Skip to main content

Advertisement

Log in

Role of Intravesical Ozone in the Management of BPS/Interstitial Cystitis

  • Review
  • Published:
Current Bladder Dysfunction Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

In this review, studies and mechanisms of action relative to intravesical ozone in Bladder Pain Syndrome/Interstitial Cystitis (IC/BPS) will be summarized and correlated with pathologies of chronic pelvic pain in animal models and clinical trials.

Recent Findings

Some studies have investigated intravesical ozone therapy in view of the disadvantages of conventional interventions and the extensive popularization of ozone in healthcare.

Summary

Despite the small number of specific studies, many recent, results postulate ozone as a promising alternative for the management of IC/BPS given its antioxidant, anti-inflammatory, and immunomodulatory effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. •• Homma Y, Akiyama Y, Tomoe H, Furuta A, Ueda T, Maeda D, et al. Clinical guidelines for interstitial cystitis/bladder pain syndrome. Int J Urol. 2020;27(7):578–89. https://doi.org/10.1111/iju.14234. Updated clinical guidelines for IC/BPS.

    Article  PubMed  Google Scholar 

  2. van de Merwe JP, Nordling J, Bouchelouche P, Bouchelouche K, Cervigni M, Daha LK, et al. Diagnostic criteria, classification, and nomenclature for painful bladder syndrome/interstitial cystitis: an ESSIC proposal. Eur Urol. 2008;53(1):60–7. https://doi.org/10.1016/j.eururo.2007.09.019.

    Article  PubMed  Google Scholar 

  3. Berry SH, Elliott MN, Suttorp M, Bogart LM, Stoto MA, Eggers P, et al. Prevalence of symptoms of bladder pain syndrome/interstitial cystitis among adult females in the United States. J Urol. 2011;186(2):540–4. https://doi.org/10.1016/j.juro.2011.03.132.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Nickel JC, Doiron RC. Hunner lesion interstitial cystitis: the bad, the good, and the unknown. Eur Urol. 2020;78(3):e122–4. https://doi.org/10.1016/j.eururo.2020.04.067.

    Article  PubMed  Google Scholar 

  5. • Su F, Zhang W, Meng L, Zhang W, Liu X, Liu X, et al. Multimodal single-cell analyses outline the immune microenvironment and therapeutic effectors of interstitial cystitis/bladder pain syndrome. Adv Sci (Weinh). 2022;9(18):e2106063. https://doi.org/10.1002/advs.202106063. Interesting approach to the bladder mucosa microenvironment providing a resource for diagnosis and treatment of IC/BPS.

    Article  CAS  PubMed  Google Scholar 

  6. Martin Jensen M, Jia W, Schults AJ, Ye X, Prestwich GD, Oottamasathien S. IL-33 mast cell axis is central in LL-37 induced bladder inflammation and pain in a murine interstitial cystitis model. Cytokine. 2018;110:420–7. https://doi.org/10.1016/j.cyto.2018.05.012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Gamper M, Viereck V, Eberhard J, Binder J, Moll C, Welter J, et al. Local immune response in bladder pain syndrome/interstitial cystitis ESSIC type 3C. Int Urogynecol J. 2013;24(12):2049–24057. https://doi.org/10.1007/s00192-013-2112-0.

    Article  PubMed  PubMed Central  Google Scholar 

  8. • Wang M, Li X, Yang Z, Chen Y, Shu T, Huang Y. LncRNA MEG3 alleviates interstitial cystitis in rats by upregulating Nrf2 and inhibiting the p38/NF-κB pathway. Cytokine. 2023;165:156169. https://doi.org/10.1016/j.cyto.2023.156169. An approach regarding the involvement of the Nrf2 pathway in IC.

    Article  CAS  PubMed  Google Scholar 

  9. Ni B, Chen Z, Shu L, Shao Y, Huang Y, Tamrat NE, et al. Nrf2 pathway ameliorates bladder dysfunction in cyclophosphamide-induced cystitis via suppression of oxidative stress. Oxid Med Cell Longev. 2021:4009308. https://doi.org/10.1155/2021/4009308.

  10. Scassellati C, Galoforo AC, Bonvicini C, Esposito C, Ricevuti G. Ozone: a natural bioactive molecule with antioxidant property as potential new strategy in aging and in neurodegenerative disorders. Ageing Res Rev. 2020;63:101138. https://doi.org/10.1016/j.arr.2020.101138.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Schönbein CF. Ueber die natur des eigenthümlichen geruches, welcher sich sowohl am positiven pole einer säule während der wasserelektrolyse, wie auch beim ausströmen der gewöhnlichen elektricität aus spitzen entwickelt. Annalen der Physik. 1843;135(6):240–55. https://doi.org/10.1002/andp.18431350604.

    Article  Google Scholar 

  12. •• Bocci V. Ozone: A New Medical Drug. 2nd ed. Netherlands: Springer; 2011. https://doi.org/10.1007/978-90-481-9234-2. Knowledge bases on the mechanism of action and administration of ozone.

    Book  Google Scholar 

  13. Bocci V, Valacchi G. Free radicals and antioxidants: how to reestablish redox homeostasis in chronic diseases? Curr Med Chem. 2013;20(27):3397–415. https://doi.org/10.2174/0929867311320270005.

    Article  CAS  PubMed  Google Scholar 

  14. Smith NL, Wilson AL, Gandhi J, Vatsia S, Khan SA. Ozone therapy: an overview of pharmacodynamics, current research, and clinical utility. Med Gas Res. 2017;7(3):212–9. https://doi.org/10.4103/2045-9912.215752.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Akiyama Y, Luo Y, Hanno PM, Maeda D, Homma Y. Interstitial cystitis/bladder pain syndrome: the evolving landscape, animal models and future perspectives. Int J Urol. 2020;27(6):491–503. https://doi.org/10.1111/iju.14229.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Fall M, Nordling J, Cervigni M, Dinis Oliveira P, Fariello J, Hanno P, et al. Hunner lesion disease differs in diagnosis, treatment and outcome from bladder pain syndrome: an ESSIC working group report. Scand J Urol. 2020;54(2):91–8. https://doi.org/10.1080/21681805.2020.1730948.

    Article  PubMed  Google Scholar 

  17. Chen IC, Lee MH, Lin HH, Wu SL, Chang KM, Lin HY. Somatoform disorder as a predictor of interstitial cystitis/bladder pain syndrome: evidence from a nested case-control study and a retrospective cohort study. Medicine (Baltimore). 2017;96(18):e6304. https://doi.org/10.1097/MD.0000000000006304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. • Clemens JQ, Mullins C, Ackerman AL, Bavendam T, van Bokhoven A, Ellingson BM, et al. Urologic chronic pelvic pain syndrome: insights from the MAPP Research Network. Nat Rev Urol. 2019;16(3):187–200. https://doi.org/10.1038/s41585-018-0135-5. This review highlights research of chronic pelvic pain syndrome addressing insights from the MAPP Research Network.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Liu F, Chen Y, Liu R, Chen B, Liu C, Xing J. Long noncoding RNA (MEG3) in urinal exosomes functions as a biomarker for the diagnosis of Hunner-type interstitial cystitis (HIC). J Cell Biochem. 2020;121(2):1227–37. https://doi.org/10.1002/jcb.29356.

    Article  CAS  PubMed  Google Scholar 

  20. Slobodov G, Feloney M, Gran C, Kyker KD, Hurst RE, Culkin DJ. Abnormal expression of molecular markers for bladder impermeability and differentiation in the urothelium of patients with interstitial cystitis. J Urol. 2004;171(4):1554–8. https://doi.org/10.1097/01.ju.0000118938.09119.a5.

    Article  CAS  PubMed  Google Scholar 

  21. Downie JW, Karmazyn M. Mechanical trauma to bladder epithelium liberates prostanoids which modulate neurotransmission in rabbit detrusor muscle. J Pharmacol Exp Ther. 1984;230(2):445–9.

    CAS  PubMed  Google Scholar 

  22. Fernandes VS, Hernández M. The role of nitric oxide and hydrogen sulfide in urinary tract function. Basic Clin Pharmacol Toxicol. 2016;119(Suppl 3):34–41. https://doi.org/10.1111/bcpt.12565.

    Article  CAS  PubMed  Google Scholar 

  23. Ito A, Hagiyama M, Oonuma J. Nerve-mast cell and smooth muscle-mast cell interaction mediated by cell adhesion molecule-1, CADM1. J Smooth Muscle Res. 2008;44(2):83–93. https://doi.org/10.1540/jsmr.44.83.

    Article  PubMed  Google Scholar 

  24. Steers WD, Tuttle JB. Mechanisms of disease: the role of nerve growth factor in the pathophysiology of bladder disorders. Nat Clin Pract Urol. 2006;3(2):101–10. https://doi.org/10.1038/ncpuro0408.

    Article  CAS  PubMed  Google Scholar 

  25. Liu T, Zhang L, Joo D, Sun SC. NF-κB signaling in inflammation. Signal Transduct Target Ther. 2017;2:17023. https://doi.org/10.1038/sigtrans.2017.23.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Wang Z, Han Q, Guo YL, Liu XH, Qiu T. Effect of ozone oxidative preconditioning on inflammation and oxidative stress injury in rat model of renal transplantation. Acta Cir Bras. 2018;33(3):238–49. https://doi.org/10.1590/s0102-865020180030000006.

    Article  PubMed  Google Scholar 

  27. Criegee R. Mechanism of ozonolysis. Angew Chem Int Ed. 1975;14(11):745–52. https://doi.org/10.1002/anie.197507451.

    Article  Google Scholar 

  28. Bocci V, Valacchi G, Corradeschi F, Fanetti G. Studies on the biological effects of ozone: 8. Effects on the total antioxidant status and on interleukin-8 production. Mediators Inflamm. 1998;7(5):313–7. https://doi.org/10.1080/09629359890820.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Viebahn-Hänsler R, León Fernández OS, Fahmy Z. Ozone in medicine: the low-dose ozone concept—guidelines and treatment strategies. Ozone: Sci Eng. 2012;34(6):408–24. https://doi.org/10.1080/01919512.2012.717847.

    Article  CAS  Google Scholar 

  30. • Viebahn-Haensler R, León Fernández OS, Ozone in medicine. The low-dose ozone concept and its basic biochemical mechanisms of action in chronic inflammatory diseases. Int J Mol Sci. 2021;22(15):7890. https://doi.org/10.3390/ijms22157890. Important approach on ozone mechanisms of action.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. ISCO3. Madrid declaration on ozone therapy. 3rd ed Madrid. www.isco3.org. International Scientific Committee of Ozone Therapy; 2020.

    Google Scholar 

  32. Delgado-Roche L, Riera-Romo M, Mesta F, Hernández-Matos Y, Barrios JM, Martínez-Sánchez G, et al. Medical ozone promotes Nrf2 phosphorylation reducing oxidative stress and pro-inflammatory cytokines in multiple sclerosis patients. Eur J Pharmacol. 2017;811:148–54. https://doi.org/10.1016/j.ejphar.2017.06.017.

    Article  CAS  PubMed  Google Scholar 

  33. Galiè M, Costanzo M, Nodari A, Boschi F, Calderan L, Mannucci S, et al. Mild ozonisation activates antioxidant cell response by the Keap1/Nrf2 dependent pathway. Free Radic Biol Med. 2018;124:114–21. https://doi.org/10.1016/j.freeradbiomed.2018.05.093.

    Article  CAS  PubMed  Google Scholar 

  34. Galiè M, Covi V, Tabaracci G, Malatesta M. The Role of Nrf2 in the antioxidant cellular response to medical ozone exposure. Int J Mol Sci. 2019;20(16):4009. https://doi.org/10.3390/ijms20164009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Oliveira-Marques V, Marinho HS, Cyrne L, Antunes F. Role of hydrogen peroxide in NF-κB activation: from inducer to modulator. Antioxid Redox Signal. 2009;11(9):2223–43. https://doi.org/10.1089/ars.2009.2601.

    Article  CAS  PubMed  Google Scholar 

  36. Bohush A, Niewiadomska G, Filipek A. Role of mitogen activated protein kinase signaling in Parkinson’s disease. Int J Mol Sci. 2018;19(10):2973. https://doi.org/10.3390/ijms19102973.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hayes JD, Dinkova-Kostova AT. The Nrf2 regulatory network provides an interface between redox and intermediary metabolism. Trends Biochem Sci. 2014;39(4):199–218. https://doi.org/10.1016/j.tibs.2014.02.002.

    Article  CAS  PubMed  Google Scholar 

  38. Wang J, Wu M, Lin X, Li Y, Fu Z. Low-concentration oxygen/ozone treatment attenuated radiculitis and mechanical allodynia via PDE2A-cAMP/cGMP-NF-κB/p65 Signaling in Chronic Radiculitis Rats. P. Pain Res Manag. 2018:5192814. https://doi.org/10.1155/2018/5192814.

  39. Zhang W, Wang F, Zhang L, Sun T, Fu Z. Intrathecal injection of ozone alleviates CCI-induced neuropathic pain via the GluR6-NF-κB/p65 signalling pathway in rats. Mol Med Rep. 2021;23(4):231. https://doi.org/10.3892/mmr.2021.11870.

    Article  CAS  PubMed  Google Scholar 

  40. • Travagli V, Iorio EL. The biological and molecular action of ozone and its derivatives: state-of-the-art, enhanced scenarios, and quality insights. Int J Mol Sci. 2023;24(10):8465. https://doi.org/10.3390/ijms24108465. Comprehensive and up-to-date review of the molecular mechanism of ozone action.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Białoszewski D, Kowalewski M. Superficially, longer, intermittent ozone theraphy in the treatment of the chronic, infected wounds. Ortop Traumatol Rehabil. 2003;5(5):652–8.

    PubMed  Google Scholar 

  42. Di Mauro R, Cantarella G, Bernardini R, Di Rosa M, Barbagallo I, Distefano A, et al. The biochemical and pharmacological properties of ozone: The smell of protection in acute and chronic diseases. Int J Mol Sci. 2019;20(3):634. https://doi.org/10.3390/ijms20030634.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Soares CD, Morais TML, Araújo R, Meyer PF, Oliveira EAF, Silva RMV, et al. Effects of subcutaneous injection of ozone during wound healing in rats. Growth Factors. 2019;37(1-2):95–103. https://doi.org/10.1080/08977194.2019.1643339.

    Article  CAS  PubMed  Google Scholar 

  44. Masan J, Sramka M, Rabarova D. The possibilities of using the effects of ozone therapy in neurology. Neuro Endocrinol Lett. 2021;42(1):13–21.

    PubMed  Google Scholar 

  45. Rodríguez-Sánchez S, Valiente N, Seseña S, Cabrera-Pinto M, Rodríguez A, Aranda A, et al. Ozone modified hypothalamic signaling enhancing thermogenesis in the TDP-43A315T transgenic model of Amyotrophic Lateral Sclerosis. Sci Rep. 2022;12(1):20814. https://doi.org/10.1038/s41598-022-25033-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Clavo B, Cánovas-Molina A, Ramallo-Fariña Y, Federico M, Rodríguez-Abreu D, Galván S, et al. Effects of ozone treatment on health-related quality of life and toxicity induced by radiotherapy and chemotherapy in symptomatic cancer survivors. Int J Environ Res Public Health. 2023;20(2):1479. https://doi.org/10.3390/ijerph20021479.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Migliorini F, Maffulli N, Eschweiler J, Bestch M, Tingart M, Baroncini A. Ozone injection therapy for intervertebral disc herniation. Br Med Bull. 2020;136(1):88–106. https://doi.org/10.1093/bmb/ldaa032.

    Article  PubMed  Google Scholar 

  48. Rowen RJ, Robins H. Ozone therapy for complex regional pain syndrome: review and case report. Curr Pain Headache Rep. 2019;23(6):41. https://doi.org/10.1007/s11916-019-0776-y.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Chen H, Xing B, Liu X, Zhan B, Zhou J, Zhu H, et al. Similarities between ozone oxidative preconditioning and ischemic preconditioning in renal ischemia/reperfusion injury. Arch Med Res. 2008;39(2):169–78. https://doi.org/10.1016/j.arcmed.2007.09.005.

    Article  CAS  PubMed  Google Scholar 

  50. Wang L, Chen Z, Liu Y, Du Y, Liu X. Ozone oxidative postconditioning inhibits oxidative stress and apoptosis in renal ischemia and reperfusion injury through inhibition of MAPK signaling pathway. Drug Des Devel Ther. 2018;12:1293–301. https://doi.org/10.2147/DDDT.S164927.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Wang L, Chen Z, Weng X, Wang M, Du Y, Liu X. Combined ischemic postconditioning and ozone postconditioning provides synergistic protection against renal ischemia and reperfusion injury through inhibiting pyroptosis. Urology. 2019;123:296.e1–8. https://doi.org/10.1016/j.urology.2018.10.015.

    Article  PubMed  Google Scholar 

  52. Clemens JQ, Mullins C, Kusek JW, Kirkali Z, Mayer EA, Rodríguez LV, et al. The MAPP research network: a novel study of urologic chronic pelvic pain syndromes. BMC Urol. 2014;14:57. https://doi.org/10.1186/1471-2490-14-57.

    Article  PubMed  PubMed Central  Google Scholar 

  53. • Clavo B, Martínez-Sánchez G, Rodríguez-Esparragón F, Rodríguez-Abreu D, Galván S, Aguiar-Bujanda D, et al. Modulation by ozone therapy of oxidative stress in chemotherapy-induced peripheral neuropathy: the background for a randomized clinical trial. Int J Mol Sci. 2021;22(6):2802. https://doi.org/10.3390/ijms22062802. This study approach the involvement of the NFkβ/Nrf2 pathway in the ozone mechanism of action.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Clavo B, Ceballos D, Gutierrez D, Rovira G, Suarez G, Lopez L, et al. Long-term control of refractory hemorrhagic radiation proctitis with ozone therapy. J Pain Symptom Manage. 2013;46(1):106–12. https://doi.org/10.1016/j.jpainsymman.2012.06.017.

    Article  PubMed  Google Scholar 

  55. Katibov MI, Alibekov MM. Transrectal ozone and magnetic therapy for treatment of chronic bacterial prostatitis. Urologiia. 2019;6:6–11.

    Google Scholar 

  56. Teke K, Ozkan TA, Cebeci OO, Yilmaz H, Keles ME, Ozkan L, et al. Preventive effect of intravesical ozone supplementation on n-methyl-n-nitrosourea-induced non-muscle invasive bladder cancer in male rats. Exp Anim. 2017;66(3):191–8. https://doi.org/10.1538/expanim.16-0093.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Tasdemir C, Tasdemir S, Vardi N, Ates B, Onal Y, Erdogan S, et al. Evaluation of the effects of ozone therapy on Escherichia coli-induced cytitis in rat. Ir J Med Sci. 2013;182(4):557–63. https://doi.org/10.1007/s11845-013-0926-x.

    Article  CAS  PubMed  Google Scholar 

  58. Bayrak O, Erturhan S, Seckiner I, Erbagci A, Ustun A, Karakok M. Chemical cystitis developed in experimental animals model: topical effect of intravesical ozone application to bladder. Urol Ann. 2014;6(2):122–6. https://doi.org/10.4103/0974-7796.130553.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Tasdemir S, Tasdemir C, Vardi N, Ates B, Taslidere E, Karaaslan MG, et al. Effects of ozone therapy on cyclophosphamide-induced urinary bladder toxicity in rats. Clin Invest Med. 2013;36(1):E9–17. https://doi.org/10.25011/cim.v36i1.19400.

    Article  CAS  PubMed  Google Scholar 

  60. Clavo B, Gutiérrez D, Martín D, Suárez G, Hernández MA, Robaina F. Intravesical ozone therapy for progressive radiation-induced hematuria. J Altern Complement Med. 2005;11(3):539–41. https://doi.org/10.1089/acm.2005.11.539.

    Article  PubMed  Google Scholar 

  61. Clavo B, Rodríguez-Esparragón F, Rodríguez-Abreu D, Martínez-Sánchez G, Llontop P, Aguiar-Bujanda D, et al. Modulation of oxidative stress by ozone therapy in the prevention and treatment of chemotherapy-induced toxicity: review and prospects. Antioxidants (Basel). 2019;8(12):588. https://doi.org/10.3390/antiox8120588.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Daniluk M, Fryczkowski M, Wielicki Z. Application of ozonotherapy in chronic inflammation of the urinary bladder. Ortop Traumatol Rehabil. 2000;2(1):61–3.

    CAS  PubMed  Google Scholar 

  63. Muzi F, Tati G. Oxygen-ozone autohaemotherapy and intravescical oxygen-ozone insufflations in treatment of recurrent and interstitial cystitis: preliminary results. J Pharm Pharmacol. 2017;5(8):512–4. https://doi.org/10.17265/2328-2150/2017.08.004.

    Article  Google Scholar 

  64. Yuldashev SAA, Ruziboev A. Optimization of treatment of acute cystitis with ozone therapy. Clin Anat and Oper Surg. 2017;16(1):81–4. https://doi.org/10.24061/1727-0847.16.1.2017.17.

    Article  Google Scholar 

  65. Neimark AI, Nepomnyashchikh LM, Lushnikova EL, Bakarev MA, Abdullaev NA, Sizov KA. Microcirculation and structural reorganization of the bladder mucosa in chronic cystitis under conditions of ozone therapy. Bull Exp Biol Med. 2014;156(3):399–405. https://doi.org/10.1007/s10517-014-2358-7.

    Article  CAS  PubMed  Google Scholar 

  66. •• Pires MV, de Lima CJ, Carvalho HC, Moreira LH, Fernandes AB. Effectiveness of intravesical ozone in interstitial cystitis by the O’Leary–Sant symptom index. Int Urogynecol J. 2023;34(7):1437–46. https://doi.org/10.1007/s00192-022-05383-3. This article reports a clinical trial study about the intravesical ozone in IC/BPS patients, and the clinical potential of ozone.

    Article  PubMed  Google Scholar 

  67. Li W, Khor TO, Xu C, Shen G, Jeong WS, Yu S, et al. Activation of Nrf2-antioxidant signaling attenuates NFkappaB-inflammatory response and elicits apoptosis. Biochem Pharmacol. 2008;76(11):1485–9. https://doi.org/10.1016/j.bcp.2008.07.017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Pall ML, Levine S. Nrf2, a master regulator of detoxification and also antioxidant, anti-inflammatory and other cytoprotective mechanisms, is raised by health promoting factors. Sheng Li Xue Bao. 2015;67(1):1–18.

    CAS  PubMed  Google Scholar 

  69. Aminzadeh MA, Nicholas SB, Norris KC, Vaziri ND. Role of impaired Nrf2 activation in the pathogenesis of oxidative stress and inflammation in chronic tubulo-interstitial nephropathy. Nephrol Dial Transplant. 2013;28(8):2038–45. https://doi.org/10.1093/ndt/gft022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Oeckinghaus A, Ghosh S. The NF-kappaB family of transcription factors and its regulation. Cold Spring Harb Perspect Biol. 2009;1(4):a000034. https://doi.org/10.1101/cshperspect.a000034.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

LH Moreira, AB Fernandes, and CJ Lima acknowledge the Ânima Institute (AI). A. B. Fernandes thanks CNPq for the productivity fellowship (Process No. 310708/2021-4).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Verônica Pires.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pires, M.V., Carvalho, H.C., Moreira, L.H. et al. Role of Intravesical Ozone in the Management of BPS/Interstitial Cystitis. Curr Bladder Dysfunct Rep 18, 381–388 (2023). https://doi.org/10.1007/s11884-023-00716-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11884-023-00716-4

Keywords

Navigation