Skip to main content

Advertisement

Log in

Central Nervous Stimulation for Neurogenic Lower Urinary Tract Dysfunction: Current Application and Emergent Therapies

  • Published:
Current Bladder Dysfunction Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Neurogenic lower urinary tract dysfunction (NLUTD) occurs when control of the bladder, bladder neck, and/or its sphincters is impaired by a neurologic disorder. While neuromodulation is commonly utilized in the treatment of non-neurogenic lower urinary tract symptoms, its use in the management of NLUTD remains largely investigational. This review examines evidences in neuromodulation of the central nervous system as an emerging therapy for NLUTD.

Recent Findings

Neuromodulation of the brain and the spinal cord with both invasive and non-invasive modalities can improve subjective symptoms and objective voiding parameters in human patients and animal subjects with NLUTD. There is growing understanding of the neural circuity involved in bladder function, allowing for more targeted neuromodulation. In addition, depending on the stimulation parameters, neuronal activity can either be promoted or inhibited.

Summary

Data from small human trials and animal subjects show that neuromodulation of the brain and spinal cord can be an effective treatment for NLUTD. Prospective, sham-controlled studies are needed before adoption of these treatment modalities into clinical use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Ginsberg DA, Boone TB, Cameron AP, et al. The AUA/SUFU guideline on adult neurogenic lower urinary tract dysfunction: diagnosis and evaluation. J Urol. 2021;206:1097–105.

    Article  PubMed  Google Scholar 

  2. Fowler CJ, Griffiths D, de Groat WC. The neural control of micturition. Nat Rev Neurosci. 2008;9:453–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Seif C, Herzog J, van der Horst C, Schrader B, Volkmann J, Deuschl G, Juenemann K-P, Braun PM. Effect of subthalamic deep brain stimulation on the function of the urinary bladder. Ann Neurol. 2004;55:118–20.

    Article  PubMed  Google Scholar 

  4. Herzog J, Weiss PH, Assmus A, Wefer B, Seif C, Braun PM, Herzog H, Volkmann J, Deuschl G, Fink GR. Subthalamic stimulation modulates cortical control of urinary bladder in Parkinson’s disease. Brain J Neurol. 2006;129:3366–75.

    Article  Google Scholar 

  5. Finazzi-agrò E, Peppe A, D’amico A, Petta F, Mazzone P, Stanzione P, Micali F, Caltagirone C. Effects of subthalamic nucleus stimulation on urodynamic findings in patients with Parkinson’s disease. J Urol. 2003;169:1388–91.

    Article  PubMed  Google Scholar 

  6. Shimizu N, Matsumoto S, Mori Y, Yoshioka N, Uemura H, Nakano N, Taneda M. Effects of deep brain stimulation on urodynamic findings in patients with Parkinson’s disease. Hinyokika Kiyo. 2007;53:609–12.

    PubMed  Google Scholar 

  7. Jörg E, Sartori AM, Hofer A-S, Baumann CR, Kessler TM. Deep brain stimulation effects on lower urinary tract function: systematic review and meta-analysis. Parkinsonism Relat Disord. 2020;79:65–72.

    Article  PubMed  Google Scholar 

  8. Winge K, Nielsen KK. Bladder dysfunction in advanced Parkinson’s disease. Neurourol Urodyn. 2012;31:1279–83.

    Article  PubMed  Google Scholar 

  9. Zong H, Meng F, Zhang Y, Wei G, Zhao H. Clinical study of the effects of deep brain stimulation on urinary dysfunctions in patients with Parkinson’s disease. Clin Interv Aging. 2019;14:1159–66.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Mordasini L, Kessler TM, Kiss B, Schüpbach M, Pollo C, Kaelin-Lang A. Bladder function in patients with dystonia undergoing deep brain stimulation. Parkinsonism Relat Disord. 2014;20:1015–7.

    Article  PubMed  Google Scholar 

  11. Mock S, Osborn DJ, Brown ET, Reynolds WS, Turchan M, Pallavaram S, Rodriguez W, Dmochowski R, Tolleson CM. The impact of pallidal and subthalamic deep brain stimulation on urologic function in Parkinson’s disease. Neuromodulation J Int Neuromodulation Soc. 2016;19:717–23.

    Article  Google Scholar 

  12. •• Witte LP, Odekerken VJJ, Boel JA, Schuurman PR, Gerbrandy-Schreuders LC, de Bie RMA, Group on behalf of the N study. Does deep brain stimulation improve lower urinary tract symptoms in Parkinson’s disease? Neurourol Urodyn. 2018;37:354–9. DBS of the STN or the GPi improved urinary incontinence and frequency in patients with PD.

  13. •• Roy HA, Pond D, Roy C, Forrow B, Foltynie T, Zrinzo L, Akram H, Aziz TZ, FitzGerald JJ, Green AL. Effects of pedunculopontine nucleus stimulation on human bladder function. Neurourol Urodyn. 2018;37:726–34. PPN stimulation marginally increased maximal bladder capacity in patients with PD.

  14. • Kessler TM, Burkhard FC, Z’Brun S, Stibal A, Studer UE, Hess CW, Kaelin-Lang A. Effect of thalamic deep brain stimulation on lower urinary tract function. Eur Urol. 2008;53:607–12. VIM stimulation resulted in earlier desire to void and decreased bladder capacity in patients with ET.

  15. Daskalakis ZJ, Möller B, Christensen BK, Fitzgerald PB, Gunraj C, Chen R. The effects of repetitive transcranial magnetic stimulation on cortical inhibition in healthy human subjects. Exp Brain Res. 2006;174:403–12.

    Article  PubMed  Google Scholar 

  16. Klomjai W, Katz R, Lackmy-Vallée A. Basic principles of transcranial magnetic stimulation (TMS) and repetitive TMS (rTMS). Ann Phys Rehabil Med. 2015;58:208–13.

    Article  PubMed  Google Scholar 

  17. Centonze D, Petta F, Versace V, et al. Effects of motor cortex rTMS on lower urinary tract dysfunction in multiple sclerosis. Mult Scler Houndmills Basingstoke Engl. 2007;13:269–71.

    Article  CAS  Google Scholar 

  18. El-Habashy H, Nada MM, Maher EA, Shamloul R, Maged M, Abdelazim MS. The effect of cortical versus sacral repetitive magnetic stimulation on lower urinary tract dysfunction in patients with multiple sclerosis. Acta Neurol Belg. 2020;120:141–7.

    Article  PubMed  Google Scholar 

  19. Brusa L, FinazziAgrò E, Petta F, Sciobica F, Torriero S, Lo Gerfo E, Iani C, Stanzione P, Koch G. Effects of inhibitory rTMS on bladder function in Parkinson’s disease patients. Mov Disord Off J Mov Disord Soc. 2009;24:445–8.

    Article  Google Scholar 

  20. •• Khavari R, Tran K, Helekar SA, Shi Z, Karmonik C, Rajab H, John B, Jalali A, Boone T. Noninvasive, individualized cortical modulation using transcranial rotating permanent magnet stimulator for voiding dysfunction in women with multiple sclerosis: a pilot trial. J Urol. 2022;207:657–68. Individualized TMS improved urodynamic parameters and subjective symptoms in MS patients with VD.

  21. Abbate AD, Cook AW, Atallah M. Effect of electrical stimulation of the thoracic spinal cord on the function of the bladder in multiple sclerosis. J Urol. 1977;117:285–8.

    Article  CAS  PubMed  Google Scholar 

  22. Cook AW, Abbate A, Atallah M, Pacheco S, Kleriga E, Saada S, Nidzgorski F. Neurogenic bladder. Reversal by stimulation of thoracic spinal cord. N Y State J Med. 1979;79:255–8.

    CAS  PubMed  Google Scholar 

  23. Illis LS, Sedgwick EM, Tallis RC. Spinal cord stimulation in multiple sclerosis: clinical results. J Neurol Neurosurg Psychiatry. 1980;43:1–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Meglio M, Cioni B, Amico ED, Ronzoni G, Rossi GF. Epidural spinal cord stimulation for the treatment of neurogenic bladder. Acta Neurochir (Wien). 1980;54:191–9.

    Article  CAS  PubMed  Google Scholar 

  25. Walter M, Lee AHX, Kavanagh A, Phillips AA, Krassioukov AV. Epidural spinal cord stimulation acutely modulates lower urinary tract and bowel function following spinal cord injury: a case report. Front Physiol. 2018;9:1816.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Schieferdecker S, Neudorfer C, El Majdoub F, Maarouf M. A retrospective case series of high-frequency spinal cord stimulation (HF10-SCS) in neurogenic bladder incontinence. Oper Neurosurg Hagerstown Md. 2019;17:14–20.

    Article  Google Scholar 

  27. • Harkema S, Gerasimenko Y, Hodes J, et al. Effect of epidural stimulation of the lumbosacral spinal cord on voluntary movement, standing, and assisted stepping after motor complete paraplegia: a case study. Lancet Lond Engl. 2011;377:1938–47. Epidural stimulation allowed one patient with a complete SCI to gain the ability to spontaneous void with low residual.

  28. •• Herrity AN, Aslan SC, Mesbah S, Siu R, Kalvakuri K, Ugiliweneza B, Mohamed A, Hubscher CH, Harkema SJ. Targeting bladder function with network-specific epidural stimulation after chronic spinal cord injury. Sci Rep. 2022;12:11179. Epidural stimulation and locomotor training improved voiding efficiency in five patients with spinal cord injury.

  29. Hyun S-J, Lee C-H, Kwon JW, Yoon C-Y, Lim J-Y, Kim K-J, Jahng T-A, Kim H-J. Comparative analysis between thoracic spinal cord and sacral neuromodulation in a rat spinal cord injury model: a preliminary report of a rat spinal cord stimulation model. Korean J Spine. 2013;10:14–8.

    Article  PubMed  PubMed Central  Google Scholar 

  30. • Horst M, Heutschi J, van den Brand R, Andersson K-E, Gobet R, Sulser T, Courtine G, Eberli D. Multisystem neuroprosthetic training improves bladder function after severe spinal cord injury. J Urol. 2013;189:747–53. Combined treatment with epidural stimulation, locomotor training, and pharmacotherapy slowed the development of NLUTD in rats with SCI.

  31. Gad PN, Roy RR, Zhong H, Lu DC, Gerasimenko YP, Edgerton VR. Initiation of bladder voiding with epidural stimulation in paralyzed. Step Trained Rats PLOS ONE. 2014;9:e108184.

    Article  PubMed  Google Scholar 

  32. Abud EM, Ichiyama RM, Havton LA, Chang HH. Spinal stimulation of the upper lumbar spinal cord modulates urethral sphincter activity in rats after spinal cord injury. Am J Physiol Renal Physiol. 2015;308:F1032-1040.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Chang H-Y, Cheng C-L, Chen J-JJ, de Groat WC. Serotonergic drugs and spinal cord transections indicate that different spinal circuits are involved in external urethral sphincter activity in rats. Am J Physiol Renal Physiol. 2007;292:F1044-1053.

    Article  CAS  PubMed  Google Scholar 

  34. Nashold BS, Friedman H, Glenn JF, Grimes JH, Barry WF, Avery R. Electromicturition in paraplegia. Implantation of a spinal neuroprosthesis. Arch Surg. 1972;104:195–202.

    Article  PubMed  Google Scholar 

  35. Pikov V, Bullara L, McCreery DB. Intraspinal stimulation for bladder voiding in cats before and after chronic spinal cord injury. J Neural Eng. 2007;4:356–68.

    Article  PubMed  PubMed Central  Google Scholar 

  36. • Gad PN, Kokikian N, Christe KL, Edgerton VR, Havton LA. Noninvasive neurophysiological mapping of the lower urinary tract in adult and aging rhesus macaques. J Neurophysiol. 2018;119:1521–7. This animal study demonstrated that bladder contraction and pelvic floor muscles involved in LUT control can be stimulated through transcutaneous SCS.

  37. Havton LA, Christe KL, Edgerton VR, Gad PN. Noninvasive spinal neuromodulation to map and augment lower urinary tract function in rhesus macaques. Exp Neurol. 2019;322:113033.

    Article  PubMed  Google Scholar 

  38. Gad PN, Kreydin E, Zhong H, Latack K, Edgerton VR. Non-invasive neuromodulation of spinal cord restores lower urinary tract function after paralysis. Front Neurosci. 2018;12:432.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Niu T, Bennett CJ, Keller TL, Leiter JC, Lu DC. A proof-of-concept study of transcutaneous magnetic spinal cord stimulation for neurogenic bladder. Sci Rep. 2018;8:12549.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Doherty S, Vanhoestenberghe A, Duffell L, Hamid R, Knight S. A urodynamic comparison of neural targets for transcutaneous electrical stimulation to acutely suppress detrusor contractions following spinal cord injury. Front Neurosci. 2019;13:1360.

    Article  PubMed  PubMed Central  Google Scholar 

  41. •• Kreydin E, Zhong H, Latack K, Ye S, Edgerton VR, Gad P. Transcutaneous electrical spinal cord neuromodulator (TESCoN) improves symptoms of overactive bladder. Front Syst Neurosci. 2020;14:1. Transcutaneous SCS improved urodynamic parameters and subjective symptoms in 14 patients with NLUTD.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johnny S. Su.

Ethics declarations

Conflict of Interest

Johnny Su declares that he has no conflict of interest.

Charles Mazeaud declares that he has no conflict of interest.

Rose Khavari is partially funded by R03DK126994.

Human and Animal Rights and Informed Consent

The article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, J.S., Mazeaud, C. & Khavari, R. Central Nervous Stimulation for Neurogenic Lower Urinary Tract Dysfunction: Current Application and Emergent Therapies. Curr Bladder Dysfunct Rep 18, 193–199 (2023). https://doi.org/10.1007/s11884-023-00696-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11884-023-00696-5

Keywords

Navigation