Skip to main content
Log in

Developments in coronary CT angiography

  • Published:
Current Cardiology Reports Aims and scope Submit manuscript

Abstract

CT imaging of the coronary arteries by contrast-enhanced CT, termed “coronary CT angiography” or “coronary CTA,” has become increasingly stable and robust during the past few years. Several trials have demonstrated rather high diagnostic accuracies in somewhat selected patient groups, and this method can be applied clinically to rule out coronary artery stenoses. Based on clinical considerations, this will most likely be beneficial for symptomatic patients who are not at high risk for coronary artery disease, both with stable symptoms or presenting with acute chest pain. Other applications are more problematic, such as use in patients after stent placement or coronary artery bypass graft surgery. Further improvements in technology are expected to allow expansion of indications for coronary CTA in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Achenbach S: Cardiac CT: State of the art for the detection of coronary arterial stenosis. J Cardiovasc Comput Tomogr 2007, 1:3–20.

    Article  PubMed  Google Scholar 

  2. Schoepf UJ, Zwerner PL, Savino G, et al.: Coronary CT angiography. Radiology 2007, 244:48–63.

    Article  PubMed  Google Scholar 

  3. Vanhoenacker PK, Heijenbrok-Kal MH, Van Heste R, et al.: Diagnostic performance of multidetector CT angiography for assessment of coronary artery disease: meta-analysis. Radiology 2007, 244:419–428.

    Article  PubMed  Google Scholar 

  4. Herzog C, Nguyen SA, Savino G, et al.: Does two-segment image reconstruction at 64-section CT coronary angiography improve image quality and diagnostic accuracy? Radiology 2007, 244:121–129.

    Article  PubMed  Google Scholar 

  5. Leschka S, Wildermuth S, Boehm T, et al.: Noninvasive coronary angiography with 64-section CT: effect of average heart rate and heart rate variability on image quality. Radiology 2006, 241:378–385.

    Article  PubMed  Google Scholar 

  6. Ghostine S, Caussin C, Daoud B, et al.: Non-invasive detection of coronary artery disease in patients with left bundle branch block using 64-slice computed tomography. J Am Coll Cardiol 2006, 48:1929–1934.

    Article  PubMed  Google Scholar 

  7. Wintersperger BJ, Nikolaou K, von Ziegler F, et al.: Image quality, motion artifacts, and reconstruction timing of 64-slice coronary computed tomography angiography with 0.33-second rotation speed. Invest Radiol 2006, 41:436–442.

    Article  PubMed  Google Scholar 

  8. Kondo C, Mori S, Endo M, et al.: Real-time volumetric imaging of human heart without electrocardiographic gating by 256-detector row computed tomography: initial experience. J Comput Assist Tomogr 2005, 29:694–698.

    Article  PubMed  Google Scholar 

  9. Kido T, Kurata A, Higashino H, et al.: Cardiac imaging using 256-detector row four-dimensional CT: preliminary clinical report. Radiat Med 2007, 25:38–44.

    Article  PubMed  Google Scholar 

  10. Flohr TG, McCollough CH, Bruder H, et al.: First performance evaluation of a dual-source CT (DSCT) system. Eur Radiol 2006, 16:256–268.

    Article  PubMed  Google Scholar 

  11. Achenbach S, Ropers D, Kuettner A, et al.: Contrast-enhanced coronary artery visualization by dual-source computed tomography—initial experience. Eur J Radiol 2006, 57:331–335.

    Article  PubMed  Google Scholar 

  12. Johnson TR, Nikolaou K, Wintersperger BJ, et al.: Dual-source CT cardiac imaging: initial experience. Eur Radiol 2006, 16:1409–1415.

    Article  PubMed  Google Scholar 

  13. Reimann AJ, Rinck D, Birinci-Aydogan A, et al.: Dual-source computed tomography: advances of improved temporal resolution in coronary plaque imaging. Invest Radiol 2007, 42:196–203.

    Article  PubMed  Google Scholar 

  14. Scheffel H, Alkadhi H, Plass A, et al.: Accuracy of dual-source CT coronary angiography: first experience in a high pre-test probability population without heart rate control. Eur Radiol 2006, 16:2739–2747.

    Article  PubMed  Google Scholar 

  15. Heuschmid M, Burgstahler C, Reimann A, et al.: Usefulness of noninvasive cardiac imaging using dual-source computed tomography in an unselected population with high prevalence of coronary artery disease. Am J Cardiol 2007, 100:587–592.

    Article  PubMed  Google Scholar 

  16. Ehara M, Surmely JF, Kawai M, et al.: Diagnostic accuracy of 64-slice computed tomography for detecting angiographically significant coronary artery stenosis in an unselected consecutive patient population. Circ J 2007, 70:564–571.

    Article  Google Scholar 

  17. Grosse C, Globits S, Hergan K: Forty-slice spiral computed tomography of the coronary arteries: assessment of image quality and diagnostic accuracy in a non-selected patient population. Acta Radiol 2007, 48:36–44.

    Article  PubMed  CAS  Google Scholar 

  18. Kuettner A, Trabold T, Schroeder S, et al.: Noninvasive detection of coronary lesions using 16-detector multislice spiral computed tomography technology. Initial clinical results. J Am Coll Cardiol 2004, 44:1230–1237.

    PubMed  Google Scholar 

  19. Hoffmann U, Moselewski F, Cury RC, et al.: Predictive value of 16-slice multidetector spiral computed tomography to detect significant obstructive coronary artery disease in patients at high risk for coronary artery disease: patient-versus segment-based analysis. Circulation 2004, 110:2638–2643.

    Article  PubMed  Google Scholar 

  20. Diamond GA, Forrester JS: Analysis of probability as an aid in the clinical diagnosis of coronary artery disease. N Engl J Med 1979, 300:1350–1358.

    Article  PubMed  CAS  Google Scholar 

  21. Andreini D, Pontone G, Pepi M, et al.: Diagnostic accuracy of multidetector computed tomography coronary angiography in patients with dilated cardiomyopathy. J Am Coll Cardiol 2007, 49:2044–2050.

    Article  PubMed  Google Scholar 

  22. Manghat NE, Morgan-Hughes GJ, Shaw SR, et al.: Multidetector row CT coronary angiography in patients with cardiomyopathy—initial single-centre experience. Clin Radiol 2007, 62:632–638.

    Article  PubMed  CAS  Google Scholar 

  23. Meijboom WB, Mollet NR, Van Mieghem CA, et al.: Pre-operative computed tomography coronary angiography to detect significant coronary artery disease in patients referred for cardiac valve surgery. J Am Coll Cardiol 2006, 48:1658–1665.

    Article  PubMed  Google Scholar 

  24. Meijboom WB, Mollet NR, Van Mieghem CA, et al.: 64-slice computed tomography coronary angiography in patients with non-ST elevation acute coronary syndrome. Heart 2007, [Epub ahead of print.]

  25. Hoffmann U, Nagurney JT, Moselewski F, et al.: Coronary multidetector computed tomography in the assessment of patients with acute chest pain. Circulation 2006, 114:2251–2260.

    Article  PubMed  Google Scholar 

  26. Gallagher MJ, Ross MA, Raff GL, et al.: The diagnostic accuracy of 64-slice computed tomography coronary angiography compared with stress nuclear imaging in emergency department low-risk chest pain patients. Ann Emerg Med 2007, 49:125–136.

    Article  PubMed  Google Scholar 

  27. Goldstein JA, Gallagher MJ, O’Neill WW, et al.: A randomized controlled trial of multi-slice coronary computed tomography for evaluation of acute chest pain. J Am Coll Cardiol 2007, 49:863–871.

    Article  PubMed  Google Scholar 

  28. Budoff MJ, Achenbach S, Blumenthal RS, et al.: Assessment of coronary artery disease by cardiac computed tomography: a scientific statement from the American Heart Association Committee on Cardiovascular Imaging and Intervention, Council on Cardiovascular Radiology and Intervention, and Committee on Cardiac Imaging, Council on Clinical Cardiology. Circulation 2006, 114:1761–1791.

    Article  PubMed  Google Scholar 

  29. Hendel RC, Patel MR, Kramer CM, et al.: ACCF/ACR/SCCT/SCMR/ASNC/NASCI/SCAI/SIR 2006 appropriateness criteria for cardiac computed tomography and cardiac magnetic resonance imaging: a report of the American College of Cardiology Foundation Quality Strategic Directions Committee Appropriateness Criteria Working Group, American College of Radiology, Society of Cardiovascular Computed Tomography, Society for Cardiovascular Magnetic Resonance, American Society of Nuclear Cardiology, North American Society for Cardiac Imaging, Society for Cardiovascular Angiography and Interventions, and Society of Interventional Radiology. J Am Coll Cardiol 2006, 48:1475–1497.

    Article  PubMed  Google Scholar 

  30. Ropers D, Pohle FK, Kuettner A, et al.: Diagnostic accuracy of noninvasive coronary angiography in patients after bypass surgery using 64-slice spiral computed tomography with 330-ms gantry rotation. Circulation 2006, 114:2334–2341.

    Article  PubMed  Google Scholar 

  31. Van Mieghem CA, Cademartiri F, Mollet NR, et al.: Multislice spiral computed tomography for the evaluation of stent patency after left main coronary artery stenting: a comparison with conventional coronary angiography and intravascular ultrasound. Circulation 2006, 114:645–653.

    Article  PubMed  Google Scholar 

  32. Rixe J, Achenbach S, Ropers D, et al.: Assessment of coronary artery stent restenosis by 64-slice multi-detector computed tomography. Eur Heart J 2006, 27:2567–2572.

    Article  PubMed  Google Scholar 

  33. Oncel D, Oncel G, Karaca M: Coronary stent patency and in-stent restenosis: determination with 64-section multi-detector CT coronary angiography—initial experience. Radiology 2007, 242:403–409.

    Article  PubMed  Google Scholar 

  34. Ehara M, Kawai M, Surmely JF, et al.: Diagnostic accuracy of coronary in-stent restenosis using 64-slice computed tomography. J Am Coll Cardiol 2007, 49:951–959.

    Article  PubMed  Google Scholar 

  35. Cademartiri F, Schuijf JD, Pugliese F, et al.: Usefulness of 64-slice multislice computed tomography coronary angiography to assess in-stent restenosis. J Am Coll Cardiol 2007, 49:2204–2210.

    Article  PubMed  Google Scholar 

  36. Rist C, von Ziegler F, Nikolaou K, et al.: Assessment of coronary artery stent patency and restenosis using 64-slice computed tomography. Acad Radiol 2006, 13:1465–1473.

    Article  PubMed  Google Scholar 

  37. Dewey M, Dubel HP, Schink T, et al.: Head-to-head comparison of multislice computed tomography and exercise electrocardiography for diagnosis of coronary artery disease. Eur Heart J 2006, [Epub ahead of print].

  38. Schuijf JD, Wijns W, Jukema JW, et al.: Relationship between noninvasive coronary angiography with multi-slice computed tomography and myocardial perfusion imaging. J Am Coll Cardiol 2006, 48:2508–2514.

    Article  PubMed  Google Scholar 

  39. Hacker M, Jakobs T, Hack N, et al.: Combined use of 64-slice computed tomography angiography and gated myocardial perfusion SPECT for the detection of functionally relevant coronary artery stenoses. First results in a clinical setting concerning patients with stable angina. Nuklearmedizin 2007, 46:29–35.

    PubMed  CAS  Google Scholar 

  40. Hacker M, Jakobs T, Hack N, et al.: Sixty-four slice spiral CT angiography does not predict the functional relevance of coronary artery stenoses in patients with stable angina. Eur J Nucl Med Mol Imaging 2007, 34:4–10.

    Article  PubMed  Google Scholar 

  41. Leber AW, Becker A, Knez A, et al.: Accuracy of 64-slice computed tomography to classify and quantify plaque volumes in the proximal coronary system: a comparative study using intravascular ultrasound. J Am Coll Cardiol 2006, 47:672–677.

    Article  PubMed  Google Scholar 

  42. Schroeder S, Kopp AF, Baumbach A, et al.: Noninvasive detection and evaluation of atherosclerotic coronary plaques with multislice computed tomography. J Am Coll Cardiol 2001, 37:1430–1435.

    Article  PubMed  CAS  Google Scholar 

  43. Becker CR, Nikolaou K, Muders M, et al.: Ex vivo coronary atherosclerotic plaque characterization with multi-detectorrow CT. Eur Radiol 2003, 13:2094–2098.

    Article  PubMed  Google Scholar 

  44. Carrascosa PM, Capunay CM, Garcia-Merletti P, et al.: Characterization of coronary atherosclerotic plaques by multidetector computed tomography. Am J Cardiol 2006, 97:598–602.

    Article  PubMed  Google Scholar 

  45. Pohle K, Achenbach S, MacNeill B, et al.: Characterization of non-calcified coronary atherosclerotic plaque by multidetector row CT: comparison to IVUS. Atherosclerosis 2007, 190:174–180.

    Article  PubMed  CAS  Google Scholar 

  46. Cademartiri F, Mollet NR, Runza G, et al.: Influence of intracoronary attenuation on coronary plaque measurements using multislice computed tomography: observations in an ex vivo model of coronary computed tomography angiography. Eur Radiol 2005, 15:1426–1431.

    Article  PubMed  Google Scholar 

  47. Achenbach S, Ropers D, Hoffmann U, et al.: Assessment of coronary remodeling in stenotic and nonstenotic coronary atherosclerotic lesions by multidetector spiral computed tomography. J Am Coll Cardiol 2004, 43:842–847.

    Article  PubMed  Google Scholar 

  48. Moselewski F, Ropers D, Pohle K, et al.: Comparison of measurement of cross-sectional coronary atherosclerotic plaque and vessel areas by 16-slice multidetector computed tomography versus intravascular ultrasound. Am J Cardiol 2004, 94:1294–1297.

    Article  PubMed  Google Scholar 

  49. Bruining N, Roelandt JR, Palumbo A, et al.: Reproducible coronary plaque quantification by multislice computed tomography. Catheter Cardiovasc Interv 2007, 69:857–865.

    Article  PubMed  Google Scholar 

  50. Motoyama S, Kondo T, Sarai M, et al.: Multislice computed tomographic characteristics of coronary lesions in acute coronary syndromes. J Am Coll Cardiol 2007, 50:319–326.

    Article  PubMed  Google Scholar 

  51. Pundzuite G, Schuijf JD, Jukema JW, et al.: Prognostic value of multislice computed tomography coronary angiography in patients with known or suspected coronary artery disease. J Am Coll Cardiol 2007, 49:62–70.

    Article  Google Scholar 

  52. Ropers D, Rixe J, Anders K, et al.: Usefulness of multidetector row computed tomography with 64 × 0.6 mm collimation and 330-ms rotation for the noninvasive detection of significant coronary artery stenoses. Am J Cardiol 2006, 97:343–348.

    Article  PubMed  Google Scholar 

  53. Hausleiter J, Meyer T, Hadamitzky M, et al.: Radiation disease estimates from cardiac multislice computed tomography in daily practice. Circulation 2006, 113:1305–1310.

    Article  PubMed  Google Scholar 

  54. Einstein AJ, Henzlova MJ, Rajagopalan S: Estimating risk of cancer associated with radiation exposure from 64-slice computed tomography coronary angiography. JAMA 2007, 298:317–323.

    Article  PubMed  CAS  Google Scholar 

  55. Hsieh J, Londt J, Vass M, et al.: Step-and-shoot data acquisition and reconstruction for cardiac x-ray computed tomography. Med Phys 2006, 33:4236–4248.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephan Achenbach.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Achenbach, S. Developments in coronary CT angiography. Curr Cardiol Rep 10, 51–59 (2008). https://doi.org/10.1007/s11886-008-0011-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11886-008-0011-7

Keywords

Navigation