Skip to main content

Advertisement

Log in

Can Surrogate Markers Help Define Cardiovascular Disease in Youth?

  • Published:
Current Atherosclerosis Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Non-invasive measurements such as arterial stiffness serve as proxy surrogates for detection of early atherosclerosis and ASCVD risk stratification. These surrogate measurements are influenced by age, gender, and ethnicity and affected by the physiological changes of puberty and somatic growth in children and adolescents.

Recent Findings

There is no consensus of the ideal method to measure surrogate markers in youth (< 18 years of age), nor standardized imaging protocols for youth. Currently, pediatric normative data are available but not generalizable.

Summary of the Review

In this review, we provide rationale on how currently used surrogates can help identify subclinical atherosclerosis in youth and affirm their role in identifying youth at risk for premature CVD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Urbina E, Williams R, Alpert B, Collins R, Daniels S, Hayman L, et al. Noninvasive assessment of subclinical atherosclerosis in children and adolescents: recommendations for standard assessment for clinical research: a scientific statement from the American Heart Association. Hypertension. 2009;54(5):919–50.

    Article  CAS  PubMed  Google Scholar 

  2. McGill HC Jr, McMahan CA, Herderick EE, Malcom GT, Tracy RE, Strong JP. Origin of atherosclerosis in childhood and adolescence. Am J Clin Nutr. 2000;72(5 Suppl):1307S–15S.

    Article  CAS  PubMed  Google Scholar 

  3. Berenson GS, Srinivasan SR, Bao W, Newman WP 3rd, Tracy RE, Wattigney WA. Association between multiple cardiovascular risk factors and atherosclerosis in children and young adults. The Bogalusa heart study. N Engl J Med. 1998;338(23):1650–6.

    Article  CAS  PubMed  Google Scholar 

  4. de Ferranti SD, Steinberger J, Ameduri R, Baker A, Gooding H, Kelly AS, et al. Cardiovascular risk reduction in high-risk pediatric patients: a scientific statement from the American Heart Association. Circulation. 2019;139(13):e603–e34.

    Article  PubMed  Google Scholar 

  5. Stein JH, Korcarz CE, Mays ME, Douglas PS, Palta M, Zhang H, et al. A semiautomated ultrasound border detection program that facilitates clinical measurement of ultrasound carotid intima-media thickness. Journal of the American Society of Echocardiography : official publication of the American Society of Echocardiography. 2005;18(3):244–51.

    Article  PubMed  Google Scholar 

  6. Gepner AD, Keevil JG, Wyman RA, Korcarz CE, Aeschlimann SE, Busse KL, et al. Use of carotid intima-media thickness and vascular age to modify cardiovascular risk prediction. Journal of the American Society of Echocardiography : official publication of the American Society of Echocardiography. 2006;19(9):1170–4.

    Article  PubMed  Google Scholar 

  7. Bots ML, Evans GW, Riley WA, Grobbee DE. Carotid intima-media thickness measurements in intervention studies: design options, progression rates, and sample size considerations: a point of view. Stroke. 2003;34(12):2985–94.

    Article  PubMed  Google Scholar 

  8. O'Leary DH, Polak JF, Kronmal RA, Manolio TA, Burke GL, Wolfson SK Jr. Carotid-artery intima and media thickness as a risk factor for myocardial infarction and stroke in older adults. Cardiovascular health study collaborative research group. N Engl J Med. 1999;340(1):14–22.

    Article  CAS  PubMed  Google Scholar 

  9. Mitchell GF, Hwang SJ, Vasan RS, Larson MG, Pencina MJ, Hamburg NM, et al. Arterial stiffness and cardiovascular events: the Framingham heart study. Circulation. 2010;121(4):505–11.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Sass C, Herbeth B, Chapet O, Siest G, Visvikis S, Zannad F. Intima-media thickness and diameter of carotid and femoral arteries in children, adolescents and adults from the Stanislas cohort: effect of age, sex, anthropometry and blood pressure. J Hypertens. 1998;16(11):1593–602.

    Article  CAS  PubMed  Google Scholar 

  11. Torigoe T, Dallaire F, Slorach C, Cardinal MP, Hui W, Bradley TJ, et al. New comprehensive reference values for arterial vascular parameters in children. Journal of the American Society of Echocardiography : official publication of the American Society of Echocardiography. 2020;33(8):1014–22.e4.

    Article  PubMed  Google Scholar 

  12. Shah AS, Dolan LM, Khoury PR, Gao Z, Kimball TR, Urbina EM. Severe obesity in adolescents and young adults is associated with sub-clinical cardiac and vascular changes. J Clin Endocrinol Metab. 2015:jc20144562.

  13. Urbina EM, Khoury PR, McCoy C, Daniels SR, Kimball TR, Dolan LM. Cardiac and vascular consequences of pre-hypertension in youth. J Clin Hypertens (Greenwich, Conn). 2011;13(5):332–42.

    Article  Google Scholar 

  14. Juonala M, Magnussen CG, Venn A, Dwyer T, Burns TL, Davis PH, et al. Influence of age on associations between childhood risk factors and carotid intima-media thickness in adulthood: the cardiovascular risk in young Finns study, the childhood determinants of adult health study, the Bogalusa heart study, and the Muscatine study for the international childhood cardiovascular cohort (i3C) consortium. Circulation. 2010;122(24):2514–20.

    Article  PubMed  Google Scholar 

  15. Ryder JR, Northrop E, Rudser KD, Kelly AS, Gao Z, Khoury PR, et al. Accelerated early vascular aging among adolescents with obesity and/or type 2 diabetes mellitus. J Am Heart Assoc. 2020;9(10):e014891.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Doyon A, Kracht D, Bayazit AK, Deveci M, Duzova A, Krmar RT, et al. Carotid artery intima-media thickness and distensibility in children and adolescents: reference values and role of body dimensions. Hypertension. 2013;62(3):550–6.

    Article  CAS  PubMed  Google Scholar 

  17. Stein JH, Korcarz CE, Hurst RT, Lonn E, Kendall CB, Mohler ER, et al. Use of carotid ultrasound to identify subclinical vascular disease and evaluate cardiovascular disease risk: a consensus statement from the American Society of Echocardiography carotid intima-media thickness task force. Endorsed by the Society for Vascular Medicine. Journal of the American Society of Echocardiography : official publication of the American Society of Echocardiography. 2008;21(2):93–111. quiz 89-90

    Article  PubMed  Google Scholar 

  18. McMahan CA, Gidding SS, Viikari JS, Juonala M, Kähönen M, Hutri-Kähönen N, et al. Association of Pathobiologic Determinants of atherosclerosis in youth risk score and 15-year change in risk score with carotid artery intima-media thickness in young adults (from the cardiovascular risk in young Finns study). Am J Cardiol. 2007;100(7):1124–9.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Bohm B, Hartmann K, Buck M, Oberhoffer R. Sex differences of carotid intima-media thickness in healthy children and adolescents. Atherosclerosis. 2009;

  20. Zanini J, Rodrigues TMB, Barra CB, Filgueiras M, Silva IN. Intima-media thickness of the carotid arteries is affected by pubertal maturation in healthy adolescents. Revista paulista de pediatria : orgao oficial da Sociedade de Pediatria de Sao Paulo. 2019;37(4):428–34.

    Article  PubMed  Google Scholar 

  21. Baldassarre D, Nyyssönen K, Rauramaa R, de Faire U, Hamsten A, Smit AJ, et al. Cross-sectional analysis of baseline data to identify the major determinants of carotid intima-media thickness in a European population: the IMPROVE study. Eur Heart J. 2010;31(5):614–22.

    Article  PubMed  Google Scholar 

  22. Kivimäki M, Lawlor DA, Juonala M, Smith GD, Elovainio M, Keltikangas-Järvinen L, et al. Lifecourse socioeconomic position, C-reactive protein, and carotid intima-media thickness in young adults: the cardiovascular risk in young Finns study. Arterioscler Thromb Vasc Biol. 2005;25(10):2197–202.

    Article  PubMed  Google Scholar 

  23. Dalla Pozza R, Ehringer-Schetitska D, Fritsch P, Jokinen E, Petropoulos A, Oberhoffer R. Intima media thickness measurement in children: a statement from the Association for European Paediatric Cardiology (AEPC) working group on cardiovascular prevention endorsed by the Association for European Paediatric Cardiology. Atherosclerosis. 2015;238(2):380–7.

    Article  CAS  PubMed  Google Scholar 

  24. Torkar AD, Plesnik E, Groselj U, Battelino T, Kotnik P. Carotid intima-media thickness in healthy children and adolescents: normative data and systematic literature review. Front Cardiovasc Med. 2020;7:597768.

    Article  Google Scholar 

  25. Thijssen DH, Bullens LM, van Bemmel MM, Dawson EA, Hopkins N, Tinken TM, et al. Does arterial shear explain the magnitude of flow-mediated dilation?: a comparison between young and older humans. Am J Physiol Heart Circ Physiol. 2009;296(1):H57–64.

    Article  CAS  PubMed  Google Scholar 

  26. Juonala M, Viikari JSA, Khnen M, Solakivi T, Helenius H, Jula A, et al. Childhood levels of serum apolipoproteins B and A-I predict carotid intima-media thickness and brachial endothelial function in adulthood: the cardiovascular risk in young Finns study. J Am Coll Cardiol. 2008;52(4):293–9.

    Article  CAS  PubMed  Google Scholar 

  27. Juonala M, Viikari JS, Ronnemaa T, Marniemi J, Jula A, Loo BM, et al. Associations of dyslipidemias from childhood to adulthood with carotid intima-media thickness, elasticity, and brachial flow-mediated dilatation in adulthood: the cardiovascular risk in young Finns study. Arterioscler Thromb Vasc Biol. 2008;28(5):1012–7.

    Article  CAS  PubMed  Google Scholar 

  28. Sorensen KE, Celermajer DS, Georgakopoulos D, Hatcher G, Betteridge DJ, Deanfield JE. Impairment of endothelium-dependent dilation is an early event in children with familial hypercholesterolemia and is related to the lipoprotein(a) level. J Clin Invest. 1994;93(1):50–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Urbina EM, Kimball TR, Khoury PR, Daniels SR, Dolan LM. Increased arterial stiffness is found in adolescents with obesity or obesity-related type 2 diabetes mellitus. J Hypertens. 2010;28(8):1692–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wadwa RP, Urbina E, Anderson A, Hamman R, Dolan L, Rodriguez B, et al. Measures of arterial stiffness in youth with type 1 and type 2 diabetes: the SEARCH for diabetes in youth study. Diabetes Care. 2010;

  31. Cracowski JL, Minson CT, Salvat-Melis M, Halliwill JR. Methodological issues in the assessment of skin microvascular endothelial function in humans. Trends Pharmacol Sci. 2006;27(9):503–8.

    Article  CAS  PubMed  Google Scholar 

  32. Mahmud FH, Hill DJ, Cuerden MS, Clarson CL. Impaired vascular function in obese adolescents with insulin resistance. J Pediatr. 2009;155(5):678–82.

    Article  CAS  PubMed  Google Scholar 

  33. Shah AS, Gao Z, Dolan LM, Dabelea D, D'Agostino RB Jr, Urbina EM. Assessing endothelial dysfunction in adolescents and young adults with type 1 diabetes mellitus using a non-invasive heat stimulus. Pediatr Diabetes. 2015;16(6):434–40.

    Article  PubMed  Google Scholar 

  34. Donald AE, Charakida M, Falaschetti E, Lawlor DA, Halcox JP, Golding J, et al. Determinants of vascular phenotype in a large childhood population: the Avon longitudinal study of parents and children (ALSPAC). Eur Heart J. 2010;31(12):1502–10.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Shah AS, Gao Z, Urbina EM, Kimball TR, Dolan LM. Prediabetes: the effects on arterial thickness and stiffness in obese youth. J Clin Endocrinol Metab. 2014;99(3):1037–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Atkinson G, Batterham AM, Black MA, Cable NT, Hopkins ND, Dawson EA, et al. Is the ratio of flow-mediated dilation and shear rate a statistically sound approach to normalization in cross-sectional studies on endothelial function? J Appl Physiol (Bethesda, Md : 1985). 2009;107(6):1893–9.

    Article  Google Scholar 

  37. Townsend RR, Wilkinson IB, Schiffrin EL, Avolio AP, Chirinos JA, Cockcroft JR, et al. Recommendations for improving and standardizing vascular research on arterial stiffness: a scientific statement from the American Heart Association. Hypertension. 2015;66(3):698–722.

    Article  CAS  PubMed  Google Scholar 

  38. Wimmer NJ, Townsend RR, Joffe MM, Lash JP, Go AS. Correlation between pulse wave velocity and other measures of arterial stiffness in chronic kidney disease. Clin Nephrol. 2007;68(3):133–43.

    CAS  PubMed  Google Scholar 

  39. Aatola H, Hutri-Kähönen N, Juonala M, Viikari JS, Hulkkonen J, Laitinen T, et al. Lifetime risk factors and arterial pulse wave velocity in adulthood: the cardiovascular risk in young Finns study. Hypertension. 2010;55(3):806–11.

    Article  CAS  PubMed  Google Scholar 

  40. Shah AS, Dolan LM, Khoury PR, Gao Z, Kimball TR, Urbina EM. Severe obesity in adolescents and young adults is associated with subclinical cardiac and vascular changes. J Clin Endocrinol Metab. 2015;100(7):2751–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Shah AS, Khoury PR, Dolan LM, Ippisch HM, Urbina EM, Daniels SR, et al. The effects of obesity and type 2 diabetes mellitus on cardiac structure and function in adolescents and young adults. Diabetologia. 2011;54(4):722–30.

    Article  CAS  PubMed  Google Scholar 

  42. Urbina EM, McCoy CE, Gao Z, Khoury PR, Shah AS, Dolan LM, et al. Lipoprotein particle number and size predict vascular structure and function better than traditional lipids in adolescents and young adults. J Clin Lipidol. 2017;11(4):1023–31.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Shah AS, Gidding SS, El Ghormli L, Tryggestad JB, Nadeau KJ, Bacha F, et al. Relationship between arterial stiffness and subsequent cardiac structure and function in young adults with youth-onset type 2 diabetes: results from the TODAY study. Journal of the American Society of Echocardiography : official publication of the American Society of Echocardiography. 2022;35(6):620–8.e4.

    Article  PubMed  Google Scholar 

  44. Patange AR, Valentini RP, Du W, Pettersen MD. Vitamin D deficiency and arterial wall stiffness in children with chronic kidney disease. Pediatr Cardiol. 2012;33(1):122–8.

    Article  PubMed  Google Scholar 

  45. Shah AS, El Ghormli L, Gidding SS, Hughan KS, Levitt Katz LE, Koren D, et al. Longitudinal changes in vascular stiffness and heart rate variability among young adults with youth-onset type 2 diabetes: results from the follow-up observational treatment options for type 2 diabetes in adolescents and youth (TODAY) study. Acta Diabetol. 2022;59(2):197–205.

    Article  CAS  PubMed  Google Scholar 

  46. Koivistoinen T, Hutri-Kähönen N, Juonala M, Aatola H, Kööbi T, Lehtimäki T, et al. Metabolic syndrome in childhood and increased arterial stiffness in adulthood: the cardiovascular risk in young Finns study. Ann Med. 2011;43(4):312–9.

    Article  PubMed  Google Scholar 

  47. Salvi P, Revera M, Joly L, Reusz G, Iaia M, Benkhedda S, et al. Role of birth weight and postnatal growth on pulse wave velocity in teenagers. J Adolesc Health. 2012;51(4):373–9.

    Article  PubMed  Google Scholar 

  48. Fischer DC, Schreiver C, Heimhalt M, Noerenberg A, Haffner D. Pediatric reference values of carotid-femoral pulse wave velocity determined with an oscillometric device. J Hypertens. 2012;30(11):2159–67.

    Article  CAS  PubMed  Google Scholar 

  49. Voges I, Jerosch-Herold M, Hedderich J, Pardun E, Hart C, Gabbert DD, et al. Normal values of aortic dimensions, distensibility, and pulse wave velocity in children and young adults: a cross-sectional study. Journal of cardiovascular magnetic resonance : official journal of the Society for Cardiovascular Magnetic Resonance. 2012;14(1):77.

    Article  PubMed  Google Scholar 

  50. Liang X, Su S, Hao G, Snieder H, Treiber F, Kapuku G, et al. Determinants of pulse wave velocity trajectories from youth to young adulthood: the Georgia stress and heart study. J Hypertens. 2019;37(3):563–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kim EJ, Park CG, Park JS, Suh SY, Choi CU, Kim JW, et al. Relationship between blood pressure parameters and pulse wave velocity in normotensive and hypertensive subjects: invasive study. J Hum Hypertens. 2007;21(2):141–8.

    Article  CAS  PubMed  Google Scholar 

  52. Giannattasio C, Failla M, Mangoni AA, Scandola L, Fraschini N, Mancia G. Evaluation of arterial compliance in humans. Clinical and experimental hypertension (New York, NY : 1993). 1996;18(3–4):347–62.

  53. Im JA, Lee JW, Shim JY, Lee HR, Lee DC. Association between brachial-ankle pulse wave velocity and cardiovascular risk factors in healthy adolescents. J Pediatr. 2007;150(3):247–51.

    Article  PubMed  Google Scholar 

  54. Elmenhorst J, Hulpke-Wette M, Barta C, Dalla Pozza R, Springer S, Oberhoffer R. Percentiles for central blood pressure and pulse wave velocity in children and adolescents recorded with an oscillometric device. Atherosclerosis. 2015;238(1):9–16.

    Article  CAS  PubMed  Google Scholar 

  55. Antza C, Doundoulakis I, Stabouli S, Tziomalos K, Kotsis V. Masked hypertensives: a disguised arterial stiffness population. J Clin Hypertens (Greenwich, Conn). 2019;21(10):1473–80.

    Article  CAS  PubMed Central  Google Scholar 

  56. Frey EE, Matherne GP, Mahoney LT, Sato Y, Stanford W, Smith WL. Coronary artery aneurysms due to Kawasaki disease: diagnosis with ultrafast CT. Radiology. 1988;167(3):725–6.

    Article  CAS  PubMed  Google Scholar 

  57. Gidding SS, Bookstein LC, Chomka EV. Usefulness of electron beam tomography in adolescents and young adults with heterozygous familial hypercholesterolemia. Circulation. 1998;98(23):2580–3.

    Article  CAS  PubMed  Google Scholar 

  58. Bacha F, Edmundowicz D, Sutton-Tyrell K, Lee S, Tfayli H, Arslanian SA. Coronary artery calcification in obese youth: what are the phenotypic and metabolic determinants? Diabetes Care. 2014;37(9):2632–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Steinberger J, Daniels SR, Hagberg N, Isasi CR, Kelly AS, Lloyd-Jones D, et al. Cardiovascular health promotion in children: challenges and opportunities for 2020 and beyond: a scientific statement from the American Heart Association. Circulation. 2016;134(12):e236–55.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Monasso GS, Santos S, Silva CCV, Geurtsen ML, Oei E, Gaillard R, et al. Body fat, pericardial fat, liver fat and arterial health at age 10 years. Pediatr Obes. 2022;17(10):e12926.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Agbaje AO, Barker AR, Mitchell GF, Tuomainen TP. Effect of arterial stiffness and carotid intima-media thickness progression on the risk of Dysglycemia, insulin resistance, and dyslipidemia: a temporal causal longitudinal study. Hypertension. 2022;79(3):667–78.

    Article  CAS  PubMed  Google Scholar 

  62. Juonala M, Wu F, Sinaiko A, Woo JG, Urbina EM, Jacobs D, et al. Non-HDL cholesterol levels in childhood and carotid intima-media thickness in adulthood. Pediatrics. 2020;145(4)

  63. Farello G, Antenucci A, Stagi S, Mazzocchetti C, Ciocca F, Verrotti A. Metabolically healthy and metabolically unhealthy obese children both have increased carotid intima-media thickness: a case control study. BMC Cardiovasc Disord. 2018;18(1):140.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Garcia-Espinosa V, Bia D, Castro J, Zinoveev A, Marin M, Giachetto G, et al. Peripheral and central aortic pressure, wave-derived reflection parameters, local and regional arterial stiffness and structural parameters in children and adolescents: impact of body mass index variations. High blood Pressure & Cardiovascular Prevention : the official journal of the Italian Society of Hypertension. 2018;25(3):267–80.

    Article  Google Scholar 

  65. Gooty VD, Sinaiko AR, Ryder JR, Dengel DR, Jacobs DR Jr, Steinberger J. Association between carotid intima media thickness, age, and cardiovascular risk factors in children and adolescents. Metab Syndr Relat Disord. 2018;16(3):122–6.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Calabrò MP, Carerj S, Russo MS, Luca FL, Onofrio MT, Antonini-Canterin F, et al. Carotid artery intima-media thickness and stiffness index β changes in normal children: role of age, height and sex. J Cardiovasc Med (Hagerstown). 2017;18(1):19–27.

    Article  PubMed  Google Scholar 

  67. Bruzzi P, Predieri B, Madeo S, Lami F, Iughetti L. Longitudinal evaluation of endothelial markers in children and adolescents with familial hypercholesterolemia. Acta bio-medica : Atenei Parmensis. 2021;92(5):e2021343.

    CAS  PubMed  Google Scholar 

  68. Kosmeri C, Milionis H, Vlahos AP, Benekos T, Bairaktari E, Cholevas V, et al. The impact of dyslipidemia on early markers of endothelial and renal dysfunction in children. J Clin Lipidol. 2021;15(2):292–300.

    Article  PubMed  Google Scholar 

  69. Kosmeri C, Siomou E, Vlahos AP, Milionis H. Review shows that lipid disorders are associated with endothelial but not renal dysfunction in children. Acta Paediatr. 2019;108(1):19–27.

    Article  CAS  PubMed  Google Scholar 

  70. Hussain KS, Gulati R, Satheesh S, Negi VS. Early-onset subclinical cardiovascular damage assessed by non-invasive methods in children with juvenile idiopathic arthritis: analytical cross-sectional study. Rheumatol Int. 2021;41(2):423–9.

    Article  CAS  PubMed  Google Scholar 

  71. Couch SC, Saelens BE, Khoury PR, Dart KB, Hinn K, Mitsnefes MM, et al. Dietary approaches to stop hypertension dietary intervention improves blood pressure and vascular health in youth with elevated blood pressure. Hypertension. 2021;77(1):241–51.

    Article  CAS  PubMed  Google Scholar 

  72. Ishikawa T, Seki K. The association between oxidative stress and endothelial dysfunction in early childhood patients with Kawasaki disease. BMC Cardiovasc Disord. 2018;18(1):30.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Pillay S, Anderson J, Couper J, Maftei O, Gent R, Peña AS. Children with type 1 diabetes have delayed flow-mediated dilation. Can J Diabetes. 2018;42(3):276–80.

    Article  PubMed  Google Scholar 

  74. Li AM, Celermajer DS, Chan MH, Sung RY, Woo KS. Reference range for brachial artery flow-mediated dilation in healthy Chinese children and adolescents Hong Kong medical journal = Xianggang yi xue za zhi 2018;24 Suppl 3(3):36–38.

  75. Anderson JJA, Couper JJ, Giles LC, Leggett CE, Gent R, Coppin B, et al. Effect of metformin on vascular function in children with type 1 diabetes: a 12-month randomized controlled trial. J Clin Endocrinol Metab. 2017;102(12):4448–56.

    Article  PubMed  Google Scholar 

  76. Haley JE, Woodly SA, Daniels SR, Falkner B, Ferguson MA, Flynn JT, et al. Association of Blood Pressure-Related Increase in vascular stiffness on other measures of target organ damage in youth. Hypertension. 2022;79(9):2042–50.

    Article  CAS  PubMed  Google Scholar 

  77. Fan B, Zhang T, Li S, Yan Y, Fan L, Bazzano L, et al. Differential roles of life-course cumulative burden of cardiovascular risk factors in arterial stiffness and thickness. Can J Cardiol. 2022;38(8):1253–62.

    Article  PubMed  Google Scholar 

  78. Shah AS, Isom S, D'Agostino R, Dolan LM, Dabelea D, Imperatore G, et al. Longitudinal changes in arterial stiffness and heart rate variability in youth-onset type 1 versus type 2 diabetes: the SEARCH for diabetes in youth study. Diabetes Care. 2022;45(7):1647–56.

    Article  CAS  PubMed  Google Scholar 

  79. Higgins S, Zemel BS, Khoury PR, Urbina EM, Kindler JM. Visceral fat and arterial stiffness in youth with healthy weight, obesity, and type 2 diabetes. Pediatr Obes. 2022;17(4):e12865.

    Article  PubMed  Google Scholar 

  80. Agbaje AO, Barker AR, Tuomainen TP. Cardiorespiratory fitness, fat mass, and Cardiometabolic health with endothelial function, arterial elasticity, and stiffness. Med Sci Sports Exerc. 2022;54(1):141–52.

    Article  CAS  PubMed  Google Scholar 

  81. Chien KJ, Huang HW, Weng KP, Huang SH, Li SC, Lin CC, et al. Arterial stiffness late after Kawasaki disease in children: assessment by performing brachial-ankle pulse wave velocity. Journal of the Chinese Medical Association : JCMA. 2020;83(10):931–5.

    Article  CAS  PubMed  Google Scholar 

  82. Wiromrat P, Bjornstad P, Vinovskis C, Chung LT, Roncal C, Pyle L, et al. Elevated copeptin, arterial stiffness, and elevated albumin excretion in adolescents with type 1 diabetes. Pediatr Diabetes. 2019;20(8):1110–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Skrzypczyk P, Przychodzień J, Mizerska-Wasiak M, Kuźma-Mroczkowska E, Stelmaszczyk-Emmel A, GóRska E, et al. Asymmetric dimethylarginine is not a marker of arterial damage in children with glomerular kidney diseases. Cent Eur J Immunol. 2019;44(4):370–9.

    Article  CAS  PubMed  Google Scholar 

  84. Hudson L, Kinra S, Wong I, Cole TJ, Deanfield J, Viner R. Is arterial stiffening associated with adiposity, severity of obesity and other contemporary cardiometabolic markers in a community sample of adolescents with obesity in the UK? BMJ Paediatr Open. 2017;1(1):e000061.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Preneet Cheema Brar.

Ethics declarations

Conflict of Interest

Preneet Cheema Brar declares no conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brar, P.C. Can Surrogate Markers Help Define Cardiovascular Disease in Youth?. Curr Atheroscler Rep 25, 275–298 (2023). https://doi.org/10.1007/s11883-023-01101-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11883-023-01101-6

Keywords

Navigation