Skip to main content
Log in

The myocardial matrix and the development and progression of ventricular remodeling

  • Published:
Current Cardiology Reports Aims and scope Submit manuscript

Abstract

Our conceptual framework of chronic heart failure is based upon the neurohormonal model. In this construct, neurohormonal systems that provide short-term homeostasis remain activated after a myocardial injury, producing progressive ventricular dysfunction and worsening heart failure. However, this model fails to explain several important clinical phenomena, that can be explained by an expanded model of heart failure that focuses on myocardial matrix events as the triggers for disease progression. This model embraces the neurohormonal model and integrates the roles of the immune system and the myocardial fibroblast within the matrix to more fully describe the initiation and progression of the disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Packer M: Evolution of the neurohormonal hypothesis to explain the progression of chronic heart failure. Eur Heart J 1995, 16(Suppl) F:4–6.

    PubMed  CAS  Google Scholar 

  2. Levine TB, Francis GS, Goldsmith SR, et al.: Activity of the sympathetic nervous system and renin-angiotensin system assessed by plasma hormone levels and their relationship to hemodynamic abnormalities in congestive heart failure. Am J Cardiol 1982, 49:1659–1666.

    Article  PubMed  CAS  Google Scholar 

  3. Cohn JN, Levin TB, Olivari MT, et al.: Plasma norepinephrine as a guide to prognosis in patients with chronic heart failure. N Engl J Med 1984, 311:819–823.

    Article  PubMed  CAS  Google Scholar 

  4. The CONSENSUS Trial Study Group: Effects of enalapril on mortality in severe congestive heart failure. Results of the Cooperative North Scandinavian Enalapril Survival Study (CONSENSUS). N Engl J Med 1987, 316:1429–1435.

    Article  Google Scholar 

  5. The SOLVD Investigators: Effect of enalapril on survival in patients with reduced left ventricular ejection fractions and congestive heart failure. N Engl J Med 1991, 325:293–302.

    Article  Google Scholar 

  6. Pfeffer M, Braunwald E, Moye L, et al.: Effect of captopril on mortality and morbidity in patients with left ventricular dysfunction after myocardial infarction: results of the Survival and Ventricular Enlargement Trial. N Engl J Med 1992, 327:669–677.

    Article  PubMed  CAS  Google Scholar 

  7. Packer M, Bristow M, Cohn J, et al.: The effect of carvedilol on morbidity and mortality in patients with chronic heart failure. N Engl J Med 1996, 334:1349–1355.

    Article  PubMed  CAS  Google Scholar 

  8. The International Steering Committee: Rationale, design, and organization of the Metoprolol CR/XL Randomized Intervention Trial in Heart Failure (MERIT-HF). Am J Cardiol 1997, 80:54J-58J.

    Article  Google Scholar 

  9. The Cardiac Insufficiency Bisoprolol Study II (CIBIS-II): a randomised trial. Lancet 1999, 353:9–13.

  10. Rumberger JA, Behrenbeck T, Breen JR, et al.: Nonparallel changes in global left ventricular chamber volume and muscle mass during the first year after transmural myocardial infarction in humans. J Am Coll Cardiol 1993, 21:673–682.

    Article  PubMed  CAS  Google Scholar 

  11. Tyagi SC: Proteinases and myocardial extracellular matrix turnover. Mol Cell Biochem 1997, 168:1–12.

    Article  PubMed  CAS  Google Scholar 

  12. Brilla CG, Zhou G, Matsubara L, Weber KT: Collagen metabolism in cultured adult rat cardiac fibroblasts: response to angiotensin II and aldosterone. J Mol Cell Cardiol 1994, 26:809–820.

    Article  PubMed  CAS  Google Scholar 

  13. Simms H, D'Amico R: Regulation of polymorphonuclear leukocyte cytokine receptor expression: the role of altered oxygen tensions and matrix proteins. J Immunol 1996, 157:3605–3616.

    PubMed  CAS  Google Scholar 

  14. Tyagi SC, Lewis K, Pikes D, et al.: Stretch-induced membrane type matrix metalloproteinase and tissue plasminogen activator in cardiac fibroblast cells. J Cell Physiol 1998, 176:374–382.

    Article  PubMed  CAS  Google Scholar 

  15. Sabbah HN, Sharov VG: Apoptosis in heart failure. Prog Cardiovasc Dis 1998, 40:549–562.

    Article  PubMed  CAS  Google Scholar 

  16. Cheng W, Li B, Kajstura J, et al.: Stretch-induced programmed myocyte cell death. J Clin Invest 1995, 96:2247–2259.

    PubMed  CAS  Google Scholar 

  17. Pulkki KJ: Cytokines and cardiomyocyte death. Ann Med 1997, 29:339–343.

    PubMed  CAS  Google Scholar 

  18. Desch CE, Magorien RD, Triffon DW, et al.: Development of pharmacodynamic tolerance to prozosin in congestive heart failure. Am J Cardiol 1979, 44:1178–1182.

    Article  PubMed  CAS  Google Scholar 

  19. Bishop J, Lindahl G: Regulation of cardiovascular collagen synthesis by mechanical load. Cardiovascular Research 1999, 42:27–44. Comprehensive review that establishes a link between the old view of heart failure as a hemodynamic disorder and this proposed view, focussing on the role of the extracellular matrix in the development and progression of remodeling.

    Article  PubMed  CAS  Google Scholar 

  20. Eghbali M: Cardiac fibroblasts: function, regulation of gene expression, and phenotypic modulation. Basic Res Cardiol 1992, 87(suppl 2):183–189.

    PubMed  CAS  Google Scholar 

  21. Butt RP, Laurent GJ, Bishop JE: Collagen production and replication by cardiac fibroblasts is enhanced in response to diverse classes of growth factors. Eur J Cell Biol 1995, 68:330–335.

    PubMed  CAS  Google Scholar 

  22. Fisher SA, Absher M: Norepinephrine and ANG II stimulate secretion of TGF-beta by neonatal rat cardiac fibroblasts in vitro. Am J Physiol 1995, 268:C910-C917.

    PubMed  CAS  Google Scholar 

  23. Li, Feldman, Tiernan: Differential expression of tissue inhibitors of metalloproteinases in the failing human heart. Circulation 1998, 98:1728–1734.

    PubMed  CAS  Google Scholar 

  24. Shimizu N, Yoshiyama M, Takeuchi K, et al.: Doppler echocardiographic assessment and cardiac gene expression analysis of the left ventricle in myocardial infarcted rats. Jpn Circ J 1998, 62:436–442.

    Article  PubMed  CAS  Google Scholar 

  25. Armstrong PW, Moe GW, Howard RJ, et al.: Structural remodelling in heart failure: gelatinase induction. Can J Cardiol 1994, 10:214–220.

    PubMed  CAS  Google Scholar 

  26. Tyagi SC, Kumar S, Voelker DJ, et al.: Differential gene expression of extracellular matrix components in dilated cardiomyopathy. J Cell Biochem 1996, 63:185–198.

    Article  PubMed  CAS  Google Scholar 

  27. Bhambi B, Eghbali M: Effect of norepinephrine on myocardial collagen gene expression and response of cardiac fibroblasts after norepinephrine treatment. Am J Pathol 1991, 139:1131–1142.

    PubMed  CAS  Google Scholar 

  28. Kostuk WJ, Kazamias TM, Gander MP, et al.: Left ventricular size after acute myocardial infarction. Serial changes and their prognostic significance. Circulation 1973, 47:1174–1179.

    PubMed  CAS  Google Scholar 

  29. Lee TH, Hamilton MA, Stevenson LW, et al.: Impact of left ventricular cavity size on survival in advanced heart failure. Am J Cardiol 1993, 72:672–676.

    Article  PubMed  CAS  Google Scholar 

  30. Olivetti G, Capasso JM, Sonnenblick EH, Anversa P: Side-toside slippage of myocytes participates in ventricular wall remodeling acutely after myocardial infarction in rats. Circ Res 1990, 67:23–34.

    PubMed  CAS  Google Scholar 

  31. Gerdes A, Kellerman S, Moore J, et al.: Structural remodeling of cardiac myocytes in patients with ischemic cardiomyopathy. Circulation 1992, 86:426–430.

    PubMed  CAS  Google Scholar 

  32. Nicoletti A, Heudes D, Mandet C, et al.: Inflammatory cells and myocardial fibrosis: spatial and temporal distribution in renovascular hypertensive rats. Cardiovasc Res 1996, 32:1096–1107.

    Article  PubMed  CAS  Google Scholar 

  33. Yue P, Massie BM, Simpson PC, Long CS: Cytokine expression increases in nonmyocytes from rats with postinfarction heart failure. Am J Physiol 1998, 275:H250-H258.

    PubMed  CAS  Google Scholar 

  34. Ono K, Matsumori A, Shioi T, et al.: Cytokine gene expression after myocardial infarction in rat hearts: possible implication in left ventricular remodeling. Circulation 1998, 98:149–156.

    PubMed  CAS  Google Scholar 

  35. Katwa LC, Campbell SE, Tyagi SC, et al.: Cultured myofibroblasts generate angiotensin peptides de novo. J Mol Cell Cardiol 1997, 29:1375–1386.

    Article  PubMed  CAS  Google Scholar 

  36. Harada M, Itoh H, Nakagawa O, et al.: Significance of ventricular myocytes and nonmyocytes interaction during cardiocyte hypertrophy: evidence for endothelin-1 as a paracrine hypertrophic factor from cardiac nonmyocytes. Circulation 1997, 96:3737–3744.

    PubMed  CAS  Google Scholar 

  37. Chapleau MW, Hajduczok G, Abboud FM: Suppression of baroreceptor discharge by endothelin at high carotid sinus pressure. Am J Physiol 1992, 263:R103-R108.

    PubMed  CAS  Google Scholar 

  38. Wang W: Chronic administration of aldosterone depresses baroreceptor reflex function in the dog. Hypertension 1994, 24:571–575.

    PubMed  CAS  Google Scholar 

  39. Gray MO, Long CS, Kalinyak JE, et al.: Angiotensin II stimulates cardiac myocyte hypertrophy via paracrine release of TGF-beta 1 and endothelin-1 from fibroblasts. Cardiovasc Res 1998, 40:352–363.

    Article  PubMed  CAS  Google Scholar 

  40. Bozkurt B, Kribbs SB, Clubb FJ, Jr, et al.: Pathophysiologically relevant concentrations of tumor necrosis factor-α promote progressive left ventricular dysfunction and remodeling in rats. Circulation 1998, 97:1382–1391.

    PubMed  CAS  Google Scholar 

  41. Kubota T, McTiernan CF, Frye CS, et al.: Dilated cardiomyopathy in transgenic mice with cardiac-specific overexpression of tumor necrosis factor-alpha. Circ Res 1997, 81:627–635.

    PubMed  CAS  Google Scholar 

  42. Gwechenberger M, Mendoza LH, Youker KA, et al.: Cardiac myocytes produce interleukin-6 in culture and in viable border zone of reperfused infarctions. Circulation 1999, 99:546–551.

    PubMed  CAS  Google Scholar 

  43. Birks EJ, Yacoub MH: The role of nitric oxide and cytokines in heart failure. Coron Artery Dis 1997, 8:389–402.

    Article  PubMed  CAS  Google Scholar 

  44. Aitken K, Nakamura H, Dawood F, et al.: The pattern of tissue cytokine expression in murine models of myocardial infarction [abstract]. J Am Coll Cardiol 1999, 33:169A.

    Google Scholar 

  45. Hosenpud J, Campbell S, Pan G: Indirect inhibition of myocyte RNA and protein synthesis by interleukin-1. J Mol Cell Cardiol 1990, 22:213–225.

    Article  PubMed  CAS  Google Scholar 

  46. Shindo T, Ikeda U, Ohkawa F, et al.: Nitric oxide synthesis in cardiac myocytes and fibroblasts by inflammatory cytokines. Cardiovasc Res 1995, 29:813–819.

    Article  PubMed  CAS  Google Scholar 

  47. Palmer JN, Hartogensis WE, Patten M, et al.: Interleukin-1 beta induces cardiac myocyte growth but inhibits cardiac fibroblast proliferation in culture. J Clin Invest 1995, 95:2555–2564.

    PubMed  CAS  Google Scholar 

  48. Calderone A, Thaik CM, Takahashi N, et al.: Nitric oxide, atrial natriuretic peptide, and cyclic GMP inhibit the growthpromoting effects of norepinephrine in cardiac myocytes and fibroblasts. J Clin Invest 1998, 101:812–818.

    PubMed  CAS  Google Scholar 

  49. Finkel MS, Oddis CV, Jacob TD, et al.: inotropic effects of cytokines on the heart mediated by nitric oxide. Science 1992, 257:387–389.

    Article  PubMed  CAS  Google Scholar 

  50. Kanwar S, Kubes P: Ischemia/reperfusion-induced granulocyte influx is a multistep process mediated by mast cells. Microcirculation 1994, 1:175–182.

    PubMed  CAS  Google Scholar 

  51. Frangogiannis NG, Lindsey ML, Michael LH, et al.: Resident cardiac mast cells degranulate and release preformed TNF-alpha, initiating the cytokine cascade in experimental canine myocardial ischemia/reperfusion. Circulation 1998, 98:699–710.

    PubMed  CAS  Google Scholar 

  52. Kapadia SR, Oral H, Lee J, et al.: Hemodynamic regulation of tumor necrosis factor-α gene and protein expression in adult feline myocardium. Circ Res 1997, 81:187–195.

    PubMed  CAS  Google Scholar 

  53. Yamada T, Horiuchi M, Dzau VJ: Angiotensin II type 2 receptor mediates programmed cell death. Proc Natl Acad Sci U S A 1996, 93:156–160.

    Article  PubMed  CAS  Google Scholar 

  54. Maulik N, Yoshida T, Das DK: Oxidative stress developed during the reperfusion of ischemic myocardium induces apoptosis. Free Radic Biol Med 1998, 24:869–875.

    Article  PubMed  CAS  Google Scholar 

  55. Bialik S, Geenen DL, Sasson IE, et al.: Myocyte apoptosis during acute myocardial infarction in the mouse localizes to hypoxic regions but occurs independently of p53. J Clin Invest 1997, 100:1363–1372.

    Article  PubMed  CAS  Google Scholar 

  56. Host N, Jensen L, Bendixen P, et al.: The aminoterminal propeptide of type III procollagen provides new infomration on prognosis after acute myocardial infarction. Am J Cardiol 1995, 76:869–873.

    Article  PubMed  CAS  Google Scholar 

  57. Baghelai K, Marktanner R, Dattilo JB, et al.: Decreased expression of tissue inhibitor of metalloproteinase 1 in stunned myocardium. J Surg Res 1998, 77:35–39.

    Article  PubMed  CAS  Google Scholar 

  58. Zhao M, Zhang H, Robinson T, et al.: Profound structural alterations of the extracellular collagen matrix in postischemic dysfunctional ("stunned") but viable myocardium. J Am Coll Cardiol 1987, 10:1322–1334.

    Article  PubMed  CAS  Google Scholar 

  59. Kukielka GL, Smith CW, Manning AM, et al.: Induction of interleukin-6 synthesis in the myocardium. Potential role in postreperfusion inflammatory injury. Circulation 1995, 92:1866–1875.

    PubMed  CAS  Google Scholar 

  60. Weber KT, Janicki JS, Shroff SG, et al.: Collagen remodeling of the pressure-overloaded, hypertrophied nonhuman primate myocardium. Circ Res 1988, 62:757–765.

    PubMed  CAS  Google Scholar 

  61. Pietersma A, de Jong N, Sluiter W, Koster JF: Studies on the interaction of leucocytes and the myocardial vasculature. I. Effect of hypoxia on the adherence of blood granulocytes. Mol Cell Biochem 1992, 116:197–202.

    Article  PubMed  CAS  Google Scholar 

  62. Tyagi SC, Kumar S, Borders S: Reduction-oxidation (redox) state regulation of extracellular matrix metalloproteinases and tissue inhibitors in cardiac normal and transformed fibroblast cells. J Cell Biochem 1996, 61:139–151.

    Article  PubMed  Google Scholar 

  63. Mann DL, Kent RL, Parsons B, Cooper GT: Adrenergic effects on the biology of the adult mammalian cardiocyte. Circulation 1992, 85:790–804.

    PubMed  CAS  Google Scholar 

  64. Kaddoura S, Firth J, Noheler K, et al.: Endothelin-1 in involved in norepinephrine-induces ventricular hypertrophy in vivo: acute effects of bosentan, an orally active, mixed endothelin ETA nd ETB receptor antagonist. Circulation 1996, 93:2068–2079.

    PubMed  CAS  Google Scholar 

  65. Brilla CG, Scheer C, Rupp H: Angiotensin II and intracellular calcium of adult cardiac fibroblasts. J Mol Cell Cardiol 1998, 30:1237–1246.

    Article  PubMed  CAS  Google Scholar 

  66. Lown B, Verrier R: Neural activity and ventricualr fibrillation. N Engl J Med 1976, 294:1165–1170.

    Article  PubMed  CAS  Google Scholar 

  67. Booz GW, Baker KM: Molecular signalling mechanisms controlling growth and function of cardiac fibroblasts. Cardiovasc Res 1995, 30:537–543.

    Article  PubMed  CAS  Google Scholar 

  68. Takizawa T, Gu M, Chobanian AV, Brecher P: Effect of nitric oxide on DNA replication induced by angiotensin II in rat cardiac fibroblasts. Hypertension 1997, 30:1035–1040.

    PubMed  CAS  Google Scholar 

  69. Re R: The myocardial intracellular renin-angiotensin system. Am J Cardiol 1987, 59:56A-58A.

    Article  PubMed  CAS  Google Scholar 

  70. Kim NN, Villegas S, Summerour SR, Villarreal FJ: Regulation of cardiac fibroblast extracellular matrix production by bradykinin and nitric oxide. J Mol Cell Cardiol 1999, 31:457–466.

    Article  PubMed  CAS  Google Scholar 

  71. MacFadyen RJ, Barr CS, Struthers AD: Aldosterone blockade reduces vascular collagen turnover, improves heart rate variability and reduces early morning rise in heart rate in heart failure patients. Cardiovasc Res 1997, 35:30–34.

    Article  PubMed  CAS  Google Scholar 

  72. Pitt B, Zannad F, Remme WJ, et al.: The effect of spironolactone on morbidity and mortality in patients with severe heart failure. Randomized Aldactone Evaluation Study Investigators [see comments]. N Engl J Med 1999, 341:709–717.

    Article  PubMed  CAS  Google Scholar 

  73. Hall SA, Cigarroa CG, Marcoux L, et al.: Time course of improvement in left ventricular function, mass and geometry in patients with congestive heart failure treated with beta-adrenergic blockade. J Am Coll Cardiol 1995, 25:1154–1161.

    Article  PubMed  CAS  Google Scholar 

  74. Bristow MR, Ginsburg R, Umans V, et al.: Beta 1- and beta 2- adrenergic-receptor subpopulations in nonfailing and failing human ventricular myocardium: coupling of both receptor subtypes to muscle contraction and selective beta 1-receptor down-regulation in heart failure. Circ Res 1986, 59:297–309.

    PubMed  CAS  Google Scholar 

  75. Iizuka K, Sano H, Kawaguchi H, Kitabatake A: Transforming growth factor beta-1 modulates the number of betaadrenergic receptors in cardiac fibroblasts. J Mol Cell Cardiol 1994, 26:435–440.

    Article  PubMed  CAS  Google Scholar 

  76. Landmann R: Beta-adrenergic receptors in human leukocyte subpopulations. Eur J Clin Invest 1992, 22(suppl 1):30–36.

    PubMed  Google Scholar 

  77. Sugden PH, Fuller SJ, Mynett JR, et al.: Stimulation of adult rat ventricular myocyte protein synthesis and phosphoinositide hydrolysis by the endothelins. Biochim Biophys Acta 1993, 1175:327–332.

    Article  PubMed  CAS  Google Scholar 

  78. Fraccarollo D, Hu K, Galuppo P, et al.: Chronic endothelin receptor blockade attenuates progressive ventricular dilation and improves cardiac function in rats with myocardilal infarction. Circulation 1997, 96:3963–3973.

    PubMed  CAS  Google Scholar 

  79. Waagstein F, Mobini R, Andersson B, et al.: Moxonidine attenuates trasmyocardial norepinephrine concentration gradient and total body norepinephrine spillover in congestive heart failure [abstract]. Euro J Cardiol 1998, 22:1056.

    Google Scholar 

  80. Cohn JN, Archibald DG, Ziesche S, et al.: Effect of vasodilator therapy on mortality in chronic congestive heart failure. Results of a Veterans Administration Cooperative Study. N Engl J Med 1986, 314:1547–1552.

    Article  PubMed  CAS  Google Scholar 

  81. Peng M, Li Y, Luo Z, et al.: Alpha2-adrenergic agonists selectively activate extracellular signal-regulated kinases in Muller cells in vivo. Invest Ophthalmol Vis Sci 1998, 39:1721–1726.

    PubMed  CAS  Google Scholar 

  82. Bamberger CM, Monig H, Mill G, et al.: Growth hormone secretion in response to the new centrally acting antihypertensive agent moxonidine in normal human subjects: comparison to clonidine and GHRH. Exp Clin Endocrinol Diabetes 1995, 103:205–208.

    Article  PubMed  CAS  Google Scholar 

  83. Ricci A, Bronzetti E, Conterno A, et al.: alpha1-adrenergic receptor subtypes in human peripheral blood lymphocytes. Hypertension 1999, 33:708–712.

    PubMed  CAS  Google Scholar 

  84. Matsumori A, Shioi T, Yamada T, et al.: Vesnarinone, a new inotropic agent, inhibits cytokine production by stimulated human blood from patients with heart failure. Circulation 1994, 89:955–958.

    PubMed  CAS  Google Scholar 

  85. Cohn JN, Goldstein SO, Greenberg BH, et al.: A dosedependent increase in mortality with vesnarinone among patients with severe heart failure. Vesnarinone Trial Investigators. N Engl J Med 1998, 339:1810–1816.

    Article  PubMed  CAS  Google Scholar 

  86. Bozkurt B, Torre-Amione G, Soran O, et al.: Results of a multidose phase I trial with enbrel (etanercept, p75 TNF receptor fusion protein) in patients with heart failure. J Am Coll Cardiol 1999, 1110–1114.

  87. Rohde LE, Ducharme A, Arroyo LH, et al.: Matrix metalloproteinase inhibition attenuates early left ventricular enlargement after experimental myocardial infarction in mice. Circulation 1999, 99:3063–3070. The early administration of an inhibitor of extracellular matrix breakdown was shown to reduce the extent of ventricular remodeling. This result supports the role of matrix proteinases in the development of ventricular remodeling.

    PubMed  CAS  Google Scholar 

  88. Spinale FG, Coker ML, Krombach SR, et al.: Matrix metalloproteinase inhibition during the development of congestive heart failure: effects on left ventricular dimensions and function. Circ Res 1999, 85:364–376.

    PubMed  CAS  Google Scholar 

  89. Murohara T, Guo JP, Lefer AM: Cardioprotection by a novel recombinant serine protease inhibitor in myocardial ischemia and reperfusion injury. J Pharmacol Exp Ther 1995, 274:1246–1253.

    PubMed  CAS  Google Scholar 

  90. Shimai S, Takano T, Seino Y, et al.: Role of PMN elastase on ischemic myocardial injury in evolving myocardial infarction: correlation with clinical parameters and intervention by protease inhibitor ulinastatin. Jpn Circ J 1989, 53:1144–1151.

    PubMed  CAS  Google Scholar 

  91. Shibata T, Yamamoto F, Suehiro S, Kinoshita H: Effects of protease inhibitors on postischemic recovery of the heart. Cardiovasc Drugs Ther 1997, 11:547–556.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sackner-Bernstein, J.D. The myocardial matrix and the development and progression of ventricular remodeling. Curr Cardiol Rep 2, 112–119 (2000). https://doi.org/10.1007/s11886-000-0007-4

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11886-000-0007-4

Keywords

Navigation