Skip to main content

Advertisement

Log in

MRI versus CT for the detection of coronary artery disease: Current state and future promises

  • Published:
Current Cardiology Reports Aims and scope Submit manuscript

Abstract

CT and MR are two noninvasive imaging techniques that are capable of detecting different aspects of coronary artery disease (CAD). Both techniques can directly and noninvasively visualize the coronary artery tree, allowing detection of atherosclerotic plaques, coronary stenosis, or occlusion. In addition to direct anatomic visualization, MR also allows assessment of stress-induced ischemia. Both dobutamine stress and dipyridamole or adenosine perfusion MR can be used for this purpose with high sensitivity and specificity. Both MR and multidetector CT can also reveal the functional consequences of CAD, that is, reduced regional and global cardiac function, as well as the presence of myocardial infarction. Finally, there is promise that in the future, both techniques may predict individual risk of unstable CAD by identifying vulnerable plaques that are prone to rupture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Ohnesorge B, Flohr T, Becker C, et al.: Cardiac imaging by means of electrocardiographically gated multisection spiral CT: initial experience. Radiology 2000, 217:564–571.

    PubMed  CAS  Google Scholar 

  2. Bogaert J, Kuzo R, Dymarkowski S, et al.: Coronary artery imaging with real-time navigator three-dimensional turbofield-echo MR coronary angiography: initial experience. Radiology 2003, 226:707–716.

    Article  PubMed  Google Scholar 

  3. Stuber M, Botnar RM, Danias PG, et al.: Double-oblique free-breathing high resolution three-dimensional coronary magnetic resonance angiography. J Am Coll Cardiol 1999, 34:524–531.

    Article  PubMed  CAS  Google Scholar 

  4. Weber OM, Martin AJ, Higgins CB: Whole-heart steady-state free precession coronary artery magnetic resonance angiography. Magn Reson Med 2003, 50:1223–1228.

    Article  PubMed  Google Scholar 

  5. Leber AW, Knez A, von Ziegler F, et al.: Quantification of obstructive and nonobstructive coronary lesions by 64-slice computed tomography: a comparative study with quantitative coronary angiography and intravascular ultrasound. J Am Coll Cardiol 2005, 46:147–154.

    Article  PubMed  Google Scholar 

  6. Raff GL, Gallagher MJ, O’Neill WW, Goldstein JA: Diagnostic accuracy of noninvasive coronary angiography using 64-slice spiral computed tomography. J Am Coll Cardiol 2005, 46:552–557.

    Article  PubMed  Google Scholar 

  7. Pugliese F, Mollet NR, Runza G, et al.: Diagnostic accuracy of non-invasive 64-slice CT coronary angiography in patients with stable angina pectoris. Eur Radiol 2006, 16:575–582.

    Article  PubMed  Google Scholar 

  8. Mollet NR, Cademartiri F, van Mieghem CA, et al.: High-resolution spiral computed tomography coronary angiography in patients referred for diagnostic conventional coronary angiography. Circulation 2005, 112:2318–2323.

    Article  PubMed  Google Scholar 

  9. Leschka S, Alkadhi H, Plass A, et al.: Accuracy of MSCT coronary angiography with 64-slice technology: first experience. Eur Heart J 2005, 26:1482–1487.

    Article  PubMed  Google Scholar 

  10. Sakuma H, Ichikawa Y, Suzawa N, et al.: Assessment of coronary arteries with total study time of less than 30 minutes by using whole-heart coronary MR angiography. Radiology 2005, 237:316–321.

    Article  PubMed  Google Scholar 

  11. Jahnke C, Paetsch I, Nehrke K, et al.: Rapid and complete coronary arterial tree visualization with magnetic resonance imaging: feasibility and diagnostic performance. Eur Heart J 2005, 26:2313–2319.

    Article  PubMed  Google Scholar 

  12. Gerber BL, Coche E, Pasquet A, et al.: Coronary artery stenosis: direct comparison of four-section multi-detector row CT and 3D navigator MR imaging for detection—initial results. Radiology 2005, 234:98–108.

    Article  PubMed  Google Scholar 

  13. Kefer J, Coche E, Pasquet A, et al.: Head to head comparison of multislice coronary CT and 3D navigator MRI for the detection of coronary artery stenosis. J Am Coll Cardiol 2005, 46:92–100.

    Article  PubMed  Google Scholar 

  14. Nagel E, Lehmkuhl HB, Bocksch W, et al.: Noninvasive diagnosis of ischemia-induced wall motion abnormalities with the use of high-dose dobutamine stress MRI: comparison with dobutamine stress echocardiography. Circulation 1999, 99:763–770.

    PubMed  CAS  Google Scholar 

  15. Kuijpers D, Ho KY, van Dijkman PR, et al.: Dobutamine cardiovascular magnetic resonance for the detection of myocardial ischemia with the use of myocardial tagging. Circulation 2003, 107:1592–1597.

    Article  PubMed  Google Scholar 

  16. Kuijpers D, Janssen CH, van Dijkman PR, Oudkerk M: Dobutamine stress MRI. Part I. Safety and feasibility of dobutamine cardiovascular magnetic resonance in patients suspected of myocardial ischemia. Eur Radiol 2004, 14:1823–1828.

    PubMed  Google Scholar 

  17. Wahl A, Paetsch I, Gollesch A, et al.: Safety and feasibility of high-dose dobutamine-atropine stress cardiovascular magnetic resonance for diagnosis of myocardial ischaemia: experience in 1000 consecutive cases. Eur Heart J 2004, 25:1230–1236.

    Article  PubMed  Google Scholar 

  18. Giang TH, Nanz D, Coulden R, et al.: Detection of coronary artery disease by magnetic resonance myocardial perfusion imaging with various contrast medium doses: first European multi-centre experience. Eur Heart J 2004, 25:1657–1665.

    Article  PubMed  CAS  Google Scholar 

  19. Wolff SD, Schwitter J, Coulden R, et al.: Myocardial first-pass perfusion magnetic resonance imaging: a multicenter dose-ranging study. Circulation 2004, 110:732–737.

    Article  PubMed  CAS  Google Scholar 

  20. Paetsch I, Jahnke C, Wahl A, et al.: Comparison of dobutamine stress magnetic resonance, adenosine stress magnetic resonance, and adenosine stress magnetic resonance perfusion. Circulation 2004, 110:835–842.

    Article  PubMed  CAS  Google Scholar 

  21. George RT, Silva C, Cordeiro MA, et al.: Multidetector computed tomography myocardial perfusion imaging during adenosine stress. J Am Coll Cardiol 2006, 48:153–160.

    Article  PubMed  Google Scholar 

  22. Lima JA, Judd RM, Bazille A, et al.: Regional heterogeneity of human myocardial infarcts demonstrated by contrast-enhanced MRI. Potential mechanisms. Circulation 1995, 92:1117–1125.

    PubMed  CAS  Google Scholar 

  23. Rochitte C, Lima J, Bluemke D, et al.: Magnitude and time cours of microvascular obstruction and tissue injury after acute myocardial infarction. Circulation 1998, 98:1006–1014.

    PubMed  CAS  Google Scholar 

  24. Kim RJ, Fieno D, Parrish RB, et al.: Relationship of MRI delayed contrast enhancement to irreversible injury, infarct age, and contractile function. Circulation 1999, 100:1992–2002.

    PubMed  CAS  Google Scholar 

  25. Mahnken AH, Koos R, Katoh M, et al.: Sixteen-slice spiral CT versus MR imaging for the assessment of left ventricular function in acute myocardial infarction. Eur Radiol 2005, 15:714–720.

    Article  PubMed  Google Scholar 

  26. Belge B, Coche E, Pasquet A, et al.: Accurate estimation of global and regional cardiac function by retrospectively gated multidetector row computed tomography. Comparison with cine magnetic resonance imaging. Eur Radiol 2006, 16:1424–1433.

    Article  PubMed  Google Scholar 

  27. Gerber BL, Belge B, Legros GJ, et al.: Characterization of acute and chronic myocardial infarcts by multidetector computed tomography: comparison with contrast-enhanced magnetic resonance. Circulation 2006, 113:823–833.

    Article  PubMed  Google Scholar 

  28. Lardo AC, Cordeiro MA, Silva C, et al.: Contrast-enhanced multidetector computed tomography viability imaging after myocardial infarction: characterization of myocyte death, microvascular obstruction, and chronic scar. Circulation 2006, 113:394–404.

    Article  PubMed  Google Scholar 

  29. Mahnken AH, Koos R, Katoh M, et al.: Assessment of myocardial viability in reperfused acute myocardial infarction using 16-slice computed tomography in comparison to magnetic resonance imaging. J Am Coll Cardiol 2005, 45:2042–2047.

    Article  PubMed  Google Scholar 

  30. Fuster V, Fayad ZA, Moreno PR, et al.: Atherothrombosis and high-risk plaque: Part II: approaches by noninvasive computed tomographic/magnetic resonance imaging. J Am Coll Cardiol 2005, 46:1209–1218.

    Article  PubMed  CAS  Google Scholar 

  31. Wilensky RL, Song HK, Ferrari VA: Role of magnetic resonance and intravascular magnetic resonance in the detection of vulnerable plaques. J Am Coll Cardiol 2006, 47(8 Suppl):C48–C56.

    Article  PubMed  Google Scholar 

  32. Leber AW, Becker A, Knez A, et al.: Accuracy of 64-slice computed tomography to classify and quantify plaque volumes in the proximal coronary system: a comparative study using intravascular ultrasound. J Am Coll Cardiol 2006, 47:672–677.

    Article  PubMed  Google Scholar 

  33. Sirol M, Itskovich VV, Mani V, et al.: Lipid-rich atherosclerotic plaques detected by gadofluorine-enhanced in vivo magnetic resonance imaging. Circulation 2004, 109:2890–2896.

    Article  PubMed  CAS  Google Scholar 

  34. Kooi ME, Cappendijk VC, Cleutjens KB, et al.: Accumulation of ultrasmall superparamagnetic particles of iron oxide in human atherosclerotic plaques can be detected by in vivo magnetic resonance imaging. Circulation 2003, 107:2453–2458.

    Article  PubMed  CAS  Google Scholar 

  35. Frias JC, Williams KJ, Fisher EA, Fayad ZA: Recombinant HDL-like nanoparticles: a specific contrast agent for MRI of atherosclerotic plaques. J Am Chem Soc 2004, 126:16316–16317.

    Article  PubMed  CAS  Google Scholar 

  36. Sommer T, Hackenbroch M, Hofer U, et al.: Coronary MR angiography at 3.0 T versus that at 1.5 T: initial results in patients suspected of having coronary artery disease. Radiology 2005, 234:718–725.

    Article  PubMed  Google Scholar 

  37. Kim WY, Danias PG, Stuber M, et al.: Coronary magnetic resonance angiography for the detection of coronary stenoses. N Engl J Med 2001, 345:1863–1869.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernhard L. Gerber MD, PhD, FESC.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gerber, B.L. MRI versus CT for the detection of coronary artery disease: Current state and future promises. Curr Cardiol Rep 9, 72–78 (2007). https://doi.org/10.1007/s11886-007-0013-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11886-007-0013-x

Keywords

Navigation