Skip to main content
Log in

Cardiovascular Effects of Stimulators of Soluble Guanylate Cyclase Administration: A Meta-analysis of Randomized Controlled Trials

  • Review
  • Published:
Current Atherosclerosis Reports Aims and scope Submit manuscript

Abstract

Purpose of review

Heart failure (HF) is one of the main causes of cardiovascular mortality in the western world. Despite great advances in treatment, recurrence and mortality rates remain high. Soluble guanylate cyclase is an enzyme which, by producing cGMP, is responsible for the effects of vasodilation, reduction of cardiac pre- and after-load and, therefore, the improvement of myocardial performance. Thus, a new therapeutic strategy is represented by the stimulators of soluble guanylate cyclase (sGCs). The aim of this meta-analysis was to analyze the effects deriving from the administration of sGCs, in subjects affected by HF.

A systematic literature search of Medline, SCOPUS, and Google Scholar was conducted up to December 2022 to identify RCTs assessing the cardiovascular effects, as NT-pro-BNP values and ejection fraction (EF), and all-cause mortality, of the sGCs. Quantitative data synthesis was performed using a random-effects model, with weighted mean difference (WMD) and 95% confidence interval (CI) as summary statistics.

Recent findings

The results obtained documented a statistically significant improvement in NT-proBNP values (SMD: − 0.258; 95% CI: − 0.398, − 0.118; p < 0.001) and EF (WMD: 0.948; 95% CI: 0.485, 1.411; p < 0.001) in subjects treated with sGCs; however, no significant change was found in the all-cause mortality rate (RR 0.96; 95% CI 0.868 to 1.072; I2, p = 0).

Summary

The sGCs represent a valid therapeutic option in subjects suffering from HF, leading to an improvement in cardiac performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The data are available upon request.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Aspromonte N, Gulizia MM, Di Lenarda A, et al. ANMCO/SIC Consensus Document: cardiology networks for outpatient heart failure care. Eur Heart J Suppl. 2017;19(Suppl D):D89–101.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Tavazzi L, Senni M, Metra M, et al. INHF (Italian Network on Heart Failure) Outcome Investigators. Multicenter prospective observational study on acute and chronic heart failure: one-year follow-up results of IN-HF (Italian Network on Heart Failure) outcome registry. Circ Heart Fail. 2013;6:473–81.

    Article  CAS  PubMed  Google Scholar 

  3. D’Elia E, Stamerra CA, Vecchi A, Duino V, Grosu A, Abete R, Baio P, Gori M, Gavazzi A, Ferri C, Senni M. Association between sleep disordered breathing, neurocognitive impairment and diastolic function in acute heart failure patients: an insight after the vulnerable phase of the hospitalization. Intern Emerg Med. 2021;16(2):369–77. https://doi.org/10.1007/s11739-020-02397-x.

    Article  PubMed  Google Scholar 

  4. Stamerra CA, D’Elia E, Gori M, Roncali F, Cereda A, Gavazzi A, Ferri C, Senni M. Red cell distribution width (RDW) is correlated to time of oxygen desaturation < 90% and length of sleep apneas in patients with sleep disorder breathing (SDB) and acute heart failure with preserved ejection fraction (HFpEF). Front Cardiovasc Med. 2023;3(10):1045702.

    Article  Google Scholar 

  5. McDonagh TA, Metra M, Adamo M; ESC Scientific Document Group et al. 2021 ESC guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J 2021;42:3599–3726. The ESC guidelines represent the cornerstone of HF treatment.

  6. Mebazaa A, Davison B, Chioncel O, Cohen-Solal A, Diaz R, Filippatos G, Metra M, Ponikowski P, Sliwa K, Voors AA, Edwards C, Novosadova M, Takagi K, Damasceno A, Saidu H, Gayat E, Pang PS, Celutkiene J, Cotter G. Safety, tolerability and efficacy of up-titration of guideline-directed medical therapies for acute heart failure (STRONG-HF): a multinational, open-label, randomised, trial. Lancet. 2022;400(10367):1938–52.

    Article  CAS  PubMed  Google Scholar 

  7. Bender AT, Beavo JA. Cyclic nucleotide phosphodiesterases: molecular regulation to clinical use. Pharmacol Rev. 2006;58:488–520.

    Article  CAS  PubMed  Google Scholar 

  8. Fesenko EE, Kolesnikov SS, Lyubarsky AL. Induction by cyclic GMP of cationic conductance in plasma membrane of retinal rod outer segment. Nature. 1985;313:310–3.

    Article  CAS  PubMed  Google Scholar 

  9. Krüger M, Kötter S, Grützner A, Lang P, Andresen C, Redfield MM, Butt E, dos Remedios CG, Linke WA. Protein kinase G modulates human myocardial passive stiffness by phosphorylation of the titin springs. Circ Res. 2009;104:87–94.

    Article  PubMed  Google Scholar 

  10. Kovács Á, Alogna A, Post H, Hamdani N. Is enhancing cGMP-PKG signalling a promising therapeutic target for heart failure with preserved ejection fraction? Neth Heart J. 2016;24:268–74.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Tsai EJ, Kass DA. Cyclic GMP signaling in cardiovascular pathophysiology and therapeutics. Pharmacol Ther. 2009;122:216–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Beuve A. Thiol-based redox modulation of soluble guanylyl cyclase, the nitric oxide receptor. Antioxid Redox Signal. 2017;26:137–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sutton AJ, Abrams KR, Jones DR, Jones DR, Sheldon TA, Song F. Methods for meta-analysis in medical research: Wiley Chichester; 2000.

  14. Borenstein M. Comprehensive meta‐analysis software. Systematic reviews in health research: meta‐analysis in context. 2022:535–48.

  15. Hozo SP, Djulbegovic B, Hozo I. Estimating the mean and variance from the median, range, and the size of a sample. BMC Med Res Methodol. 2005;5(1):1–10.

    Article  Google Scholar 

  16. Sahebkar A, Serban C, Ursoniu S, Wong ND, Muntner P, Graham IM, Mikhailidis DP, Rizzo M, Rysz J, Sperling LS, Lip GY, Banach M. Lipid and Blood Pressure Meta-analysis Collaboration Group. Lack of efficacy of resveratrol on C-reactive protein and selected cardiovascular risk factors–Results from a systematic review and meta-analysis of randomized controlled trials. Int J Cardiol. 2015;189:47–55. https://doi.org/10.1016/j.ijcard.2015.04.008.

    Article  PubMed  Google Scholar 

  17. Sahebkar A. Effects of resveratrol supplementation on plasma lipids: a systematic review and meta-analysis of randomized controlled trials. Nutr Rev. 2013;71(12):822–35. https://doi.org/10.1111/nure.12081.

    Article  PubMed  Google Scholar 

  18. Duval S, Tweedie R. Trim and fill: a simple funnel-plot–based method of testing and adjusting for publication bias in meta-analysis. Biometrics. 2000;56(2):455–63.

    Article  CAS  PubMed  Google Scholar 

  19. Dachs TM, Duca F, Rettl R, Binder-Rodriguez C, Dalos D, Ligios LC, et al. Riociguat in pulmonary hypertension and heart failure with preserved ejection fraction: the haemoDYNAMIC trial. Eur Heart J. 2022;43(36):3402–13.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Armstrong PW, Roessig L, Patel MJ, Anstrom KJ, Butler J, Voors AA, Lam CSP, Ponikowski P, Temple T, Pieske B, Ezekowitz J, Hernandez AF, Koglin J, O'Connor CM. (2018) A multicenter, randomized, double-blind, placebo-controlled trial of the efficacy and safety of the oral soluble guanylate cyclase stimulator: the VICTORIA trial. JACC Heart Fail 6(2):96–104. Based on the VICTORIA trials’ findings, vericiguat is currently recommended by both the European and American HF guidelines for HFrEF patients.

  21. Armstrong PW, Lam CS, Anstrom KJ, Ezekowitz J, Hernandez AF, O’Connor CM, et al. Effect of vericiguat vs placebo on quality of life in patients with heart failure and preserved ejection fraction: the VITALITY-HFpEF randomized clinical trial. JAMA. 2020;324(15):1512–21.

    Article  CAS  PubMed  Google Scholar 

  22. Udelson JE, Lewis GD, Shah SJ, Zile MR, Redfield MM, Burnett J, et al. Effect of praliciguat on peak rate of oxygen consumption in patients with heart failure with preserved ejection fraction: the CAPACITY HFpEF randomized clinical trial. JAMA. 2020;324(15):1522–31.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Pieske B, Maggioni AP, Lam CS, Pieske-Kraigher E, Filippatos G, Butler J, et al. Vericiguat in patients with worsening chronic heart failure and preserved ejection fraction: results of the SOluble guanylate Cyclase stimulatoR in heArT failurE patientS with PRESERVED EF (SOCRATES-PRESERVED) study. Eur Heart J. 2017;38(15):1119–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Gheorghiade M, Greene SJ, Butler J, Filippatos G, Lam CS, Maggioni AP, et al. Effect of vericiguat, a soluble guanylate cyclase stimulator, on natriuretic peptide levels in patients with worsening chronic heart failure and reduced ejection fraction: the SOCRATES-REDUCED randomized trial. JAMA. 2015;314(21):2251–62.

    Article  CAS  PubMed  Google Scholar 

  25. Bonderman D, Pretsch I, Steringer-Mascherbauer R, Jansa P, Rosenkranz S, Tufaro C, et al. Acute hemodynamic effects of riociguat in patients with pulmonary hypertension associated with diastolic heart failure (DILATE-1): a randomized, double-blind, placebo-controlled, single-dose study. Chest. 2014;146(5):1274–85.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Ghofrani H-A, Galiè N, Grimminger F, Grünig E, Humbert M, Jing Z-C, et al. Riociguat for the treatment of pulmonary arterial hypertension. N Engl J Med. 2013;369(4):330–40.

    Article  CAS  PubMed  Google Scholar 

  27. Ghofrani H-A, D’Armini AM, Grimminger F, Hoeper MM, Jansa P, Kim NH, et al. Riociguat for the treatment of chronic thromboembolic pulmonary hypertension. N Engl J Med. 2013;369(4):319–29.

    Article  CAS  PubMed  Google Scholar 

  28. Bonderman D, Ghio S, Felix SB, Ghofrani H-A, Michelakis E, Mitrovic V, et al. Riociguat for patients with pulmonary hypertension caused by systolic left ventricular dysfunction: a phase IIb double-blind, randomized, placebo-controlled, dose-ranging hemodynamic study. Circulation. 2013;128(5):502–11.

    Article  CAS  PubMed  Google Scholar 

  29. Tran N, Garcia T, Aniqa M, Ali S, Ally A, Nauli SM. Endothelial Nitric Oxide Synthase (eNOS) and the Cardiovascular System: in Physiology and in disease states. Am J Biomed Sci Res. 2022;15(2):153–77.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Sharma R, Davidoff MN. Oxidative stress and endothelial dysfunction in heart failure. Congest Heart Fail. 2002;8(3):165–72. https://doi.org/10.1111/j.1527-5299.2002.00714.x.

    Article  CAS  PubMed  Google Scholar 

  31. Stamerra CA, Di Giosia P, Giorgini P, Ferri C, Sukhorukov VN, Sahebkar A. Mitochondrial dysfunction and cardiovascular disease: pathophysiology and emerging therapies. Oxid Med Cell Longev. 2022;2(2022):9530007.

    Google Scholar 

  32. Gianni D, Chan J, Gwathmey JK, Del Monte F, Hajjar RJ. SERCA2a in heart failure: role and therapeutic prospects. J Bioenerg Biomembr. 2005;37(6):375–80.

    Article  CAS  PubMed  Google Scholar 

  33. Franssen C, Chen S, Unger A, Korkmaz HI, De Keulenaer GW, Tschöpe C, et al. Myocardial microvascular inflammatory endothelial activation in heart failure with preserved ejection fraction. JACC Heart Fail. 2016;4(4):312–24.

    Article  PubMed  Google Scholar 

  34. van Heerebeek L, Hamdani N, Falcão-Pires I, Leite-Moreira AF, Begieneman MP, Bronzwaer JG, van der Velden J, Stienen GJ, Laarman GJ, Somsen A, Verheugt FW, Niessen HW, Paulus WJ. Low myocardial protein kinase G activity in heart failure with preserved ejection fraction. Circulation. 2012;126(7):830–9.

    Article  PubMed  Google Scholar 

  35. Gheorghiade M, Marti CN, Sabbah HN, Roessig L, Greene SJ, Böhm M, et al. Soluble guanylate cyclase: a potential therapeutic target for heart failure. Heart Fail Rev. 2013;18(2):123–34.

    Article  CAS  PubMed  Google Scholar 

  36. Schulz E, Jansen T, Wenzel P, Daiber A, Münzel T. Nitric oxide, tetrahydrobiopterin, oxidative stress and endothelial dysfunction in hypertension. Antioxid Redox Sig. 2008;10:1115–26.

    Article  CAS  Google Scholar 

  37. Calderone A, Thaik CM, Takahashi N, Chang DL, Colucci WS. Nitric oxide, atrial natriuretic peptide, and cyclic GMP inhibit the growth promoting effects of norepinephrine in cardiac myocytes and fibroblasts. J Clin Invest. 1998;101:812–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Fiedler B, Lohmann SM, Smolenski A, Linnemuller S, Pieske B, Schroder F, Molkentin JD, Drexler H, Wollert KC. Inhibition of calcineurin-NFAT hypertrophy signaling by cGMP-dependent protein kinase type I in cardiac myocytes. Proc Natl Acad Sci U S A. 2002;99:11363–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zhang M, Takimoto E, Hsu S, Lee DI, Nagayama T, Danner T, Koitabashi N, Barth AS, Bedja D, Gabrielson KL, Wang Y, Kass DA. Myocardial remodeling is controlled by myocyte-targeted gene regulation of phosphodiesterase type 5. J Am Coll Cardiol. 2010;56:2021–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Emdin M, Aimo A, Castiglione V, Vergaro G, Georgiopoulos G, Saccaro LF, et al. Targeting cyclic guanosine monophosphate to treat heart failure: JACC review topic of the week. J Am Coll Cardiol. 2020;76(15):1795–807.

    Article  CAS  PubMed  Google Scholar 

  41. Mercurio V, Ambrosio G, Correale M, Dini FL, Ghio S, Nodari S, et al. Innovations in medical therapy of heart failure with reduced ejection fraction. J Cardiovasc Med. 2023;24(Suppl 1):e47-54.

    Article  Google Scholar 

  42. Irvine JC, Ganthavee V, Love JE, Alexander AE, Horowitz JD, Stasch JP, Kemp-Harper BK, Ritchie RH. The soluble guanylyl cyclase activator Bay 58–2667 selectively limits cardiomyocyte hypertrophy. PLoS ONE. 2012;7:e44481.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Masuyama H, Tsuruda T, Kato J, Imamura T, Asada Y, Stasch JP, Kitamura K, Eto T. Soluble guanylate cyclase stimulation on cardiovascular remodeling in angiotensin IIinduced hypertensive rats. Hypertension. 2006;48:972–8.

    Article  CAS  PubMed  Google Scholar 

  44. Masuyama H, Tsuruda T, Sekita Y, Hatakeyama K, Imamura T, Kato J, Asada Y, Stasch JP, Kitamura K. Pressure-independent effects of pharmacological stimulation of soluble guanylate cyclase on fibrosis in pressure-overloaded rat heart. Hypertens Res. 2009;32:597–603.

    Article  CAS  PubMed  Google Scholar 

  45. Sharkovska Y, Kalk P, Lawrenz B, Godes M, Hoffmann LS, Wellkisch K, Geschka S, Relle K, Hocher B, Stasch JP. Nitric oxide-independent stimulation of soluble guanylate cyclase reduces organ damage in experimental lowrenin and high-renin models. J Hypertens. 2010;28:1666–75.

    Article  CAS  PubMed  Google Scholar 

  46. Methner C, Buonincontri G, Hu CH, Vujic A, Kretschmer A, Sawiak S, Carpenter A, Stasch JP, Krieg T. Riociguat reduces infarct size and post-infarct heart failure in mouse hearts: insights from MRI/PET imaging. PLoS ONE. 2013;8:e83910. https://doi.org/10.1371/journal.pone.0083910.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Bice JS, Keim Y, Stasch JP, Baxter GF. NO-independent stimulation or activation of soluble guanylyl cyclase during early reperfusion limits infarct size. Cardiovasc Res. 2014;101(2):220–8. https://doi.org/10.1093/cvr/cvt257.

    Article  CAS  PubMed  Google Scholar 

  48. Matei AE, Beyer C, Györfi AH, Soare A, Chen CW, Dees C, Bergmann C, Ramming A, Friebe A, Hofmann F, et al. Protein kinases G are essential downstream mediators of the antifibrotic effects of sGC stimulators. Ann Rheum Dis. 2018;77:459.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Authors' contributions: Conceptualization: CAS, AS Writing original draft: PDG, MG Writing review and editing: PG, TJ Approval of the final version: All authors

Corresponding author

Correspondence to Amirhossein Sahebkar.

Ethics declarations

Competing interests

The authors declare no competing interests.

Conflict of Interest

The authors declare no competing interests.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stamerra, C.A., Di Giosia, P., Giorgini, P. et al. Cardiovascular Effects of Stimulators of Soluble Guanylate Cyclase Administration: A Meta-analysis of Randomized Controlled Trials. Curr Atheroscler Rep (2024). https://doi.org/10.1007/s11883-024-01197-4

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11883-024-01197-4

Keywords

Navigation