Skip to main content

Advertisement

Log in

Gene therapy for restenosis

  • Published:
Current Cardiology Reports Aims and scope Submit manuscript

Abstract

This review provides an overview of candidate genes that are currently being evaluated for genetic strategies in vascular gene therapy. We discuss treatment strategies that have proven efficacious in limiting postinterventional restenosis through evaluation with in vivo model systems. The candidate strategies utilize genes that are either cytotoxic, regulate vascular smooth muscle cell differentiation or proliferation. In addition, we review oligonuclotide and ribozyme strategies that function by suppressing the expression of cell cycle regulators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Topol EJ: Coronary-artery stents--gauging, gorging, and gouging. N Engl J Med 1998, 339 1702–1704.

    Article  PubMed  CAS  Google Scholar 

  2. GS, Popma, JJ, Pichard AD, et al.: Arterial Remodeling After Coronary Angioplasty: A Serial Intravascular Ultrasound Study. Circulation 1996, 94:35–43.

    Google Scholar 

  3. Goy JJ, Eeckhout E: Intracoronary stenting. Lancet 1998, 351:1943–1949.

    Article  PubMed  CAS  Google Scholar 

  4. Farb A, Sangiorgi G, Carter AJ, et al.: Pathology of acute and chronic coronary stenting in humans. Circulation 1999, 99:44–52.

    PubMed  CAS  Google Scholar 

  5. Kearney M, Pieczek A, Haley L, et al.: Histopathology of in-stent restenosis in patients with peripheral artery disease. Circulation 1997, 95:1998–2002.

    PubMed  CAS  Google Scholar 

  6. Stein CA: Does antisense exist. Nat Med 1995, 1:1119–1121.

    Article  PubMed  CAS  Google Scholar 

  7. Morishita R, Gibbons GH, Ellison KE, et al.: Single intra luminal delivery of antisense cdc2 kinase and proliferating-cell nuclear antigen oligonucleotides results in chronic inhibition of neointimal hyperplasia. Proc Natl Acad Sci U S A 1993, 90:8474–8478.

    Article  PubMed  CAS  Google Scholar 

  8. Morishita R, Gibbons GH, Ellison KE, et al.: Single intraluminal delivery of antisense cdc2 kinase and proliferat-ing-cell nuclear antigen oligonucleotides results in chronic inhibition of neointimal hyperplasia. Proc Natl Acad Sci USA 1993, 90:8474–8478.

    Article  PubMed  CAS  Google Scholar 

  9. Frimerman A, Welch PJ, Jin X, et al.: Chimeric DNA-RNA hammerhead ribozyme to proliferating cell nuclear antigen reduces stent-induced stenosis in a porcine coronary model. Circulation 1999, 99:697–703. This study demonstrates the first use of an anti-proliferative agent to inhibit in-stent restenosis in the porcine coronary artery. Studies in this animal model system allow the development of gene therapy protocols under conditions of application and assessment approximating those found in a clinical setting. This novel approach utilized a ribozyme-mediated inhibition of cellular proliferation that was delivered via catheter infusion prior to stent placement in balloo injured coronary arteries. The efficacy of treatment was determined by quantitative coronary angiography.

    PubMed  CAS  Google Scholar 

  10. Morishita R, Gibbons GH, Ellison KE, et al.: Intimal hyperplasia after vascular injury is inhibited by antisense cdk 2 kinase oligonucleotides. J Clin Invest 1994, 93:1458–1464.

    PubMed  CAS  Google Scholar 

  11. Morishita R, Gibbons GH, Horiuch M, et al.: A gene therapy strategy using a transcription factor decoy of the E2F binding site inhibits smooth muscle proliferation in vivo. Proc Natl Acad Sci USA 1995, 92:5855–5859.

    Article  PubMed  CAS  Google Scholar 

  12. Weir L, Chen D, Pastore C, et al.: Expression of GAX, a growth-arrest homeobox gene, is rapidly down-regulated in the rat carotid artery during the proliferative response to balloon injury. J Biol Chem 1995, 270:5457–5461.

    Article  PubMed  CAS  Google Scholar 

  13. Simons M, Edelman ER, DeKeyser J, et al.: Antisense c-myb oligonucleotides inhibit initial arterial smooth muscle cell accumulation in vivo. Nature 1999, 359:67–70.

    Article  Google Scholar 

  14. Miano JM, Tota RR, Vlasic N, et al.: Early proto-oncogene expression in rat aortic smooth muscle cells following endo-thelial removal. Am J Pathol 1990, 137:761–765.

    PubMed  CAS  Google Scholar 

  15. Shi Y, Fard A, Galeo A, et al.: Transcatheter delivery of c-myc antisense oligomers reduces neointimal formation in a porcine model of coronary artery balloon injury. Circulation 1994, 90:944–951.

    PubMed  CAS  Google Scholar 

  16. Mannion JD, Ormont ML, Magno MG, et al.: Sustained reduction of neointima with c-myc antisense oligonucleotides in saphenous vein grafts. Ann Thorac Surg 1998, 66 1948–1952.

    Article  PubMed  CAS  Google Scholar 

  17. Ferguson JJ: Meeting highlights: highlights of the 20th congress of the European Society of Cardiology. Circulation 1999, 99:1127–1131.

    PubMed  CAS  Google Scholar 

  18. Villa AE, Guzman LA, Poptic EJ, et al.: Effects of antisense c-myb oligonucleotides on vascular smooth muscle cell proliferation and response to vessel wall injury. Circ Res 1995, 76 505–513.

    PubMed  CAS  Google Scholar 

  19. Gunn J, Holt CM, Francis SE, et al.: The effect of oligonucleotides to c-myb on vascular smooth muscle cell proliferation and neointima formation after porcine coronary angioplasty. Circ Res 1997:4.

  20. Chang MW, Barr E, Seltzer J, et al.: Cytostatic gene therapy for vascular proliferative disorders with a constitutively active form of the retinoblastoma gene product. Science 1995, 267:518–522.

    Article  PubMed  CAS  Google Scholar 

  21. Smith RC, Wills KN, Antelman D, et al.: Adenoviral Constructs Encoding Phosphorylation-Competent Full-Length and Truncated Forms of the Human Retinoblastoma Protein Inhibit Myocyte Proliferation and Neointima Formation. Circulation 1997, 96:1899–1905.

    PubMed  CAS  Google Scholar 

  22. Chang MW, Barr E, Lu MM, et al.: Adenovirus-mediated over-expression of the cyclin/cyclin-dependent kinase inhibitor, p21 inhibits vascular smooth muscle cell proliferation and neointima formation in the rat carotid artery model of balloon angioplasty. J Clin Invest 1995, 96:2260–2268.

    PubMed  CAS  Google Scholar 

  23. Yang Z-Y, Simari RD, Perkins ND, et al.: Role of the p21 cyclin-dependent kinase inhibitor in limiting intimal cell proliferation in response to arterial injury Proc Natl Acad Sci USA 1996 93:7905–7910.

    Article  PubMed  CAS  Google Scholar 

  24. Chen D, Krasinski K, Chen D, et al.: Down-regulation of cyclin-dependent kinase activity and cyclin A promoter activity in vascular smooth muscle cells by p27 (KIP-1), an inhibitor of neointima formation in the rat carotid artery. J Clin Invest 1997, 99:2334–2341.

    PubMed  CAS  Google Scholar 

  25. Harrell RL, Rajanayagam S, Doanes AM, et al.: Inhibition of vascular smooth muscle cell proliferation and neointimal accumulation by adenovirus-mediated gene transfer of cytosine deaminase. Circulation 1997, 96:621–627.

    PubMed  CAS  Google Scholar 

  26. Sata M, Perlman H, Muruve DA, et al.: Fas ligand gene transfer to the vessel wall inhibits neointima formation and overrides the adenovirus-mediated T cell response. Proc Natl Acad Sci USA 1998 95:1213–1217.

    Article  PubMed  CAS  Google Scholar 

  27. Thurberg BL, Collins T: The nuclear factor-kappa B/inhibitor of kappa B autoregulatory system and atherosclerosis Curr Opin Lipidol 1998, 9:387–396.

    Article  PubMed  CAS  Google Scholar 

  28. Cercek B, Yamashita M, Dimayuga P, et al.: Nuclear factor-kappaB activity and arterial response to balloon injury. Atherosclerosis 1997, 131:59–66.

    Article  PubMed  CAS  Google Scholar 

  29. Landry DB, Couper LL, Bryant SR, Lindner V: Activation of the NF-kappa B and I kappa B system in smooth muscle cells after rat arterial injury. Induction of vascular cell adhesion molecule-1 and monocyte chemoattractant protein-1. Am J Pathol 1997, 151:1085–1095.

    PubMed  CAS  Google Scholar 

  30. Autieri MV, Yue TL, Ferstein GZ, Ohlstein E: Antisense oligonucleotides to the p65 subunit of NF-kB inhibit human vascular smooth muscle cell adherence and proliferation and prevent neointima formation in rat carotid arteries. Biochem Biophys Res Commun 1995, 213:827–836.

    Article  PubMed  CAS  Google Scholar 

  31. Ohno T, Gordon D, San H, et al.: Gene therapy for vascular smooth muscle cell proliferation after arterial injury. Science 1994, 265:781–784.

    Article  PubMed  CAS  Google Scholar 

  32. Guzman RJ, Hirschowitz EA, Brody SL, et al.: In vivo suppression of injury-induced vascular smooth muscle cell accumulation using adenovirus-mediated transfer of the herpes simplex virus thymidine kinase gene. Proc Natl Acad Sci USA 1994, 91:10732–10736.

    Article  PubMed  CAS  Google Scholar 

  33. Chang MW, Ohno T, Gordon D, et al.: Adenovirus-mediated transfer of the herpes simplex virus thymidine kinase gene inhibits vascular smooth muscle cell proliferation and neointima formation following balloon angioplasty of the rat carotid artery. Mol Med 1995, 1:172–181.

    PubMed  CAS  Google Scholar 

  34. Nagata S, Golstein P: The Fas death factor. Science 1995, 267 1449–1456.

    Article  PubMed  CAS  Google Scholar 

  35. Bellgrau D, Gold D, Selawry H, et al.: A role of CD95 ligand in preventing graft rejection. Nature 1995, 377:630–632.

    Article  PubMed  CAS  Google Scholar 

  36. Griffith TS, Brunner T, Fletcher SM, et al.: Fas ligand-induced apoptosis as a mechanism of immune privilege. Science 1995, 270:1189–1192.

    Article  PubMed  CAS  Google Scholar 

  37. Hahne M, Rimoldi D, Schröter M, et al.: Melanoma cell expression of Fas (Apo-1/CD95) ligand: Implications for tumor immune escape. Science 1996, 274:1363–1366.

    Article  PubMed  CAS  Google Scholar 

  38. Niehans GA, Brunner T, Frizelle SP, et al.: Human lung carcinomas express Fas ligand. Cancer Res 1997, 57:1007–1012.

    PubMed  CAS  Google Scholar 

  39. Sata M, Walsh K: TNFa regulation of Fas ligand expression on endothelium modulates leukocyte infiltration of the blood vessel wall. Nat Med 1998, 4:415–420.

    Article  PubMed  CAS  Google Scholar 

  40. Yang Y, Nunes FA, Berencsi K, et al.: Cellular immunity to viral antigens limits E1-deleted adenoviruses for gene therapy Proc Natl Acad Sci U S A 1994, 91:4407–4411.

    Article  PubMed  CAS  Google Scholar 

  41. Luo Z, Sata M, Nguyen T, et al.: Adenovirus-mediated delivery of Fas ligand inhibits intimal hyperplasia following balloon injury in immunologically-primed animals. Circulation 1999, 99:1776–1779. Documents the anti-inflammatory activity of Fas ligand in the vasculature and the efficacy of adenovirus-mediated expression of Fas ligand in inhibiting intimal hyperplasia in animals immunologically primed by prior exposure to adenovirus. These data suggest that Fas ligand functions as both a cytotoxic agent for VSMCs and as an anti-inflammatory agent towards T cells.

    PubMed  CAS  Google Scholar 

  42. Han DKM, Haudenschild CC, Hong MK et al.: Evidence for apoptosis in human atherogenesis and in a rat vascular injury model. Am J Pathol 1995, 147:267–277.

    PubMed  CAS  Google Scholar 

  43. Geng JY, Libby P: Evidence for apoptosis in advanced human atheroma: colocalization with interleukin-1b converting enzyme. Am J Pathol 1995, 147:251–266.

    PubMed  CAS  Google Scholar 

  44. Isner JM, Kearney M, Bortman S, Passeri J: Apoptosis in human atherosclerosis and restenosis. Circulation 1995, 91:2703–2711.

    PubMed  CAS  Google Scholar 

  45. Bochaton-Piallat M, Gabbiani F, Redard M, et al.: Apoptosis participates in cellularity regulation during rat aortic intimal thickening. Am J Pathol 1995, 146:1059–1064.

    PubMed  CAS  Google Scholar 

  46. Perlman H, Suziki E, Simonson M, et al.: GATA-6 induces p21 (Cip1) expression and GI cell cycle arrest. J Biol Chem 1998, 273 13713–13718.

    Article  PubMed  CAS  Google Scholar 

  47. Sedlak TW, Oltvai ZN, Yang E, et al.: Multiple Bcl-2 famil members demonstrate selective dimerizations with Bax. Proc Natl Acad Sci U S A 1995, 92:7834–7838.

    Article  PubMed  CAS  Google Scholar 

  48. Pollman MJ, Hall ZL, Mann MJ, et al.: Inhibition of neointimal cell bcl-x expression induces apoptosis and regression of vascular disease. Nat Med 1998, 4:222–227. This study utilized an oligonucleotide directed against bcl-x, an anti-apoptotic regulatory moleclule, to induce apoptosis i neointimal cells. The significance of this study is that the apoptotic strategy is purported to induce regression of a pre-existing intimal lesion.

    Article  PubMed  CAS  Google Scholar 

  49. Manderson JA, Mosee PRL, Safstron JA, et al.: Balloon catheter injury to rabbit carotid artery. I. Changes in smooth muscle phenotype. Arteriosclerosis 1989, 9:289–298.

    PubMed  CAS  Google Scholar 

  50. Campbell GR, Campbell JH, Manderson JA, et al.: Arterial smooth muscle: a multifunctional mesenchymal cell. Arch Pathol Lab Med 1988, 112:977–986.

    PubMed  CAS  Google Scholar 

  51. Gorski DH, LePage DF, Patel CV, et al.: Molecular cloning of a diverged homeobox gene that is rapidly down-regulated during the G0/G1 transition in vascular smooth muscle cells. Mol Cell Biol 1993, 13:3722–3733.

    PubMed  CAS  Google Scholar 

  52. Gorski DH, Patel CV, Walsh K: Homeobox transcription factor regulation in the cardiovascular system. Trends Cardiovasc Med 1993, 3:184–190.

    Article  CAS  Google Scholar 

  53. Yamashita J, Itoh H, Ogawa Y, et al.: Opposite regulation of Gax homeobox expression by Angiotensin II and C-type natriuretic peptide. Hypertension 1997, 29:381–387.

    PubMed  CAS  Google Scholar 

  54. Smith RC, Branellec D, Gorski DH, et al.: p21CIP1-mediated inhibition of cell proliferation by overexpression of the gax homeodomain gene. Genes Dev 1997, 11:1674–1689.

    PubMed  CAS  Google Scholar 

  55. Perlman H, Sata M, Le Roux A, et al.: Bax-mediated cell death by the Gax homeoprotein requires mitogen-activation but is independent of cell cycle activity. EMBO J 1998, 17:3576–3586.

    Article  PubMed  CAS  Google Scholar 

  56. Perlman H, Luo Z, Krasinski K, et al.: Adenovirus-mediated delivery of the Gax transcription factor to rat carotid arteries inhibits smooth muscle proliferation and induces apoptosis. Gene Ther 1999, 6: 758–763

    Article  PubMed  CAS  Google Scholar 

  57. Maillard L, Van Belle E, Smith RC, et al.: Percutaneous deliver of the gax gene inhibits vessel stenosis in a rabbit model of balloon angioplasty. Cardiovasc Res 1997, 35:536–546.

    Article  PubMed  CAS  Google Scholar 

  58. Suzuki E, Evans T, Lowry J, et al.: The human GATA-6 gene: structure, chromosomal location and regulation of expression by tissue-specific and mitogen-responsive signals Genomics 1996, 38:283–290.

    Article  PubMed  CAS  Google Scholar 

  59. Mano T, Luo Z, Malendowicz SL, et al.: Reversal of GATA-6 Downregulation Promotes Smooth Muscle Differentiation and Inhibits Intimal Hyperplasia in Balloon-injured Rat Carotid Artery. Circ Res 1999, 84:647–654.

    PubMed  CAS  Google Scholar 

  60. Clowes AW, Reidy MA, Clowes MM: Kinetics of cellular proliferation after arterial injury I: smooth muscle cell growth in the absence of endothelium. Lab Invest 1983, 49:327–333.

    PubMed  CAS  Google Scholar 

  61. Wei GL, Krasinski K, Kearney K, et al.: Temporally and Spatiall Coordinated Expression of Cell Cycle Regulatory Factors After Angioplasty. Circ Res 1996, 80:418–426.

    Google Scholar 

  62. Hogan BL: Bone morphogenetic proteins: multifunctional regulators of vertebrate development. Genes Dev 1996, 10:1580–1594.

    PubMed  CAS  Google Scholar 

  63. Nakaoka T, Gonda K, Ogita T, et al.: Inhibition of rat vascular smooth muscle proliferation in vitro and in vivo by bon morphogenetic protein-2. J Clin Invest 1997, 100:2824–2832.

    PubMed  CAS  Google Scholar 

  64. Bostrom K, Watson KE, Horn S, et al.: Bone morphogenetic protein expression in human arteroslerotic lesions. J Clin Invest 1993, 91:1800–1809.

    PubMed  CAS  Google Scholar 

  65. Schluesener HJ, Meyermann R: Immunolocalization of BMP-6, a novel TGF-beta-related cytokine, in normal and atherosclerotic smooth muscle cells. Atherosclerosis 1995 113:153–156.

    Article  PubMed  CAS  Google Scholar 

  66. Guo K, Andrès V, Walsh K: Nitric oxide-induced downregulation of cdk2 activity and cyclin A gene transcription in vascular smooth muscle cells. Circulation 1998, 20:2066–2072.

    Google Scholar 

  67. Pollman MJ, Yamada T, Horiuchi M, Gibbons GH: Vasoactive substances regulate vascular smooth muscle apoptosis. Countervailing influences of nitric oxide and angiotensin II. Circ Res 1996, 79:748–756.

    PubMed  CAS  Google Scholar 

  68. von der Leyen H, Gibbons GH, Morishita R, et al.: In vivo gene transfer of nitric oxide synthase inhibits neo-intima formation in injured rat carotid arteries [abstract]. Eur Heart J 1994, 15:426.

    Google Scholar 

  69. Janssens S, Flaherty D, Nong Z, et al.: Human endothelial nitric oxide synthase gene transfer inhibits vascular smooth muscle cell proliferation and neointima formation after balloon injury in rats. Circulation 1998, 97:1274–1281.

    PubMed  CAS  Google Scholar 

  70. Varenne O, Pislaru S, Gillijns H, et al.: Local adenovirus-mediated transfer of human endothelial nitric oxide synthase reduces luminal narrowing after coronary angioplasty in pigs. Circulation 1998, 98:919–926. This study demonstrates the efficacy of nitric oxide synthase as a pleiotropic regulator of vascular injury in balloon-injured porcine left anterior descending coronary arteries. Percutaneous delivery of an adenovirus expressing the transgene ecNOS inhibited both neointima formation and vessel remodeling in a clinically relevant model system.

    PubMed  CAS  Google Scholar 

  71. Shears LL, Kibbe MR, Murdock AD, et al.: Efficient inhibition of intimal hyperplasia by adenovirus-mediated inducibl nitric oxide synthase gene transfer to rats and pigs in vivo. J Am Coll Surg 1998, 187:295–306.

    Article  PubMed  Google Scholar 

  72. Tsutsui M, Chen AF, O'Brien T, et al.: Adventitial expression of recombinant eNOS gene restores NO production in arteries without endothelium. Arterioscler Thromb Vasc Biol 1998, 18:1231–1241

    PubMed  CAS  Google Scholar 

  73. Channon KM, Qian HS, Neplioueva V, et al.: In vivo gene transfer of nitric oxide synthase enhances vasomotor function in carotid arteries from normal and cholesterol-Fed rabbits. Circulation 1998, 98:1905–1911.

    PubMed  CAS  Google Scholar 

  74. Ooboshi H, Toyoda K, Faraci FM, et al.: Improvement of relaxation in an atherosclerotic artery by gene transfer of endothelial nitric oxide synthase. Arterioscler Thromb Vasc Biol 1998, 18:1752–1758.

    PubMed  CAS  Google Scholar 

  75. Schonbeck U, Mach F, Sukhova GK, et al.: Regulation of matrix metalloproteinase expression in human vascular smooth muscle cells by T lymphocytes: a role for CD40 signaling in plaque rupture? Circ Res 1997, 81:448–454.

    PubMed  CAS  Google Scholar 

  76. Lee RT, Schoen FJ, Loree HM, et al.: Circumferential stress and matrix metalloproteinase 1 in human coronary atherosclerosis. Implications for plaque rupture. Arterioscler Thromb Vasc Biol 1996, 16:1070–1073

    PubMed  CAS  Google Scholar 

  77. Bendeck MP, Zempo N, Clowes AW, et al. Smooth muscle cell migration and matrix metalloproteinase expression after arterial injury in the rat. Circ Res 1994, 75 537–545.

    Google Scholar 

  78. Shofud K, Nagashima Y, Kawahara K, et al.: Elevated expression of membrane-type 1 and 3 matrix metalloproteinases in rat vascular smooth muscle cells activated by arterial injury. Lab Invest 1998, 78:915–923.

    Google Scholar 

  79. Southgate KM, Fisher M, Banning AP, et al.: Upregulation of basement membrane-degrading metalloproteinase secretion after balloon injury of pig carotid arteries. Circ Res 1996, 79:1177–1187.

    PubMed  CAS  Google Scholar 

  80. Jenkins GM, Crow MT, Bilato C, et al.: Increased expression of membrane-type matrix metalloproteinase and preferential localization of matrix metalloproteinase-2 to the neointima of balloon-injured rat carotid arteries. Circulation 1998, 97:82–90.

    PubMed  CAS  Google Scholar 

  81. Carmeliet P, Moons L, Ploplis V, et al.: Impaired arterial neointima formation in mice with disruption of the plasminogen gene. J Clin Invest 1997, 99:200–208.

    Article  PubMed  CAS  Google Scholar 

  82. Cheng L, Mantile G, Pauly R, et al.: Adenovirus-mediated gene transfer of the human tissue inhibitor of metalloproteinaseblocks vascular smooth muscle cell invasiveness in vitro and modulates neointimal development in vivo. Circulation 1998, 98:2195–2201.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smith, R.C., Walsh, K. Gene therapy for restenosis. Curr Cardiol Rep 2, 13–23 (2000). https://doi.org/10.1007/s11886-000-0020-7

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11886-000-0020-7

Keywords

Navigation