Skip to main content
Log in

The Role of Genetics in Advancing Cardiometabolic Drug Development

  • Review
  • Published:
Current Atherosclerosis Reports Aims and scope Submit manuscript

This article has been updated

Abstract

Purpose of Review

The objective of this review is to explore the role of genetics in cardiometabolic drug development. The declining costs of sequencing and the availability of large-scale genomic data have deepened our understanding of cardiometabolic diseases, revolutionizing drug discovery and development methodologies. We highlight four key areas in which genetics is empowering drug development for cardiometabolic disease: (1) identifying drug candidates, (2) anticipating drug target failures, (3) silencing and editing genes, and (4) enriching clinical trials.

Recent Findings

Identifying novel drug targets through genetic discovery studies and the use of genetic variants as indicators of potential drug efficacy and safety have become critical components of cardiometabolic drug discovery. We highlight the successes of genetically-informed therapeutic strategies, such as PCSK9 and ANGPTL3 inhibitors in lipid lowering and the emerging role of polygenic risk scores in improving the efficiency of clinical trials. Additionally, we explore the potential of gene silencing and editing technologies, such as antisense oligonucleotides and small interfering RNA, showcasing their promise in addressing diseases refractory to conventional treatments.

Summary

In this review, we highlight four use cases that demonstrate the vital role of genetics in cardiometabolic drug development: (1) identifying drug candidates, (2) anticipating drug target failures, (3) silencing and editing genes, and (4) enriching clinical trials. Through these advances, genetics has paved the way to increased efficiency of drug development as well as the discovery of more personalized and effective treatments for cardiometabolic disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

No datasets were generated or analyzed during the current study

Change history

  • 16 March 2024

    The original version of this paper was updated to correct the word "hinformed" to "informed".

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Tsao CW, Aday AW, Almarzooq ZI, Anderson CAM, Arora P, Avery CL, et al. Heart disease and stroke statistics—2023 update: a report from the American Heart Association. Circulation. 2023;147:e93-621.

    Article  PubMed  Google Scholar 

  2. Mensah GA, Roth GA, Fuster V. The global burden of cardiovascular diseases and risk factors. J Am Coll Cardiol. 2019;74:2529–32.

    Article  PubMed  Google Scholar 

  3. Zhou W, Kanai M, Wu K-HH, Rasheed H, Tsuo K, Hirbo JB, et al. Global Biobank Meta-analysis Initiative: powering genetic discovery across human disease. Cell Genomics. 2022;2:100192.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. The “All of Us” research program. N Engl J Med. 2019;381:668–76.

  5. Bycroft C, Freeman C, Petkova D, Band G, Elliott LT, Sharp K, et al. The UK Biobank resource with deep phenotyping and genomic data. Nature. 2018;562:203–9.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wouters OJ, McKee M, Luyten J. Estimated research and development investment Needed to Bring a New Medicine to Market, 2009–2018. JAMA. 2020;323:844–53.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Schuhmacher A, Hinder M, Von Stegmann Und Stein A, Hartl D, Gassmann O. Analysis of pharma R&D productivity – a new perspective needed. Drug Discov Today. 2023;28:103726.

    Article  PubMed  Google Scholar 

  8. Moore TJ, Zhang H, Anderson G, Alexander GC. Estimated costs of pivotal trials for novel therapeutic agents approved by the US Food and Drug Administration, 2015–2016. JAMA Intern Med. 2018;178:1451–7.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Harrison RK. Phase II and phase III failures: 2013–2015. Nat Rev Drug Discov. 2016;15:817–8.

    Article  CAS  PubMed  Google Scholar 

  10. Arrowsmith J, Miller P. Trial watch: phase II and phase III attrition rates 2011–2012. Nat Rev Drug Discov. 2013;12:569.

    Article  CAS  PubMed  Google Scholar 

  11. El Khoury P, Elbitar S, Ghaleb Y, Khalil YA, Varret M, Boileau C, et al. PCSK9 mutations in familial hypercholesterolemia: from a groundbreaking discovery to anti-PCSK9 therapies. Curr Atheroscler Rep. 2017;19:49.

    Article  PubMed  Google Scholar 

  12. • Trajanoska K, Bhérer C, Taliun D, Zhou S, Richards JB, Mooser V. From target discovery to clinical drug development with human genetics. Nature. 2023;620:737–45. This review paper details the process of translating genetic discoveries into clinical drug development.

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Nelson MR, Tipney H, Painter JL, Shen J, Nicoletti P, Shen Y, et al. The support of human genetic evidence for approved drug indications. Nat Genet. 2015;47:856–60.

    Article  CAS  PubMed  Google Scholar 

  14. King EA, Davis JW, Degner JF. Are drug targets with genetic support twice as likely to be approved? Revised estimates of the impact of genetic support for drug mechanisms on the probability of drug approval. PLOS Genet. 2019;15:e1008489.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Abifadel M, Varret M, Rabès J-P, Allard D, Ouguerram K, Devillers M, et al. Mutations in PCSK9 cause autosomal dominant hypercholesterolemia. Nat Genet. 2003;34:154–6.

    Article  CAS  PubMed  Google Scholar 

  16. Musunuru K, Pirruccello JP, Do R, Peloso GM, Guiducci C, Sougnez C, et al. Exome sequencing, ANGPTL3 mutations, and familial combined hypolipidemia. N Engl J Med. 2010;363:2220–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Schmidt AF, Hingorani AD, Finan C. Human genomics and drug development. Cold Spring Harb Perspect Med [Internet]. 2022 [cited 2023 Dec 12];12. Available from: https://doi.org/10.1101/cshperspect.a039230

  18. •• Carss KJ, Deaton AM, Del Rio-Espinola A, Diogo D, Fielden M, Kulkarni DA, et al. Using human genetics to improve safety assessment of therapeutics. Nat Rev Drug Discov. 2023;22:145–62. This review paper highlights the role of human genetics in enhancing the safety assessment of therapeutics, which is pivotal in advancing the development of drugs that are both effective and safe.

    Article  CAS  PubMed  Google Scholar 

  19. Emdin CA, Khera AV, Kathiresan S. Mendelian randomization. JAMA. 2017;318:1925–6.

    Article  PubMed  Google Scholar 

  20. • Nissen SE, Linnebjerg H, Shen X, Wolski K, Ma X, Lim S, et al. Lepodisiran, an extended-duration short interfering RNA targeting lipoprotein(a): a randomized dose-ascending clinical trial. JAMA [Internet]. 2023 [cited 2023 Nov 26]; Available from: https://doi.org/10.1001/jama.2023.21835. Findings from this study offer critical insights into the efficacy of extended-duration RNA interference therapies in targeting lipoprotein(a) paving the way for novel therapeutic approaches in the cardiometabolic field.

  21. A single infusion of a gene-editing medicine may control inherited high LDL cholesterol. Am Heart Assoc [Internet]. 2023 [cited 2023 Nov 26]; Available from: https://newsroom.heart.org/news/a-single-infusion-of-a-gene-editing-medicine-may-control-inherited-high-ldl-cholesterol

  22. •• Fahed AC, Philippakis AA, Khera AV. The potential of polygenic scores to improve cost and efficiency of clinical trials. Nat Commun. 2022;13:1–4. This article demonstrates the potential of polygenic scores in enhancing the cost-efficiency and effectiveness of clinical trials.

    Article  Google Scholar 

  23. Precision Cardiology Laboratory [Internet]. Broad Inst. 2018 [cited 2023 Dec 12]. Available from: https://www.broadinstitute.org/precision-cardiology-laboratory

  24. Regeneron Genetics Center (RGC): genetics to therapeutics [Internet]. 2023 [cited 2023 Dec 12]. Available from: https://www.regeneron.com/science/genetics-center

  25. Alcalai R, Seidman JG, Seidman CE. Genetic basis of hypertrophic cardiomyopathy: from bench to the clinics. J Cardiovasc Electrophysiol. 2008;19:104–10.

    Article  PubMed  Google Scholar 

  26. Lu W, Gauthier LD, Poterba T, Giacopuzzi E, Goodrich JK, Stevens CR, et al. CHARR efficiently estimates contamination from DNA sequencing data [Internet]. bioRxiv; 2023 [cited 2023 Dec 12]. p. 2023.06.28.545801. Available from: https://www.biorxiv.org/content/10.1101/2023.06.28.545801v1

  27. Koenig Z, Yohannes MT, Nkambule LL, Goodrich JK, Kim HA, Zhao X, et al. A harmonized public resource of deeply sequenced diverse human genomes [Internet]. bioRxiv; 2023 [cited 2023 Dec 12]. p. 2023.01.23.525248. Available from: https://www.biorxiv.org/content/10.1101/2023.01.23.525248v3

  28. Bergström A, McCarthy SA, Hui R, Almarri MA, Ayub Q, Danecek P, et al. Insights into human genetic variation and population history from 929 diverse genomes. Science. 2020;367:eaay5012.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Raal FJ, Rosenson RS, Reeskamp LF, Hovingh GK, Kastelein JJP, Rubba P, et al. Evinacumab for Homozygous Familial Hypercholesterolemia. N Engl J Med. 2020;383:711–20.

    Article  CAS  PubMed  Google Scholar 

  30. Sabatine MS, Giugliano RP, Keech AC, Honarpour N, Wiviott SD, Murphy SA, et al. Evolocumab and clinical outcomes in patients with cardiovascular disease. N Engl J Med. 2017;376:1713–22.

    Article  CAS  PubMed  Google Scholar 

  31. Schwartz GG, Steg PG, Szarek M, Bhatt DL, Bittner VA, Diaz R, et al. Alirocumab and cardiovascular outcomes after acute coronary syndrome. N Engl J Med. 2018;379:2097–107.

    Article  CAS  PubMed  Google Scholar 

  32. Geisterfer-Lowrance AA, Kass S, Tanigawa G, Vosberg HP, McKenna W, Seidman CE, et al. A molecular basis for familial hypertrophic cardiomyopathy: a beta cardiac myosin heavy chain gene missense mutation. Cell. 1990;62:999–1006.

    Article  CAS  PubMed  Google Scholar 

  33. Marian AJ. Molecular genetic basis of hypertrophic cardiomyopathy. Circ Res. 2021;128:1533–53.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  34. Olivotto I, Oreziak A, Barriales-Villa R, Abraham TP, Masri A, Garcia-Pavia P, et al. Mavacamten for treatment of symptomatic obstructive hypertrophic cardiomyopathy (EXPLORER-HCM): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet. 2020;396:759–69.

    Article  CAS  PubMed  Google Scholar 

  35. Baxter SM, Posey JE, Lake NJ, Sobreira N, Chong JX, Buyske S, et al. Centers for Mendelian Genomics: a decade of facilitating gene discovery. Genet Med. 2022;24:784–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Posey JE, O’Donnell-Luria AH, Chong JX, Harel T, Jhangiani SN, Coban Akdemir ZH, et al. Insights into genetics, human biology and disease gleaned from family based genomic studies. Genet Med. 2019;21:798–812.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Aragam KG, Jiang T, Goel A, Kanoni S, Wolford BN, Atri DS, et al. Discovery and systematic characterization of risk variants and genes for coronary artery disease in over a million participants. Nat Genet. 2022;54:1803–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Graham SE, Clarke SL, Wu K-HH, Kanoni S, Zajac GJM, Ramdas S, et al. The power of genetic diversity in genome-wide association studies of lipids. Nature. 2021;600:675–9.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  39. Evangelou E, Warren HR, Mosen-Ansorena D, Mifsud B, Pazoki R, Gao H, et al. Genetic analysis of over 1 million people identifies 535 new loci associated with blood pressure traits. Nat Genet. 2018;50:1412–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Mahajan A, Spracklen CN, Zhang W, Ng MCY, Petty LE, Kitajima H, et al. Multi-ancestry genetic study of type 2 diabetes highlights the power of diverse populations for discovery and translation. Nat Genet. 2022;54:560–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Mizoguchi T, MacDonald BT, Bhandary B, Popp NR, Laprise D, Arduini A, et al. Coronary disease association with ADAMTS7 is due to protease activity. Circ Res. 2021;129:458–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Nasser J, Bergman DT, Fulco CP, Guckelberger P, Doughty BR, Patwardhan TA, et al. Genome-wide enhancer maps link risk variants to disease genes. Nature. 2021;593:238–43.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  43. Weeks EM, Ulirsch JC, Cheng NY, Trippe BL, Fine RS, Miao J, et al. Leveraging polygenic enrichments of gene features to predict genes underlying complex traits and diseases. Nat Genet. 2023;55:1267–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Yu F, Cato LD, Weng C, Liggett LA, Jeon S, Xu K, et al. Variant to function mapping at single-cell resolution through network propagation. Nat Biotechnol. 2022;40:1644–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Minikel EV, Karczewski KJ, Martin HC, Cummings BB, Whiffin N, Rhodes D, et al. Evaluating drug targets through human loss-of-function genetic variation. Nature. 2020;581:459–64.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  46. Saleheen D, Natarajan P, Armean IM, Zhao W, Rasheed A, Khetarpal SA, et al. Human knockouts and phenotypic analysis in a cohort with a high rate of consanguinity. Nature. 2017;544:235–9.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ginsberg HN, Goldberg IJ. Broadening the Scope of Dyslipidemia Therapy by Targeting APOC3 (Apolipoprotein C3) and ANGPTL3 (Angiopoietin-Like Protein 3). Arterioscler Thromb Vasc Biol [Internet]. 2023 [cited 2023 Oct 9]; Available from: https://www.ahajournals.org/doi/abs/10.1161/ATVBAHA.122.317966

  48. Emdin CA, Khera AV, Chaffin M, Klarin D, Natarajan P, Aragam K, et al. Analysis of predicted loss-of-function variants in UK Biobank identifies variants protective for disease. Nat Commun. 2018;9:1613.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  49. Hay M, Thomas DW, Craighead JL, Economides C, Rosenthal J. Clinical development success rates for investigational drugs. Nat Biotechnol. 2014;32:40–51.

    Article  CAS  PubMed  Google Scholar 

  50. Pammolli F, Magazzini L, Riccaboni M. The productivity crisis in pharmaceutical R&D. Nat Rev Drug Discov. 2011;10:428–38.

    Article  CAS  PubMed  Google Scholar 

  51. Scannell JW, Blanckley A, Boldon H, Warrington B. Diagnosing the decline in pharmaceutical R&D efficiency. Nat Rev Drug Discov. 2012;11:191–200.

    Article  CAS  PubMed  Google Scholar 

  52. Plenge RM, Scolnick EM, Altshuler D. Validating therapeutic targets through human genetics. Nat Rev Drug Discov. 2013;12:581–94.

    Article  CAS  PubMed  Google Scholar 

  53. Holmes MV, Ala-Korpela M, Smith GD. Mendelian randomization in cardiometabolic disease: challenges in evaluating causality. Nat Rev Cardiol. 2017;14:577–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Do R, Willer CJ, Schmidt EM, Sengupta S, Gao C, Peloso GM, et al. Common variants associated with plasma triglycerides and risk for coronary artery disease. Nat Genet. 2013;45:1345–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Frikke-Schmidt R, Nordestgaard BG, Stene MCA, Sethi AA, Remaley AT, Schnohr P, et al. Association of loss-of-function mutations in the ABCA1 gene with high-density lipoprotein cholesterol levels and risk of ischemic heart disease. JAMA. 2008;299:2524–32.

    Article  CAS  PubMed  Google Scholar 

  56. Armitage J, Holmes MV, Preiss D. Cholesteryl Ester Transfer Protein Inhibition for Preventing Cardiovascular Events. J Am Coll Cardiol. 2019;73:477–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. AIM-HIGH Investigators, Boden WE, Probstfield JL, Anderson T, Chaitman BR, Desvignes-Nickens P, et al. Niacin in patients with low HDL cholesterol levels receiving intensive statin therapy. N Engl J Med. 2011;365:2255–67.

    Article  Google Scholar 

  58. Schwartz GG, Olsson AG, Abt M, Ballantyne CM, Barter PJ, Brumm J, et al. Effects of dalcetrapib in patients with a recent acute coronary syndrome. N Engl J Med. 2012;367:2089–99.

    Article  CAS  PubMed  Google Scholar 

  59. Ference BA, Ray KK, Catapano AL, Ference TB, Burgess S, Neff DR, et al. Mendelian randomization study of ACLY and cardiovascular disease. N Engl J Med. 2019;380:1033–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Ray KK, Bays HE, Catapano AL, Lalwani ND, Bloedon LT, Sterling LR, et al. Safety and efficacy of bempedoic acid to reduce LDL cholesterol. N Engl J Med. 2019;380:1022–32.

    Article  CAS  PubMed  Google Scholar 

  61. Nissen SE, Lincoff AM, Brennan D, Ray KK, Mason D, Kastelein JJP, et al. Bempedoic acid and cardiovascular outcomes in statin-intolerant patients. N Engl J Med. 2023;388:1353–64.

    Article  PubMed  Google Scholar 

  62. Diogo D, Tian C, Franklin CS, Alanne-Kinnunen M, March M, Spencer CCA, et al. Phenome-wide association studies across large population cohorts support drug target validation. Nat Commun. 2018;9:4285.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  63. Diogo D, Bastarache L, Liao KP, Graham RR, Fulton RS, Greenberg JD, et al. TYK2 protein-coding variants protect against rheumatoid arthritis and autoimmunity, with no evidence of major pleiotropic effects on non-autoimmune complex traits. PLoS ONE. 2015;10:e0122271.

    Article  PubMed  PubMed Central  Google Scholar 

  64. The interleukin-6 receptor as a target for prevention of coronary heart disease: a mendelian randomisation analysis. Lancet. 2012;379:1214–24.

  65. Research C for BE and. Approved cellular and gene therapy products. FDA [Internet]. 2023 [cited 2023 Nov 26]; Available from: https://www.fda.gov/vaccines-blood-biologics/cellular-gene-therapy-products/approved-cellular-and-gene-therapy-products

  66. Musunuru K. Moving toward genome-editing therapies for cardiovascular diseases. J Clin Invest. 2022;132:e148555.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Ray KK, Wright RS, Kallend D, Koenig W, Leiter LA, Raal FJ, et al. Two phase 3 trials of inclisiran in patients with elevated LDL cholesterol. N Engl J Med. 2020;382:1507–19.

    Article  CAS  PubMed  Google Scholar 

  68. O’Donoghue ML, Rosenson RS, Gencer B, López JAG, Lepor NE, Baum SJ, et al. Small interfering RNA to reduce lipoprotein(a) in cardiovascular disease. N Engl J Med. 2022;387:1855–64.

    Article  PubMed  Google Scholar 

  69. Yeang C, Karwatowska-Prokopczuk E, Su F, Dinh B, Xia S, Witztum JL, et al. Effect of pelacarsen on lipoprotein(a) cholesterol and corrected low-density lipoprotein cholesterol. J Am Coll Cardiol. 2022;79:1035–46.

    Article  CAS  PubMed  Google Scholar 

  70. Benson MD, Waddington-Cruz M, Berk JL, Polydefkis M, Dyck PJ, Wang AK, et al. Inotersen treatment for patients with hereditary transthyretin amyloidosis. N Engl J Med. 2018;379:22–31.

    Article  CAS  PubMed  Google Scholar 

  71. Joubran E, Nguyen H. Inotersen. StatPearls Internet [Internet]. StatPearls Publishing; 2023 [cited 2023 Nov 27]. Available from: https://www.ncbi.nlm.nih.gov/books/NBK578206/

  72. Genome Editing [Internet]. Nature. 2022 [cited 2023 Nov 27]. Available from: https://www.nature.com/collections/rpdbdzpccx

  73. MHRA authorises world-first gene therapy that aims to cure sickle-cell disease and transfusion-dependent β-thalassemia [Internet]. Available from: https://www.gov.uk/government/news/mhra-authorises-world-first-gene-therapy-that-aims-to-cure-sickle-cell-disease-and-transfusion-dependent-thalassemia

  74. Uda M, Galanello R, Sanna S, Lettre G, Sankaran VG, Chen W, et al. Genome-wide association study shows BCL11A associated with persistent fetal hemoglobin and amelioration of the phenotype of β-thalassemia. Proc Natl Acad Sci. 2008;105:1620–5.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  75. Menzel S, Garner C, Gut I, Matsuda F, Yamaguchi M, Heath S, et al. A QTL influencing F cell production maps to a gene encoding a zinc-finger protein on chromosome 2p15. Nat Genet. 2007;39:1197–9.

    Article  CAS  PubMed  Google Scholar 

  76. Sankaran VG, Menne TF, Xu J, Akie TE, Lettre G, Van Handel B, et al. Human fetal hemoglobin expression is regulated by the developmental stage-specific repressor BCL11A. Science. 2008;322:1839–42.

    Article  ADS  CAS  PubMed  Google Scholar 

  77. Lettre G, Sankaran VG, Bezerra MAC, Araújo AS, Uda M, Sanna S, et al. DNA polymorphisms at the BCL11A, HBS1L-MYB, and β-globin loci associate with fetal hemoglobin levels and pain crises in sickle cell disease. Proc Natl Acad Sci. 2008;105:11869–74.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  78. Frangoul H, Altshuler D, Cappellini MD, Chen Y-S, Domm J, Eustace BK, et al. CRISPR-Cas9 gene editing for sickle cell disease and β-thalassemia. N Engl J Med. 2021;384:252–60.

    Article  CAS  PubMed  Google Scholar 

  79. Marston NA, Kamanu FK, Nordio F, Gurmu Y, Roselli C, Sever PS, et al. Predicting benefit from evolocumab therapy in patients with atherosclerotic disease using a genetic risk score: results from the FOURIER Trial. Circulation. 2020;141:616–23.

    Article  PubMed  Google Scholar 

  80. Damask A, Steg PG, Schwartz GG, Szarek M, Hagström E, Badimon L, et al. Patients with high genome-wide polygenic risk scores for coronary artery disease may receive greater clinical benefit from alirocumab treatment in the ODYSSEY OUTCOMES trial. Circulation. 2020;141:624–36.

    Article  PubMed  Google Scholar 

  81. Ridker PM, Danielson E, Fonseca FAH, Genest J, Gotto AM, Kastelein JJP, et al. Rosuvastatin to prevent vascular events in men and women with elevated C-reactive protein. N Engl J Med. 2008;359:2195–207.

    Article  CAS  PubMed  Google Scholar 

  82. Research C for DE and. Enrichment strategies for clinical trials to support approval of human drugs and biological products [Internet]. FDA; 2019 Apr. Available from: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/enrichment-strategies-clinical-trials-support-approval-human-drugs-and-biological-products

  83. Klarin D, Natarajan P. Clinical utility of polygenic risk scores for coronary artery disease. Nat Rev Cardiol. 2022;19:291–301.

    Article  PubMed  Google Scholar 

  84. Fahed AC. Polygenic risk-based detection of subclinical coronary atherosclerosis and intervention with statin and colchicine [Internet]. clinicaltrials.gov; 2023 Apr. Report No.: NCT05850091. Available from: https://clinicaltrials.gov/study/NCT05850091

  85. Fahed AC. Polygenic risk-based detection of subclinical coronary atherosclerosis and change in cardiovascular health [Internet]. clinicaltrials.gov; 2023 Apr. Report No.: NCT05819814. Available from: https://clinicaltrials.gov/study/NCT05819814

  86. Pallmann P, Bedding AW, Choodari-Oskooei B, Dimairo M, Flight L, Hampson LV, et al. Adaptive designs in clinical trials: why use them, and how to run and report them. BMC Med. 2018;16:29.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

Dr. Fahed receives funding from the National Heart Lung and Blood Institute under award numbers K08 HL161448 and R01 HL164629.

Author information

Authors and Affiliations

Authors

Contributions

R.A.K. conceptualized the scope of the review, led the literature review process, synthesized findings, and drafted the manuscript. F.C. and S.G. participated in gathering and analyzing relevant literature and assisted in revising the manuscript. A.C.F. supervised the literature review and writing of the manuscript. All authors approved the final version to be published and agree to be accountable for all aspects of the work.

Corresponding author

Correspondence to Akl C. Fahed.

Ethics declarations

Competing Interests

Dr. Fahed reports being a co-founder of Goodpath. Dr. Abou-Karam receives consulting fees from Goodpath. The other authors have no disclosures to report.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abou-Karam, R., Cheng, F., Gady, S. et al. The Role of Genetics in Advancing Cardiometabolic Drug Development. Curr Atheroscler Rep (2024). https://doi.org/10.1007/s11883-024-01195-6

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11883-024-01195-6

Keywords

Navigation