Advertisement

Current Cardiology Reports

, 11:445 | Cite as

Secretory phospholipase A2: A multifaceted family of proatherogenic enzymes

  • Robert S. Rosenson
  • Michael H. Gelb
Article

Abstract

Secretory phospholipase A2 (sPLA2) represents a class of enzymes that hydrolyze phospholipids from cellular membranes and lipoproteins, resulting in multifarious proatherogenic actions in the vessel wall. Proatherogenic actions of sPLA2 involve lipoprotein remodeling that facilitates proteoglycan binding and formation of lipid aggregates that are rapidly internalized by tissue macrophages. The hydrolysis of phospholipids on cell membranes generates bioactive lipids and lipolipoproteins with increased oxidative susceptibility. These particles and other bioactive lipids activate inflammatory pathways in various cells of the vessel wall. Transgenic mice overexpressing groups IIA, V, and X have increased atherosclerosis formation, whereas mice deficient in these sPLA2 isoenzymes have less atherosclerosis formation. In apolipoprotein E knockout mice fed an atherosclerotic diet, sPLA2 inhibition with varespladib reduced atherosclerosis formation. The potential for sPLA2 inhibitors for preventing cardiovascular events is being investigated.

Keywords

Arterioscler Thromb Vasc Biol Foam Cell Formation Arachidonic Acid Release Secretory Phospholipase Human Atherosclerotic Lesion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References and Recommended Reading

  1. 1.
    Kimura-Matsumoto M, Ishikawa Y, Komiyama K, et al.: Expression of secretory phospholipase A2s in human atherosclerosis development. Atherosclerosis 2008, 196:81–91.CrossRefPubMedGoogle Scholar
  2. 2.
    Lambeau G, Gelb MH: Biochemistry and physiology of mammalian secreted phospholipases A2. Annu Rev Biochem 2008, 77:495–520.CrossRefPubMedGoogle Scholar
  3. 3.
    Burke J, Dennis E: Phospholipase A2 biochemistry. Cardiovasc Drugs Ther 2009, 23:49–59.CrossRefPubMedGoogle Scholar
  4. 4.
    Gelb MH, Valentin E, Ghomashchi F, et al.: Cloning and recombinant expression of a structurally novel human secreted phospholipase A2. J Biol Chem 2000, 275:39823–39826.CrossRefPubMedGoogle Scholar
  5. 5.
    Valentin E, Lambeau G: Increasing molecular diversity of secreted phospholipases A2 and their receptors and binding proteins. Biochimica et Biophysica Acta 2000, 1488:59–70.PubMedGoogle Scholar
  6. 6.
    Scott DL, White SP, Browning JL, et al.: Structures of free and inhibited human secretory phospholipase A2 from inflammatory exudate. Science 1991, 254:1007–1010.CrossRefPubMedGoogle Scholar
  7. 7.
    Pan YH, Yu B-Z, Singer AG, et al.: Crystal structure of human group X secreted phospholipase A2. Electrostatically neutral interfacial binding surface targets zwitterionic membranes. J Biol Chem 2002, 277:29086–29093.CrossRefPubMedGoogle Scholar
  8. 8.
    Tischfield JA, Xia YR, Shih DM, et al.: Low-molecularweight, calcium-dependent phospholipase A2 genes are linked and map to homologous chromosome regions in mouse and human. Genomics 1996, 32:328–333.CrossRefPubMedGoogle Scholar
  9. 9.
    Ono T, Tojo H, Kuramitsu S, et al.: Purification and characterization of a membrane-associated phospholipase A2 from rat spleen. Its comparison with a cytosolic phospholipase A2 s-1. J Biol Chem 1988, 263:5732–5738.PubMedGoogle Scholar
  10. 10.
    Beers SA, Buckland AG, Koduri RS, et al.: The antibacterial properties of secreted phospholipases A2. A major physiological role for the group IIA enzyme that depends on the very high pi of the enzyme to allow penetration of the bacterial cell wall. J Biol Chem 2002, 277:1788–1793.CrossRefPubMedGoogle Scholar
  11. 11.
    Bezzine S, Bollinger JG, Singer AG, et al.: On the binding preference of human groups IIA and X phospholipases A2 for membranes with anionic phospholipids. J Biol Chem 2002, 277:48523–48534.CrossRefPubMedGoogle Scholar
  12. 12.
    Singer AG, Ghomashchi F, Le Calvez C, et al.: Interfacial kinetic and binding properties of the complete set of human and mouse groups i, II, V, X, and xii secreted phospholipases A2. J Biol Chem 2002, 277:48535–48549.CrossRefPubMedGoogle Scholar
  13. 13.
    Ivandic B, Castellani LW, Wang XP, et al.: Role of group II secretory phospholipase A2 in atherosclerosis: 1. Increased atherogenesis and altered lipoproteins in transgenic mice expressing group IIa phospholipase A2. Arterioscler Thromb Vasc Biol 1999, 19:1284–1290.PubMedGoogle Scholar
  14. 14.
    Hanasaki K, Ono T, Saiga A, et al.: Purified group X secretory phospholipase A2 induced prominent release of arachidonic acid from human myeloid leukemia cells. J Biol Chem 1999, 274:34203–34211.CrossRefPubMedGoogle Scholar
  15. 15.
    Tietge UJ, Maugeais C, Cain W, et al.: Overexpression of secretory phospholipase A2 causes rapid catabolism and altered tissue uptake of high density lipoprotein cholesteryl ester and apolipoprotein A-I. J Biol Chem 2000, 275:10077–10084.CrossRefPubMedGoogle Scholar
  16. 16.
    Higashino K-I, Yokota Y, Ono T, et al.: Identification of a soluble form phospholipase A2 receptor as a circulating endogenous inhibitor for secretory phospholipase A2. J Biol Chem 2002, 277:13583–13588.CrossRefGoogle Scholar
  17. 17.
    Hurt-Camejo E, Camejo G: Potential involvement of type II phospholipase A2 in atherosclerosis. Atherosclerosis 1997, 132:1–8.CrossRefPubMedGoogle Scholar
  18. 18.
    Hurt-Camejo E, Andersen S, Standal R, et al.: Localization of nonpancreatic secretory phospholipase A2 in normal and atherosclerotic arteries: Activity of the isolated enzyme on low-density lipoproteins. Arterioscler Thromb Vasc Biol 1997, 17:300–309.PubMedGoogle Scholar
  19. 19.
    Wooton-Kee CR, Boyanovsky BB, Nasser MS, et al.: Group V sPLA2 hydrolysis of low-density lipoprotein results in spontaneous particle aggregation and promotes macrophage foam cell formation. Arterioscler Thromb Vasc Biol 2004, 24:762–767.CrossRefPubMedGoogle Scholar
  20. 20.
    Flood C, Gustafsson M, Pitas RE, et al.: Molecular mechanism for changes in proteoglycan binding on compositional changes of the core and the surface of low-density lipoproteincontaining human apolipoprotein B100. Arterioscler Thromb Vasc Biol 2004, 24:564–570.CrossRefPubMedGoogle Scholar
  21. 21.
    Sartipy P, Camejo G, Svensson L et al.: Phospholipase A2 modification of low density lipoproteins forms small high density particles with increased affinity for proteoglycans and glycosaminoglycans. J Biol Chem 1999, 274:25913–25920.CrossRefPubMedGoogle Scholar
  22. 22.
    Hakala JK, Oorni K, Pentikainen MO, et al.: Lipolysis of LDL by human secretory phospholipase A2 induces particle fusion and enhances the retention of LDL to human aortic proteoglycans. Arterioscler Thromb Vasc Biol 2001, 21:1053–1058.PubMedGoogle Scholar
  23. 23.
    Sartipy P, Johansen B, Gasvik K, et al.: Molecular basis for the association of group IIA phospholipase A2 and decorin in human atherosclerotic lesions. Circ Res 2000, 86:707–714.PubMedGoogle Scholar
  24. 24.
    Murakami M, Kambe T, Shimbara S, et al.: Functional association of type IIA secretory phospholipase A2 with the glycosylphosphatidylinositol-anchored heparan sulfate proteoglycan in the cyclooxygenase-2-mediated delayed prostanoid-biosynthetic pathway. J Biol Chem 1999, 274:29927–29936.CrossRefPubMedGoogle Scholar
  25. 25.
    Kleinman Y, Krul ES, Burnes M, et al.: Lipolysis of LDL with phospholipase A2 alters the expression of selected ApoB-100 epitopes and the interaction of LDL with cells. J Lipid Res 1988, 29:729–743.PubMedGoogle Scholar
  26. 26.
    Gorshkova IN, Menschikowski M, Jaross W: Alterations in the physiochemical characteristics of low and high density lipoproteins after lipolysis with phospholipase A2. A spin-label study. Biochimica et Biophysica Acta 1996, 1300:103–113.PubMedGoogle Scholar
  27. 27.
    Tietge UJF, Pratico D, Ding T, et al.: Macrophage-specific expression of group IIA sPLA2 results in accelerated atherogenesis by increasing oxidative stress. J Lipid Res 2005, 46:1604–1614.CrossRefPubMedGoogle Scholar
  28. 28.
    Rosengren B, Peilot H, Umaerus M, et al.: Secretory phospholipase A2 group V: Lesion distribution, activation by arterial proteoglycans, and induction in aorta by a western diet. Arterioscler Thromb Vasc Biol 2006, 26:1579–1585.CrossRefPubMedGoogle Scholar
  29. 29.
    Karabina SA, Brocheriou I, Le Naour G, et al.: Atherogenic properties of LDL particles modified by human group X secreted phospholipase A2 on human endothelial cell function. FASEB J 2006, 20:2547–2549.CrossRefPubMedGoogle Scholar
  30. 30.
    Gesquiere L, Cho W, Subbaiah PV: Role of group IIa and group V secretory phospholipases A2 in the metabolism of lipoproteins. Substrate specificities of the enzymes and the regulation of their activities by sphingomyelin. Biochemistry 2002, 41:4911–4920.CrossRefPubMedGoogle Scholar
  31. 31.
    Hanasaki K, Yamada K, Yamamoto S, et al.: Potent modification of low density lipoprotein by group X secretory phospholipase A2 is linked to macrophage foam cell formation. J Biol Chem 2002, 277:29116–29124.CrossRefPubMedGoogle Scholar
  32. 32.
    Leitinger N, Watson AD, Hama SY, et al.: Role of group II secretory phospholipase A2 in atherosclerosis: 2. Potential involvement of biologically active oxidized phospholipids. Arterioscler Thromb Vasc Biol 1999, 19:1291–1298.PubMedGoogle Scholar
  33. 33.
    Bhattacharyya T, Nicholls SJ, Topol EJ, et al.: Relationship of paraoxonase 1 (pon1) gene polymorphisms and functional activity with systemic oxidative stress and cardiovascular risk. JAMA 2008, 299:1265–1276.CrossRefPubMedGoogle Scholar
  34. 34.
    Menschikowski M, Hagelgans A, Heyne B, et al.: Statins potentiate the IFN-[gamma]-induced upregulation of group IIA phospholipase A2 in human aortic smooth muscle cells and hepg2 hepatoma cells. Biochimica et Biophysica Acta 2005, 1733:157–171.PubMedGoogle Scholar
  35. 35.
    Menschikowski M, Hagelgans A, Hempel U, et al.: Glycogen synthase kinase-3[beta] negatively regulates group IIA phospholipase A2 expression in human aortic smooth muscle and hepg2 hepatoma cells. FEBS Lett 2004, 577:81–86.CrossRefPubMedGoogle Scholar
  36. 36.
    Park D-W, Kim JR, Kim SY, et al.: Akt as a mediator of secretory phospholipase A2 receptor-involved inducible nitric oxide synthase expression. J Immunol 2003, 170:2093–2099.PubMedGoogle Scholar
  37. 37.
    Balboa MA, Balsinde J, Winstead MV, et al.: Novel group V phospholipase A2 involved in arachidonic acid mobilization in murine P388D1 macrophages. J Biol Chem 1996, 271:32381–32384.CrossRefPubMedGoogle Scholar
  38. 38.
    Kim YJ, Kim KP, Han SK, et al.: Group V phospholipase A2 induces leukotriene biosynthesis in human neutrophils through the activation of group IVA phospholipase A2. J Biol Chem 2002, 277:36479–36488.CrossRefPubMedGoogle Scholar
  39. 39.
    Henderson WR Jr, Chi EY, Bollinger JG, et al.: Importance of group X-secreted phospholipase A2 in allergen-induced airway inflammation and remodeling in a mouse asthma model. J Exp Med 2007, 204:865–877.CrossRefPubMedGoogle Scholar
  40. 40.
    Saiga A, Uozumi N, Ono T, et al.: Group X secretory phospholipases A2 can induce arachidonic acid release and eicosanoid production without activation of cytosolic phospholipase A2 alpha. Prostaglandins Other Lipid Mediat 2005, 75:79–89.CrossRefPubMedGoogle Scholar
  41. 41.
    Bezzine S, Koduri RS, Valentin E, et al.: Exogenously added human group X secreted phospholipase A(2) but not the group IB, IIA, and V enzymes efficiently release arachidonic acid from adherent mammalian cells. J Biol Chem 2000, 275:3179–3191.CrossRefPubMedGoogle Scholar
  42. 42.
    Boilard E, Bourgoin SG, Bernatchez C, et al.: Interaction of low molecular weight group IIA phospholipase A2 with apoptotic human t cells: Role of heparan sulfate proteoglycans. FASEB J 2003, 17:1068–1080.CrossRefPubMedGoogle Scholar
  43. 43.
    Saegusa J, Akakura N, Wu CY, et al.: Pro-inflammatory secretory phospholipase A2 type IIA binds to integrins {alpha}v{beta}3 and {alpha}4ta1 and induces proliferation of monocytic cells in an integrin-dependent manner. J Biol Chem 2008, 283:26107–26115.Google Scholar
  44. 44.
    Antonov AS, Kolodgie FD, Munn DH, et al.: Regulation of macrophage foam cell formation by {alpha}V{beta}3 integrin: potential role in human atherosclerosis. Am J Pathol 2004, 165:247–258.PubMedGoogle Scholar
  45. 45.
    Bostrom MA, Boyanovsky BB, Jordan CT, et al.: Group V secretory phospholipase A2 promotes atherosclerosis: Evidence from genetically altered mice. Arterioscler Thromb Vasc Biol 2007, 27:600–606.CrossRefPubMedGoogle Scholar
  46. 46.
    Hurt-Camejo E, Olsson U, Wiklund O, et al.: Cellular consequences of the association of ApoB lipoproteins with proteoglycans. Potential contribution to atherogenesis. Arterioscler Thromb Vasc Biol 1997, 17:1011–1017.PubMedGoogle Scholar
  47. 47.
    Ishimoto Y, Yamada K, Yamamoto S, et al.: Group V and X secretory phospholipase A2s-induced modification of high-density lipoprotein linked to the reduction of its antiatherogenic functions. Biochimica et Biophysica Acta 2003, 1642:129–138.PubMedGoogle Scholar
  48. 48.
    Webb NR, Bostrom MA, Szilvassy SJ, et al.: Macrophageexpressed group IIA secretory phospholipase A2 increases atherosclerotic lesion formation in LDL receptor-deficient mice. Arterioscler Thromb Vasc Biol 2003, 23:263–268.CrossRefPubMedGoogle Scholar
  49. 49.
    Boyanovsky B, Webb N: Biology of secretory phospholipase A2. Cardiovasc Drugs Ther 2009, 23:61–72.CrossRefPubMedGoogle Scholar
  50. 50.
    Boyanovsky BB, van der Westhuyzen DR, Webb NR: Group V secretory phospholipase A2-modified low density lipoprotein promotes foam cell formation by a SR-A- and CD36-independent process that involves cellular proteoglycans. J Biol Chem 2005, 280:32746–32752.CrossRefPubMedGoogle Scholar
  51. 51.
    Fraser H, Hislop C, Christie RM, et al.: Varespladib (A-002), a secretory phospholipase A2 inhibitor, reduces atherosclerosis and aneurysm formation in ApoE-/- mice. J Cardiovasc Pharmacol 2009, 53:60–65.CrossRefGoogle Scholar
  52. 52.
    Shaposhnik Z, Wang X, Trias J, et al.: The synergistic inhibition of atherogenesis in ApoE-/- mice between pravastatin and the sPLA2 inhibitor varespladib (A-002). J Lipid Res 2008, 50:623–629.CrossRefPubMedGoogle Scholar
  53. 53.
    Rosenson RS, Hislop C, McConnell D, et al.: Effects of a selective inhibitor of secretory phospholipase A2 on low density lipoproteins and inflammatory pathways. Lancet 2009, 373:649–658.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.SUNY Downstate Medical CenterBrooklynUSA

Personalised recommendations