Current Cardiology Reports

, 11:436 | Cite as

The current state of RAAS blockade in the treatment of hypertension and proteinuria

Article

Abstract

Hypertension is a well-established risk factor for cardiovascular disease (CVD) and chronic kidney disease (CKD). Patients with CKD have significant morbidity (ie, increased risk of CVD) and progression to end-stage renal disease. Increase in albuminuria over time to levels greater than 300 mg/d, in spite of blood pressure being at goal, is an independent predictor for nephropathy progression. Data provide support, however, for reducing proteinuria by at least 30% after treatment is initiated in patients with proteinuria. Pharmacologic blockade of the renin-angiotensin-aldosterone system (RAAS) slows progression of advanced proteinuric CKD more effectively than other antihypertensive agents. In post hoc analyses, this slowed progression has been correlated to reductions in proteinuria of 30% or more after blood pressure-lowering therapy is initiated. Increases in proteinuria, in spite of blood pressure reduction, are associated with faster declines in kidney function regardless of whether RAAS blockers are used.

References and Recommended Reading

  1. 1.
    Go AS, Chertow GM, Fan D, et al.: Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization. N Engl J Med 2004, 351:1296–1305.CrossRefPubMedGoogle Scholar
  2. 2.
    Coresh J, Selvin E, Stevens LA, et al.: Prevalence of chronic kidney disease in the United States. JAMA 2007, 298:2038–2047.CrossRefPubMedGoogle Scholar
  3. 3.
    United States Renal Data System: 2008 ADR/Reference Tables. Available at http://www.usrds.org/reference.htm. Accessed August 2009.
  4. 4.
    Lewis EJ, Hunsicker LG, Bain RP, Rohde RD: The effect of angiotensin-converting-enzyme inhibition on diabetic nephropathy. The Collaborative Study Group. N Engl J Med 1993, 329:1456–1462.CrossRefPubMedGoogle Scholar
  5. 5.
    Kidney Disease Outcomes Quality Initiative (K/DOQI): K/DOQI clinical practice guidelines on hypertension and antihypertensive agents in chronic kidney disease [no authors listed]. Am J Kidney Dis 2004, 43:S1–S290.Google Scholar
  6. 6.
    Sarafidis PA, Khosla N, Bakris GL: Antihypertensive therapy in the presence of proteinuria. Am J Kidney Dis 2007, 49:12–26.CrossRefPubMedGoogle Scholar
  7. 7.
    Klag MJ, Whelton PK, Randall BL, et al.: Blood pressure and end-stage renal disease in men. N Engl J Med 1996, 334:13–18.CrossRefPubMedGoogle Scholar
  8. 8.
    Hill GS: Hypertensive nephrosclerosis. Curr Opin Nephrol Hypertens 2008, 17:266–270.CrossRefPubMedGoogle Scholar
  9. 9.
    Jafar TH, Stark PC, Schmid CH, et al.: Progression of chronic kidney disease: the role of blood pressure control, proteinuria, and angiotensin-converting enzyme inhibition: a patient-level meta-analysis. Ann Intern Med 2003, 139:244–252.PubMedGoogle Scholar
  10. 10.
    Peterson JC, Adler S, Burkart JM, et al.: Blood pressure control, proteinuria, and the progression of renal disease. The Modification of Diet in Renal Disease Study. Ann Intern Med 1995, 123:754–762.PubMedGoogle Scholar
  11. 11.
    Sarafidis PA, Bakris GL: Microalbuminuria and chronic kidney disease as risk factors for cardiovascular disease. Nephrol Dial Transplant 2006, 21:2366–2374.CrossRefPubMedGoogle Scholar
  12. 12.
    So WY, Kong AP, Ma RC, et al.: Glomerular filtration rate, cardiorenal end points, and all-cause mortality in type 2 diabetic patients. Diabetes Care 2006, 29:2046–2052.CrossRefPubMedGoogle Scholar
  13. 13.
    Flack JM, Duncan K, Ohmit SE, et al.: Influence of albuminuria and glomerular filtration rate on blood pressure response to antihypertensive drug therapy. Vasc Health Risk Manag 2007, 3:1029–1037.PubMedGoogle Scholar
  14. 14.
    KDOQI: KDOQI Clinical Practice Guidelines and Clinical Practice Recommendations for Diabetes and Chronic Kidney Disease. Am J Kidney Dis 2007, 49:S12–S154.CrossRefGoogle Scholar
  15. 15.
    Duka I, Bakris G: Influence of microalbuminuria in achieving blood pressure goals. Curr Opin Nephrol Hypertens 2008, 17:457–463.CrossRefPubMedGoogle Scholar
  16. 16.
    Solbu MD, Jenssen TG, Eriksen BO, Toft I: Changes in insulin sensitivity, renal function, and markers of endothelial dysfunction in hypertension-the impact of microalbuminuria: a 13-year follow-up study. Metabolism 2009, 58:408–415.CrossRefPubMedGoogle Scholar
  17. 17.
    Dell’Omo G, Penno G, Pucci L, et al.: Lack of association between endothelial nitric oxide synthase gene polymorphisms, microalbuminuria and endothelial dysfunction in hypertensive men. J Hypertens 2007, 25:389–1395.CrossRefGoogle Scholar
  18. 18.
    Lea J, Greene T, Hebert L, et al.: The relationship between magnitude of proteinuria reduction and risk of end-stage renal disease: results of the African American study of kidney disease and hypertension. Arch Intern Med 2005, 165:947–953.CrossRefPubMedGoogle Scholar
  19. 19.
    Eijkelkamp WB, Zhang Z, Remuzzi G, et al.: Albuminuria is a target for renoprotective therapy independent from blood pressure in patients with type 2 diabetic nephropathy: post hoc analysis from the Reduction of Endpoints in NIDDM with the Angiotensin II Antagonist Losartan (RENAAL) trial. J Am Soc Nephrol 2007, 18:1540–1546.CrossRefPubMedGoogle Scholar
  20. 20.
    Chobanian AV, Bakris GL, Black HR, et al.: Seventh report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure. Hypertension 2003, 42:1206–1252.CrossRefPubMedGoogle Scholar
  21. 21.
    Mancia G, De BG, Dominiczak A, et al.: 2007 Guidelines for the Management of Arterial Hypertension: the Task Force for the Management of Arterial Hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC). J Hypertens 2007, 25:1105–1187.CrossRefPubMedGoogle Scholar
  22. 22.
    Sarnak MJ, Greene T, Wang X, et al.: The effect of a lower target blood pressure on the progression of kidney disease: long-term follow-up of the modification of diet in renal disease study. Ann Intern Med 2005, 142:342–351.PubMedGoogle Scholar
  23. 23.
    Schrier RW, Estacio RO, Mehler PS, Hiatt WR: Appropriate blood pressure control in hypertensive and normotensive type 2 diabetes mellitus: a summary of the ABCD trial. Nat Clin Pract Nephrol 2007, 3:428–438.CrossRefPubMedGoogle Scholar
  24. 24.
    Brenner BM, Cooper ME, de Zeeuw, et al.: Effects of losartan on renal and cardiovascular outcomes in patients with type 2 diabetes and nephropathy N Engl J Med 2001, 345:861–869.CrossRefPubMedGoogle Scholar
  25. 25.
    Hou FF, Xie D, Zhang X, et al.: Renoprotection of Optimal Antiproteinuric Doses (ROAD) Study: a randomized controlled study of benazepril and losartan in chronic renal insufficiency. J Am Soc Nephrol 2007, 18:1889–1898.CrossRefPubMedGoogle Scholar
  26. 26.
    Lewis EJ, Hunsicker LG, Clarke WR, et al.: Renoprotective effect of the angiotensin-receptor antagonist irbesartan in patients with nephropathy due to type 2 diabetes N Engl J Med 2001, 345:851–860.CrossRefPubMedGoogle Scholar
  27. 27.
    Parving HH, Persson F, Lewis JB, et al.: Aliskiren combined with losartan in type 2 diabetes and nephropathy. N Engl J Med 2008, 358:2433–2446.CrossRefPubMedGoogle Scholar
  28. 28.
    Wright JT Jr, Bakris G, Greene T, et al.: Effect of blood pressure lowering and antihypertensive drug class on progression of hypertensive kidney disease: results from the AASK trial. JAMA 2002, 288:2421–2431.CrossRefPubMedGoogle Scholar
  29. 29.
    Summary of revisions for the 2009 Clinical Practice Recommendations [no authors listed]. Diabetes Care 2009, 32(Suppl 1):S1–S35.Google Scholar
  30. 30.
    Randomised placebo-controlled trial of effect of ramipril on decline in glomerular filtration rate and risk of terminal renal failure in proteinuric, non-diabetic nephropathy. The GISEN Group (Gruppo Italiano di Studi Epidemiologici in Nefrologia) [no authors listed]. Lancet 1997, 349:1857–1863.Google Scholar
  31. 31.
    Sato A, Saruta T, Funder JW: Combination therapy with aldosterone blockade and renin-angiotensin inhibitors confers organ protection. Hypertens Res 2006, 29:211–216.CrossRefPubMedGoogle Scholar
  32. 32.
    Rahman M, Pressel S, Davis BR, et al.: Renal outcomes in high-risk hypertensive patients treated with an angiotensinconverting enzyme inhibitor or a calcium channel blocker vs a diuretic: a report from the Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial (ALLHAT). Arch Intern Med 2005, 165:936–946.CrossRefPubMedGoogle Scholar
  33. 33.
    Casas JP, Chua W, Loukogeorgakis S, et al.: Effect of inhibitors of the renin-angiotensin system and other antihypertensive drugs on renal outcomes: systematic review and meta-analysis. Lancet 2005, 366:2026–2033.CrossRefPubMedGoogle Scholar
  34. 34.
    Sarafidis PA, Stafylas PC, Kanaki AI, Lasaridis AN: Effects of renin-angiotensin system blockers on renal outcomes and all-cause mortality in patients with diabetic nephropathy: an updated meta-analysis. Am J Hypertens 2008, 21:922–929.CrossRefPubMedGoogle Scholar
  35. 35.
    Kunz R, Friedrich C, Wolbers M, Mann JF: Meta-analysis: effect of monotherapy and combination therapy with inhibitors of the renin angiotensin system on proteinuria in renal disease Ann Intern Med 2008, 148:30–48.PubMedGoogle Scholar
  36. 36.
    Yusuf S, Teo KK, Pogue J, et al.: Telmisartan, ramipril, or both in patients at high risk for vascular events. N Engl J Med 2008, 358:1547–1559.CrossRefPubMedGoogle Scholar
  37. 37.
    Mann JF, Schmieder RE, McQueen M, et al.: Renal outcomes with telmisartan, ramipril, or both, in people at high vascular risk (the ONTARGET study): a multicentre, randomised, double-blind, controlled trial. Lancet 2008, 372:547–553.CrossRefPubMedGoogle Scholar
  38. 38.
    Sarafidis PA, Bakris GL: Renin-angiotensin blockade and kidney disease. Lancet 2008, 372:511–512.CrossRefPubMedGoogle Scholar
  39. 39.
    Fried LF, Duckworth W, Zhang JH, et al.: Design of combination angiotensin receptor blocker and angiotensin-converting enzyme inhibitor for treatment of diabetic nephropathy (VA NEPHRON-D). Clin J Am Soc Nephrol 2009, 4:361–368.CrossRefPubMedGoogle Scholar
  40. 40.
    Bidani A: Controversy about COOPERATE ABPM trial data. Am J Nephrol 2006, 26:629–632.CrossRefPubMedGoogle Scholar
  41. 41.
    Bomback AS, Kshirsagar AV, Amamoo MA, Klemmer PJ: Change in proteinuria after adding aldosterone blockers to ACE inhibitors or angiotensin receptor blockers in CKD: a systematic review. Am J Kidney Dis 2008, 51:199–211.CrossRefPubMedGoogle Scholar
  42. 42.
    Epstein M, Williams GH, Weinberger M, et al.: Selective aldosterone blockade with eplerenone reduces albuminuria in patients with type 2 diabetes. Clin J Am Soc Nephrol 2006, 1:940–951.CrossRefPubMedGoogle Scholar
  43. 43.
    Khosla N, Kalaitzidis R, Bakris GL: Predictors of hyperkalemia risk following hypertension control with aldosterone blockade. Am J Nephrol 2009, 30:418–424.CrossRefPubMedGoogle Scholar
  44. 44.
    Hou FF, Xie D, Zhang X, et al.: Renoprotection of Optimal Antiproteinuric Doses (ROAD) study: a randomized controlled study of benazepril and losartan in chronic renal insufficiency. J Am Soc Nephrol 2007, 18:1889–1898.CrossRefPubMedGoogle Scholar
  45. 45.
    Rossing K, Schjoedt KJ, Jensen BR, et al.: Enhanced renoprotective effects of ultrahigh doses of irbesartan in patients with type 2 diabetes and microalbuminuria. Kidney Int 2005, 68:1190–1198.CrossRefPubMedGoogle Scholar
  46. 46.
    Schmieder RE, Klingbeil AU, Fleischmann EH, et al.: Additional antiproteinuric effect of ultrahigh dose candesartan: a double-blind, randomized, prospective study. J Am Soc Nephrol 2005, 16:3038–3045.CrossRefPubMedGoogle Scholar
  47. 47.
    Hou FF, Zhang X, Zhang GH, et al.: Efficacy and safety of benazepril for advanced chronic renal insufficiency. N Engl J Med 2006, 354:131–140.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Hypertension Diseases UnitUniversity of Chicago-Pritzker School of MedicineChicagoUSA

Personalised recommendations