Skip to main content
Log in

Neural mechanisms and management of obesity-related hypertension

  • Published:
Current Cardiology Reports Aims and scope Submit manuscript

Abstract

The sympathetic nervous system is activated in human obesity and in the analogous experimental obesity produced by overfeeding. The causes remain uncertain and may be multiple. The consequences include hypertension, probably attributable to activation of the sympathetic outflow to the kidneys, and, more disputed, insulin resistance. The pattern of sympathetic activation in normal-weight and obesity-related hypertension differs in terms of the firing characteristics of individual sympathetic fibers (increased rate of nerve firing in normal-weight hypertensives, increased number of active fibers firing at a normal rate in obesity-hypertension) and the sympathetic outflows involved. The underlying mechanisms and the adverse consequences of the two modes of sympathetic activation may differ. Should antihypertensive drug therapy in obesity-hypertension specifically target the existing neural pathophysiology? Such an approach can be advocated on theoretical grounds. Perhaps more important is the requirement that chosen antihypertensives do not cause weight gain or insulin resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Landsberg L, Young JB: Fasting, feeding and regulation of the sympathetic nervous system. N Engl J Med 1978, 298:1295–1301.

    Article  PubMed  CAS  Google Scholar 

  2. Jung RT, Shetty PS, James WPT: The effect of beta-adrenergic blockade on resting metabolic rate and peripheral thyroid metabolism in obesity. Eur J Clin Invest 1980, 10:179–182.

    Article  PubMed  CAS  Google Scholar 

  3. Bielinski R, Schutz Y, Jequier E: Energy metabolism during postexercise recovery in man. Am J Clin Nutr 1985, 42:69–82.

    PubMed  CAS  Google Scholar 

  4. Schwartz RS, Jaeger LF, Veith RC: Effect of clonidine on the thermic effect of feeding in humans. Am J Physiol 1988, 254:R90–R94.

    PubMed  CAS  Google Scholar 

  5. Bray GA, York DA, Fisler JS: Experimental obesity: a homeostatic failure due to defective nutrient stimulation of the sympathetic nervous system. Vitam Horm 1989, 45:1–125.

    Article  PubMed  CAS  Google Scholar 

  6. Young JB, MacDonald IA: Sympathoadrenal activity in human obesity: heterogeneity of findings since 1980. Int J Obes Relat Metab Disord 1992, 16:959–967.

    PubMed  CAS  Google Scholar 

  7. Rocchini AP, Moorhead C, DeRemer S, Bondie D: Pathogenesis of weight-related changes in blood pressure in dogs. Hypertension 1989, 13:922–928.

    PubMed  CAS  Google Scholar 

  8. Kassab S, Kato T, Wilkins FC, et al.: Renal denervation attenuates the sodium retention and hypertension associated with obesity. Hypertension 1995, 25:893–897.

    PubMed  CAS  Google Scholar 

  9. Antic V, Dulloo A, Montani JP: Short-term (5-day) changes in food intake alter daily hemodynamics in rabbits. Am J Hypertens 2003, 16:302–306.

    Article  PubMed  Google Scholar 

  10. Landsberg L: Diet, obesity and hypertension: a hypothesis involving insulin, the sympathetic nervous system, and adaptive thermogenesis. Q J Med 1986, 236:1081–1090.

    Google Scholar 

  11. von Euler US: A specific sympathetic ergone in adrenergic nerve fibres (sympathin) and its relation to adrenaline and noradrenaline. Acta Physiol Scand 1946, 12:73–97.

    Article  Google Scholar 

  12. Esler M, Jennings G, Lambert G, et al.: Overflow of catecholamine neurotransmitters to the circulation: source, fate and functions. Physiol Rev 1990, 70:963–985.

    PubMed  CAS  Google Scholar 

  13. Grassi G, Colombo M, Seravalle G, et al.: Dissociation between muscle and skin sympathetic nerve activity in essential hypertension, obesity, and congestive heart failure. Hypertension 1998, 31:64–67.

    PubMed  CAS  Google Scholar 

  14. Macefield V, Wallin BG, Vallbo AB: The discharge behaviour of single vasoconstrictor motor neurones in human muscle nerves. J Physiol 1994, 481:799–809.

    PubMed  CAS  Google Scholar 

  15. Esler M, Jennings G, Korner P, et al.: The assessment of human sympathetic nervous system activity from measurements of norepinephrine turnover. Hypertension 1988, 11:3–20.

    PubMed  CAS  Google Scholar 

  16. Rumantir MS, Vaz M, Jennings GL, et al.: Neural mechanisms in human obesity-related hypertension. J Hypertens 1999, 17:1125–1133.

    Article  PubMed  CAS  Google Scholar 

  17. Esler M: Looking at the sympathetic nervous system as a primary source. In Handbook of Hypertension: Hypertension Research in the Twentieth Century. Edited by Zanchetti A, Robertson JIS, Bikenhager WH. Amsterdam: Elsevier; 2004: 81–103.

    Google Scholar 

  18. Greenwood JP, Stoker JB, Mary DASG: Single-unit sympathetic discharge. Quantitative assessment in human hypertensive disease. Circulation 1999, 100:1305–1310.

    PubMed  CAS  Google Scholar 

  19. Lambert E, Straznicky N, Schlaich M, et al.: Differing patterns of sympathoexcitation in normal-weight and obesity-related hypertension. Hypertension 2007, 50:862–868.

    Article  PubMed  CAS  Google Scholar 

  20. DiBona GF: Sympathetic neural control of the kidney in hypertension. Hypertension 1992, 19:I28–I35.

    PubMed  CAS  Google Scholar 

  21. Messerli FH, Sundgaard-Riise K, Reisin E, et al.: Disparate cardiovascular effects of obesity and arterial hypertension. Am J Med 1983, 74:808–812.

    Article  PubMed  CAS  Google Scholar 

  22. Sjostrom L: Morbidity and mortality of severely obese subjects. Am J Clin Nutr 1992, 55:508S–515S.

    PubMed  CAS  Google Scholar 

  23. Hall JE, Brands MW, Hildebrandt DA, Mizelle HL: Obesity-associated hypertension. Hyperinsulinemia and renal mechanisms. Hypertension 1992, 19:I45–I55.

    PubMed  CAS  Google Scholar 

  24. Julius S, Valentini M, Palatini P: Overweight and hypertension. A 2-way street? Hypertension 2000, 36:807–813.

    Google Scholar 

  25. Masuo K, Kawaguchi H, Mikami H: Serum uric acid and plasma norepinephrine concentrations predict subsequent weight gain and blood pressure elevation. Hypertension 2003, 42:474–480.

    Article  PubMed  CAS  Google Scholar 

  26. Ferrier C, Jennings GL, Eisenhofer G, et al.: Evidence for increased noradrenaline release from subcortical brain regions in essential hypertension. J Hypertens 1993, 11:1217–1227.

    Article  PubMed  CAS  Google Scholar 

  27. Esler M, Eikelis N, Schlaich M, et al.: Chronic mental stress is a cause of essential hypertension: presence of biological markers of stress. Clin Exp Pharm Physiol 2008, 35:498–502.

    Article  CAS  Google Scholar 

  28. Esler M, Lambert G, Vaz M, et al.: Central nervous system monoamine neurotransmitter turnover in primary and obesity-related human hypertension. Clin Exp Hypertens 1997, 19:577–590.

    Article  PubMed  CAS  Google Scholar 

  29. Haynes WG, Sivitz WI, Morgan DA, et al.: Sympathetic and cardiorenal actions of leptin. Hypertension 1997, 30:619–623.

    PubMed  CAS  Google Scholar 

  30. Narkiewicz K, Van de Borne PJH, Cooley RL, et al.: Sympathetic activity in obese subjects with and without obstructive sleep apnoea. Circulation 1998, 98:772–776.

    PubMed  CAS  Google Scholar 

  31. Grassi G, Facchini A, Trevano FQ, et al.: Obstructive sleep apnea-dependent and -independent adrenergic activation in obesity. Hypertension 2005, 46:321–325.

    Article  PubMed  CAS  Google Scholar 

  32. Masuo K, Katsuya T, Fu Y, et al.: Beta2- and beta3-adrenergic receptor polymorphisms are related to the onset of weight gain and blood pressure elevation over 5 years. Circulation 2005, 111:3429–3434.

    Article  PubMed  CAS  Google Scholar 

  33. Green SA, Cole G, Jacinto M, et al.: A polymorphism of the human beta 2-adrenergic receptor within the fourth transmembrane domain alters ligand binding and functional properties of the receptor. J Biol Chem 1993, 268:23116–23121.

    PubMed  CAS  Google Scholar 

  34. Schlaich MP, Kaye DM, Lambert E, et al.: Relation between cardiac sympathetic activity and hypertensive left ventricular hypertrophy. Circulation 2003, 108:560–565.

    Article  PubMed  Google Scholar 

  35. Julius S, Gundrandsson T, Jamerson K, et al.: The interconnection between sympathetics, microcirculation and insulin resistance in hypertension. Blood Press 1992, 1:9–19.

    Article  PubMed  CAS  Google Scholar 

  36. Esler M, Straznicky N, Eikelis N, et al.: Mechanisms of sympathetic activation in obesity-related hypertension. Hypertension 2006, 48:787–796.

    Article  PubMed  CAS  Google Scholar 

  37. Haenni A, Lithell H: Moxonidine improves insulin sensitivity in insulin-resistant hypertensives. J Hypertens 1999, 19:S29–S35.

    Google Scholar 

  38. Bell-Anderson KS, Bryson JM: Leptin as a potential treatment for obesity: progress to date. Treat Endocrinol 2004, 3:11–18.

    Article  PubMed  CAS  Google Scholar 

  39. O’Dea K, Esler M, Leonard P, et al.: Noradrenaline turnover during under- and over-eating in normal weight subjects. Metabolism 1982, 31:896–899.

    Article  PubMed  CAS  Google Scholar 

  40. Laaksonen DE, Laitinen T, Schonberg J, et al.: Weight loss and weight maintenance, ambulatory blood pressure and cardiac autonomic tone in obese persons with the metabolic syndrome. J Hypertens 2003, 21:371–378.

    Article  PubMed  CAS  Google Scholar 

  41. Esler M: On a low calorie diet, are there separate and discrete effects of negative energy balance and weight loss on blood pressure? J Hypertens 2003, 21:261–262.

    Article  PubMed  CAS  Google Scholar 

  42. Dickinson HO, Mason JM, Nicolson DJ, et al.: Lifestyle interventions to reduce raised blood pressure: a systematic review of randomized controlled trials. J Hypertens 2006, 24:215–233.

    Article  PubMed  CAS  Google Scholar 

  43. Meredith IT, Friberg P, Jennings GL, et al.: Regular exercise lowers renal but not cardiac sympathetic activity in man. Hypertension 1991, 18:575–582.

    PubMed  CAS  Google Scholar 

  44. Hasking G, Esler M, Jennings G, et al.: Norepinephrine spillover to plasma in congestive heart failure: evidence of increased overall and cardiorenal sympathetic nervous activity. Circulation 1986, 73:615–621.

    PubMed  CAS  Google Scholar 

  45. Kaye DM, Lefkovits J, Jennings GL, et al.: Adverse consequences of high sympathetic nervous activity in the failing human heart. J Am Coll Cardiol 1995, 26:1257–1263.

    Article  PubMed  CAS  Google Scholar 

  46. Packer M, Bristow MR, Cohn JN, et al.: The effects of carvedilol on morbidity and mortality in patients with chronic heart failure. U.S. Carvedilol Heart Failure Study Group. N Engl J Med 1996, 334:1349–1355.

    Article  PubMed  CAS  Google Scholar 

  47. Sharma AM, Wagner T, Marsalek P: Moxonidine in the treatment of overweight and obese patients with the metabolic syndrome: a postmarketing surveillance study. J Hum Hypertens 2004, 18:669–675.

    Article  PubMed  CAS  Google Scholar 

  48. Wofford MR, Anderson DC, Brown CA, et al.: Antihypertensive effect of alpha- and beta-adrenergic blockade in obese and lean hypertensive subjects. Am J Hypertens 2002, 14:694–698.

    Article  Google Scholar 

  49. Grassi G, Servalle G, Dell’Oro R, et al.: Comparative effects of candesartan and hydrochlorothiazide on blood pressure, insulin sensitivity, and sympathetic drive in obese hypertensive individuals: results of the CROSS study. J Hypertens 2003, 21:1761–1769.

    Article  PubMed  CAS  Google Scholar 

  50. Reisin E, Weir MR, Falkner B, et al.: Lisinopril versus hydrochlorothiazide in obese hypertensive patients. Hypertension 1997, 30:140–145.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Murray D. Esler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Esler, M.D., Eikelis, N., Lambert, E. et al. Neural mechanisms and management of obesity-related hypertension. Curr Cardiol Rep 10, 456–463 (2008). https://doi.org/10.1007/s11886-008-0072-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11886-008-0072-7

Keywords

Navigation