Article  PubMed  Google Scholar 

  10. Santilli F, Basili S, Ferroni P, Davì G: CD40/CD40L system and vascular disease. Intern Emerg Med 2007, 2:256–268.

    Article  CAS  PubMed  Google Scholar 

  11. Olenchock BA, Wiviott SD, Murphy SA, et al.: Lack of association between soluble CD40L and risk in a large cohort of patients with acute coronary syndrome in OPUS TIMI-16. J Thromb Thrombolysis 2008, 26:79–84.

    Article  CAS  PubMed  Google Scholar 

  12. Keaney JF Jr, Lipinska I, Larson MG, et al.: Clinical correlates, heritability, and genetic linkage of circulating CD40 ligand in the Framingham Offspring Study. Am Heart J 2008, 156:1003–1009.

    Article  CAS  PubMed  Google Scholar 

  13. Everett BM, Bansal S, Rifai N, et al.: Interleukin-18 and the risk of future cardiovascular disease among initially healthy women. Atherosclerosis 2009, 202:282–288.

    Article  CAS  PubMed  Google Scholar 

  14. Espinola-Klein C, Rupprecht HJ, Bickel C, et al.: Impact of inflammatory markers on cardiovascular mortality in patients with metabolic syndrome. Eur J Cardiovasc Prev Rehabil 2008, 15:278–284.

    Article  PubMed  Google Scholar 

  15. Trøseid M, Seljeflot I, Hjerkinn EM, Arnesen H: Interleukin-18 is a strong predictor of cardiovascular events in elderly men with the metabolic syndrome: synergistic effect of inflammation and hyperglycemia. Diabetes Care 2009, 32:486–492.

    Article  PubMed  Google Scholar 

  16. Nicholls SJ, Hazen SL: Myeloperoxidase, modified lipoproteins, and atherogenesis. J Lipid Res 2009, 50(Suppl):S346–S351.

    Article  PubMed  Google Scholar 

  17. Shao B, Heinecke JW: HDL, lipid peroxidation, and atherosclerosis. J Lipid Res 2009, 50:599–601.

    Article  CAS  PubMed  Google Scholar 

  18. Meuwese MC, Stroes ES, Hazen SL, et al.: Serum myeloperoxidase levels are associated with the future risk of coronary artery disease in apparently healthy individuals: the EPIC-Norfolk Prospective Population Study. J Am Coll Cardiol 2007, 50:159–165.

    Article  CAS  PubMed  Google Scholar 

  19. Loria V, Dato I, Graziani F, Biasucci LM: Myeloperoxidase: a new biomarker of inflammation in ischemic heart disease and acute coronary syndromes. Mediators Inflamm 2008, 2008:135625.

    Article  PubMed  Google Scholar 

  20. Zelzer S, Khoschsorur G, Stettin M, et al.: Determination of myeloperoxidase in EDTA plasma: comparison of an enzyme-linked immunosorbent assay with a chemiluminescent automated immunoassay. Clin Chim Acta 2009, 406:62–65.

    Article  CAS  PubMed  Google Scholar 

  21. Shih J, Datwyler SA, Hsu SC, et al.: Effect of collection tube type and preanalytical handling on myeloperoxidase concentrations. Clin Chem 2008, 54:1076–1079.

    Article  CAS  PubMed  Google Scholar 

  22. Shiba Y, Kinoshita T, Chuman H, et al.: Flavonoids as substrates and inhibitors of myeloperoxidase: molecular actions of aglycone and metabolites. Chem Res Toxicol 2008, 21:1600–1609.

    Article  CAS  PubMed  Google Scholar 

  23. Miller VM, Redfield MM, McConnell JP: Use of BNP and CRP as biomarkers in assessing cardiovascular disease: diagnosis versus risk. Curr Vasc Pharmacol 2007, 5:15–25.

    Article  CAS  PubMed  Google Scholar 

  24. Godkar D, Bachu K, Dave B, et al.: B-type natriuretic peptide (BNP) and proBNP: role of emerging markers to guide therapy and determine prognosis in cardiovascular disorders. Am J Ther 2008, 15:150–156.

    Article  PubMed  Google Scholar 

  25. Bassan R, Tura BR, Maisel AS: B-type natriuretic peptide: a strong predictor of early and late mortality in patients with acute chest pain without ST-segment elevation in the emergency department. Coron Artery Dis 2009, 20:143–149.

    Article  PubMed  Google Scholar 

  26. Goei D, Hoeks SE, Boersma E, et al.: Incremental value of high-sensitivity C-reactive protein and N-terminal pro-Btype natriuretic peptide for the prediction of postoperative cardiac events in noncardiac vascular surgery patients. Coron Artery Dis 2009, 20:219–224.

    Article  PubMed  Google Scholar 

  27. Omland T, Sabatine MS, Jablonski KA, et al.: Prognostic value of B-type natriuretic peptides in patients with stable coronary artery disease: the PEACE Trial. J Am Coll Cardiol 2007, 50:205–214.

    Article  CAS  PubMed  Google Scholar 

  28. Blankenberg S, McQueen MJ, Smieja M, et al.: Comparative impact of multiple biomarkers and N-Terminal pro-brain natriuretic peptide in the context of conventional risk factors for the prediction of recurrent cardiovascular events in the Heart Outcomes Prevention Evaluation (HOPE) Study. Circulation 2006, 114:201–208.

    Article  CAS  PubMed  Google Scholar 

  29. Koenig W, Khuseyinova N: Lipoprotein-associated and secretory phospholipase A2 in cardiovascular disease: the epidemiological evidence. Cardiovasc Drugs Ther 2009, 23:85–92.

    Article  CAS  PubMed  Google Scholar 

  30. Corson MA, Jones PH, Davidson MH: Review of the evidence for the clinical utility of lipoprotein-associated phospholipase A2 as a cardiovascular risk marker. Am J Cardiol 2008, 101:41F–50F.

    Article  CAS  PubMed  Google Scholar 

  31. Crandall MA, Corson MA: Use of biomarkers to develop treatment strategies for atherosclerosis. Curr Treat Options Cardiovasc Med 2008, 10:304–315.

    PubMed  Google Scholar 

  32. Lavi S, McConnell JP, Rihal CS, et al.: Local production of lipoprotein-associated phospholipase A 2 and lysophosphatidylcholine in the coronary circulation: association with early coronary atherosclerosis and endothelial dysfunction in humans. Circulation 2007, 115:2715–2721.

    Article  CAS  PubMed  Google Scholar 

  33. Mannheim D, Herrmann J, Versari D, et al.: Enhanced expression of Lp-PLA2 and lysophosphatidylcholine in symptomatic carotid atherosclerotic plaques. Stroke 2008, 39:1448–1455.

    Article  CAS  PubMed  Google Scholar 

  34. Rosenson RS, Hislop C, McConnell D, et al.: Effects of 1-H-indole-3-glyoxamide (A-002) on concentration of secretory phospholipase A2 (PLASMA study): a phase II double-blind, randomised, placebo-controlled trial. Lancet 2009, 373:649–658.

    Article  CAS  PubMed  Google Scholar 

  35. Wilensky RL, Shi Y, Mohler ER 3rd, et al.: Inhibition of lipoprotein-associated phospholipase A2 reduces complex coronary atherosclerotic plaque development. Nat Med 2008, 14:1059–1066.

    Article  CAS  PubMed  Google Scholar 

  36. Serruys PW, García-García HM, Buszman P, et al.: Effects of the direct lipoprotein-associated phospholipase A(2) inhibitor darapladib on human coronary atherosclerotic plaque. Circulation 2008, 118:1172–1182.

    Article  CAS  PubMed  Google Scholar 

  37. Oslund RC, Cermak N, Gelb MH: Highly specific and broadly potent inhibitors of mammalian secreted phospholipases A2. J Med Chem 2008, 51:4708–4714.

    Article  CAS  PubMed  Google Scholar 

  38. Davis B, Koster G, Douet LJ, et al.: Electrospray ionization mass spectrometry identifies substrates and products of lipoprotein-associated phospholipase A2 in oxidized human low density lipoprotein. J Biol Chem 2008, 283:6428–6437.

    Article  CAS  PubMed  Google Scholar 

  39. McConnell JP, Jaffe AS: Variability of lipoprotein-associated phospholipase A2 measurements. Clin Chem 2008, 54:932–933.

    Article  CAS  PubMed  Google Scholar 

  40. Zacho J, Tybjaerg-Hansen A, Jensen JS, et al.: Genetically elevated C-reactive protein and ischemic vascular disease. N Engl J Med 2008, 359:1897–1908.

    Article  CAS  PubMed  Google Scholar 

  41. Casas JP, Shah T, Hingorani AD, et al.: C-reactive protein and coronary heart disease: a critical review. J Intern Med 2008, 264:295–314.

    Article  CAS  PubMed  Google Scholar 

  42. Rückerl R, Peters A, Khuseyinova N, et al.: Determinants of the acute-phase protein C-reactive protein in myocardial infarction survivors: the role of comorbidities and environmental factors. Clin Chem 2009, 55:322–335.

    Article  PubMed  Google Scholar 

  43. Mora S, Musunuru K, Blumenthal RS: The clinical utility of high-sensitivity C-reactive protein in cardiovascular disease and the potential implication of JUPITER on current practice guidelines. Clin Chem 2009, 55:219–228.

    Article  CAS  PubMed  Google Scholar 

  44. Ridker PM, Danielson E, Fonseca FA, et al.: Rosuvastatin to prevent vascular events in men and women with elevated C-reactive protein. N Engl J Med 2008, 359:2195–2207.

    Article  CAS  PubMed  Google Scholar 

  45. Ridker PM, Danielson E, Fonseca FA, et al.: Reduction in C-reactive protein and LDL cholesterol and cardiovascular event rates after initiation of rosuvastatin: a prospective study of the JUPITER trial. Lancet 2009, 373:1175–1182.

    Article  CAS  PubMed  Google Scholar 

  46. Michos ED, Blumenthal RS: Prevalence of low low-density lipoprotein cholesterol with elevated high sensitivity C-reactive protein in the U.S.: implications of the JUPITER (Justification for the Use of Statins in Primary Prevention: An Intervention Trial Evaluating Rosuvastatin) study. J Am Coll Cardiol 2009, 53:931–935.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marshall A. Corson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Corson, M.A. Emerging inflammatory markers for assessing coronary heart disease risk. Curr Cardiol Rep 11, 452–459 (2009). https://doi.org/10.1007/s11886-009-0065-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11886-009-0065-1

Keywords

Navigation