Skip to main content

Advertisement

Log in

GLP-1 Agonist to Treat Obesity and Prevent Cardiovascular Disease: What Have We Achieved so Far?

  • Cardiometabolic Disease and Treatment (R. Santos, Section Editor)
  • Published:
Current Atherosclerosis Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

To discuss evidence supporting the use of glucagon-like peptide 1 receptor agonists (GLP-1RA) to treat obesity and their role as a cardioprotective drug. Obesity is not just a hypertrophy of the adipose tissue because it may become dysfunctional and inflamed resulting in increased insulin resistance. Being overweight is associated with increased incidence of cardiovascular events and weight loss achieved through lifestyle changes lowers risk factors, but has no clear effect on cardiovascular outcomes. In contrast, treating obesity with GLP-1RA decreases cardiovascular risk and the possible mechanisms of cardioprotection achieved by this class of drugs are discussed. GLP-1RA were initially developed to treat type 2 diabetes patients, in whom the effects upon glycemia and, moreover, weight loss, especially with long-acting GLP-1RA, were evident. However, cardiovascular safety trials in type 2 diabetes patients, the majority presenting cardiovascular disease and excess weight, showed that GLP-1 receptor agonists were indeed capable of decreasing cardiovascular risk.

Recent Findings

Type 2 diabetes treatment with GLP-1RA liraglutide and semaglutide paved way to a ground-breaking therapy specific for obesity, as shown with the SCALE 3 mg/day liraglutide program and the STEP 2.4 mg/week semaglutide program. A novel molecule with superior performance is tirzepatide, a GLP-1 and GIP (Gastric Inhibitory Peptide) receptor agonist and recent results from the SURPASS and SURMOUNT programs are briefly described. Liraglutide was approved without a CVOT (Cardiovascular Outcome Trial) because authorities accepted the results from the LEADER study, designed for superiority. The SELECT study with semaglutide will report results only in 2023 and tirzepatide is being tested in patients with diabetes in the SURPASS-CVOT.

Summary

Clinical studies highlight that GLP-1RA to treat obesity, alongside their concomitant cardioprotective effects, have become a hallmark in clinical science.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Klein S, Gastaldelli A, Yki-Järvinen H, Scherer PE. Why does obesity cause diabetes? Cell Metab. 2022;34(1):11–20. https://doi.org/10.1016/j.cmet.2021.12.012. Recent article on adipose tissue function in obesity.

    Article  CAS  PubMed  Google Scholar 

  2. Finucane MM, Stevens GA, Cowan MJ, Danaei G, Lin JK, Paciorek CJ, et al. National, regional, and global trends in body-mass index since 1980: systematic analysis of health examination surveys and epidemiological studies with 960 country-years and 9·1 million participants. Lancet. 2011;377(9765):557–67. https://doi.org/10.1016/S0140-6736(10)62037-5.

    Article  PubMed  PubMed Central  Google Scholar 

  3. GBD 2015 Obesity Collaborators, Afshin A, Forouzanfar MH, Reitsma MB, Sur P, Estep K, et al. Health effects of overweight and obesity in 195 countries over 25 years. N Engl J Med. 2017;377(1):13–27. https://doi.org/10.1056/NEJMoa1614362.

    Article  Google Scholar 

  4. Gastaldelli A, Abdul Ghani M, DeFronzo RA. Adaptation of insulin clearance to metabolic demand is a key determinant of glucose tolerance. Diabetes. 2021;70(2):377–85. https://doi.org/10.2337/db19-1152.

    Article  CAS  PubMed  Google Scholar 

  5. Smith GI, Mittendorfer B, Klein S. Metabolically healthy obesity: facts and fantasies. J Clin Invest. 2019;129(10):3978–89. https://doi.org/10.1172/JCI129186.

    Article  PubMed  PubMed Central  Google Scholar 

  6. van Vliet S, Koh HE, Patterson BW, Yoshino M, LaForest R, Gropler RJ, et al. Obesity is associated with increased basal and postprandial β-cell insulin secretion even in the absence of insulin resistance. Diabetes. 2020;69(10):2112–9. https://doi.org/10.2337/db20-0377.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Petersen MC, Shulman GI. Mechanisms of insulin action and insulin resistance. Physiol Rev. 2018;98(4):2133–223. https://doi.org/10.1152/physrev.00063.2017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Weir GC. Glucolipotoxicity, β-cells, and diabetes: the emperor has no clothes. Diabetes. 2020;69(3):273–8. https://doi.org/10.2337/db19-0138.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Prentki M, Peyot ML, Masiello P, Madiraju SRM. Nutrient-induced metabolic stress, adaptation, detoxification, and toxicity in the pancreatic β-cell. Diabetes. 2020;69(3):279–90. https://doi.org/10.2337/dbi19-0014.

    Article  CAS  PubMed  Google Scholar 

  10. Wernstedt Asterholm I, Tao C, Morley TS, Wang QA, Delgado-Lopez F, Wang ZV, et al. Adipocyte inflammation is essential for healthy adipose tissue expansion and remodeling. Cell Metab. 2014;20(1):103–18. https://doi.org/10.1016/j.cmet.2014.05.005.

    Article  CAS  PubMed  Google Scholar 

  11. Beals JW, Smith GI, Shankaran M, Fuchs A, Schweitzer GG, Yoshino J, et al. Increased adipose tissue fibrogenesis, not impaired expandability, is associated with nonalcoholic fatty liver disease. Hepatology. 2021;74(3):1287–99. https://doi.org/10.1002/hep.31822.

    Article  CAS  PubMed  Google Scholar 

  12. Liu T, Sun YC, Cheng P, Shao HG. Adipose tissue macrophage-derived exosomal miR-29a regulates obesity-associated insulin resistance. Biochem Biophys Res Commun. 2019;515(2):352–8. https://doi.org/10.1016/j.bbrc.2019.05.113.

    Article  CAS  PubMed  Google Scholar 

  13. Bays HE, Chapman RH, Grandy S, SHIELD Investigators’ Group. The relationship of body mass index to diabetes mellitus, hypertension and dyslipidaemia: comparison of data from two national surveys. Int J Clin Pract. 2007;61(5):737–47. https://doi.org/10.1111/j.1742-1241.2007.01336.x (Erratum in: Int J Clin Pract. 2007 Oct;61(10):1777-8).

    Article  CAS  PubMed  Google Scholar 

  14. Sarma S, Sockalingam S, Dash S. Obesity as a multisystem disease: trends in obesity rates and obesity-related complications. Diabetes Obes Metab. 2021;23(Suppl 1):3–16. https://doi.org/10.1111/dom.14290.

    Article  CAS  PubMed  Google Scholar 

  15. Khafagy R, Dash S. Obesity and cardiovascular disease: the emerging role of inflammation. Front Cardiovasc Med. 2021;25(8):768119. https://doi.org/10.3389/fcvm.2021.768119.

    Article  CAS  Google Scholar 

  16. Blaha MJ, Rivera JJ, Budoff MJ, Blankstein R, Agatston A, O’Leary DH, et al. Association between obesity, high-sensitivity C-reactive protein ≥2 mg/L, and subclinical atherosclerosis: implications of JUPITER from the Multi-Ethnic Study of Atherosclerosis. Arterioscler Thromb Vasc Biol. 2011;31(6):1430–8. https://doi.org/10.1161/ATVBAHA.111.223768.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Cohen RV, Pereira TV, Aboud CM, Petry TBZ, Lopes Correa JL, Schiavon CA, et al. Effect of gastric bypass vs best medical treatment on early-stage chronic kidney disease in patients with type 2 diabetes and obesity: a randomized clinical trial. JAMA Surg. 2020;155(8):e200420. https://doi.org/10.1001/jamasurg.2020.0420.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Look AHEAD Research Group, Wing RR, Bolin P, Brancati FL, Bray GA, Clark JM, et al. Cardiovascular effects of intensive lifestyle intervention in type 2 diabetes. N Engl J Med. 2013;369(2):145–54. https://doi.org/10.1056/NEJMoa1212914 (Erratum in: N Engl J Med. 2014 May 8;370(19):1866).

    Article  CAS  Google Scholar 

  19. Look AHEAD Research Group, Gregg EW, Jakicic JM, Blackburn G, Bloomquist P, Bray GA, et al. Association of the magnitude of weight loss and changes in physical fitness with long-term cardiovascular disease outcomes in overweight or obese people with type 2 diabetes: a post-hoc analysis of the Look AHEAD randomised clinical trial. Lancet Diabetes Endocrinol. 2016;4(11):913–21. https://doi.org/10.1016/S2213-8587(16)30162-0.

    Article  Google Scholar 

  20. Wang J, Shen X, He S, An Y, Gong Q, Li H, Zhang B, Shuai Y, Chen Y, Hu Y, Li G. Hypertriglyceridaemia predicts subsequent long-term risk of cardiovascular events in Chinese adults: 23-year follow-up of the Daqing Diabetes Study. Diabetes Metab Res Rev. 2019;35(6):e3163. https://doi.org/10.1002/dmrr.3163.

    Article  CAS  PubMed  Google Scholar 

  21. Strelitz J, Lawlor ER, Wu Y, Estlin A, Nandakumar G, Ahern AL, et al. Association between weight change and incidence of cardiovascular disease events and mortality among adults with type 2 diabetes: a systematic review of observational studies and behavioural intervention trials. Diabetologia. 2022;65(3):424–39. https://doi.org/10.1007/s00125-021-05605-1.

    Article  PubMed  Google Scholar 

  22. Kristensen SL, Rørth R, Jhund PS, Docherty KF, Sattar N, Preiss D, et al. Cardiovascular, mortality, and kidney outcomes with GLP-1 receptor agonists in patients with type 2 diabetes: a systematic review and meta-analysis of cardiovascular outcome trials. Lancet Diabetes Endocrinol. 2019;7(10):776–85. https://doi.org/10.1016/S2213-8587(19)30249-9 (Erratum in: Lancet Diabetes Endocrinol. 2020 Mar;8(3):e2).

    Article  CAS  PubMed  Google Scholar 

  23. Schauer PR, Kashyap SR, Wolski K, Brethauer SA, Kirwan JP, Pothier CE, et al. Bariatric surgery versus intensive medical therapy in obese patients with diabetes. N Engl J Med. 2012;366(17):1567–76. https://doi.org/10.1056/NEJMoa1200225.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Amouyal C, Andreelli F. Increasing GLP-1 circulating levels by bariatric surgery or by GLP-1 receptor agonists therapy: why are the clinical consequences so different? J Diabetes Res. 2016;2016:5908656. https://doi.org/10.1155/2016/5908656.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Thorens B. Expression cloning of the pancreatic beta cell receptor for the gluco-incretin hormone glucagon-like peptide 1. Proc Natl Acad Sci U S A. 1992;89(18):8641–5. https://doi.org/10.1073/pnas.89.18.8641.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Drucker DJ. GLP-1 physiology informs the pharmacotherapy of obesity. Mol Metab. 2022;57:101351. https://doi.org/10.1016/j.molmet.2021.101351. (Interesting and current review on the clinical physiology of GLP-1 and GLP-1 RA to understand their use in the treatment of obesity)

    Article  CAS  PubMed  Google Scholar 

  27. Nauck MA, Quast DR, Wefers J, Meier JJ. GLP-1 receptor agonists in the treatment of type 2 diabetes - state-of-the-art. Mol Metab. 2021;46:101102. https://doi.org/10.1016/j.molmet.2020.101102. (Complete review for the clinician of the use of GLPI-RA)

    Article  CAS  PubMed  Google Scholar 

  28. Vilsbøll T, Krarup T, Madsbad S, Holst JJ. Both GLP-1 and GIP are insulinotropic at basal and postprandial glucose levels and contribute nearly equally to the incretin effect of a meal in healthy subjects. Regul Pept. 2003;114(2–3):115–21. https://doi.org/10.1016/s0167-0115(03)00111-3.

    Article  PubMed  Google Scholar 

  29. Nauck MA, Meier JJ. GIP and GLP-1: stepsiblings rather than monozygotic twins within the incretin family. Diabetes. 2019;68(5):897–900. https://doi.org/10.2337/dbi19-0005.

    Article  CAS  PubMed  Google Scholar 

  30. Christensen MB, Gasbjerg LS, Heimbürger SM, Stensen S, Vilsbøll T, Knop FK. GIP’s involvement in the pathophysiology of type 2 diabetes. Peptides. 2020;125:170178. https://doi.org/10.1016/j.peptides.2019.170178.

    Article  CAS  PubMed  Google Scholar 

  31. Holst JJ, Andersen DB, Grunddal KV. Actions of glucagon-like peptide-1 receptor ligands in the gut. Br J Pharmacol. 2022;179(4):727–42. https://doi.org/10.1111/bph.15611.

    Article  CAS  PubMed  Google Scholar 

  32. Azmy Nabeh O, Ishak Attallah M, El-Sayed E-G. The pivotal relation between glucagon-like peptides, NFκB and inflammatory bowel disease. Clin Exp Pharmacol Physiol. 2020;47(10):1641–8. https://doi.org/10.1111/1440-1681.13361.

    Article  CAS  PubMed  Google Scholar 

  33. Nauck MA, Quast DR, Wefers J, Pfeiffer AFH. The evolving story of incretins (GIP and GLP-1) in metabolic and cardiovascular disease: a pathophysiological update. Diabetes Obes Metab. 2021;23(Suppl 3):5–29. https://doi.org/10.1111/dom.14496. (Excellent review on the cardiovascular actions of GLP-1RA)

    Article  CAS  PubMed  Google Scholar 

  34. Verdich C, Flint A, Gutzwiller JP, Näslund E, Beglinger C, Hellström PM, et al. A meta-analysis of the effect of glucagon-like peptide-1 (7–36) amide on ad libitum energy intake in humans. J Clin Endocrinol Metab. 2001;86(9):4382–9. https://doi.org/10.1210/jcem.86.9.7877.

    Article  CAS  PubMed  Google Scholar 

  35. Ast J, Arvaniti A, Fine NHF, Nasteska D, Ashford FB, Stamataki Z, et al. Super-resolution microscopy compatible fluorescent probes reveal endogenous glucagon-like peptide-1 receptor distribution and dynamics. Nat Commun. 2020;11(1):467. https://doi.org/10.1038/s41467-020-14309-w (Erratum in: Nat Commun. 2020 Oct 9;11(1):5160).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. De Silva A, Salem V, Long CJ, Makwana A, Newbould RD, Rabiner EA, et al. The gut hormones PYY 3–36 and GLP-1 7–36 amide reduce food intake and modulate brain activity in appetite centers in humans. Cell Metab. 2011;14(5):700–6. https://doi.org/10.1016/j.cmet.2011.09.010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Schlögl H, Kabisch S, Horstmann A, Lohmann G, Müller K, Lepsien J, et al. Exenatide-induced reduction in energy intake is associated with increase in hypothalamic connectivity. Diabetes Care. 2013;36(7):1933–40. https://doi.org/10.2337/dc12-1925.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Knop FK, Vilsbøll T, Larsen S, Højberg PV, Vølund A, Madsbad S, et al. Increased postprandial responses of GLP-1 and GIP in patients with chronic pancreatitis and steatorrhea following pancreatic enzyme substitution. Am J Physiol Endocrinol Metab. 2007;292(1):E324–30. https://doi.org/10.1152/ajpendo.00059.2006.

    Article  CAS  PubMed  Google Scholar 

  39. Andreasen CR, Andersen A, Knop FK, Vilsbøll T. How glucagon-like peptide 1 receptor agonists work. Endocr Connect. 2021;10(7):R200–12. https://doi.org/10.1530/EC-21-0130.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Eng J, Kleinman WA, Singh L, Singh G, Raufman JP. Isolation and characterization of exendin-4, an exendin-3 analogue, from Heloderma suspectum venom. Further evidence for an exendin receptor on dispersed acini from guinea pig pancreas. J Biol Chem. 1992;267(11):7402–5.

    Article  CAS  Google Scholar 

  41. Kolterman OG, Kim DD, Shen L, Ruggles JA, Nielsen LL, Fineman MS, Baron AD. Pharmacokinetics, pharmacodynamics, and safety of exenatide in patients with type 2 diabetes mellitus. Am J Health Syst Pharm. 2005;62(2):173–81. https://doi.org/10.1093/ajhp/62.2.173.

    Article  CAS  PubMed  Google Scholar 

  42. Pratley R, Amod A, Hoff ST, Kadowaki T, Lingvay I, Nauck M, et al. Oral semaglutide versus subcutaneous liraglutide and placebo in type 2 diabetes (PIONEER 4): a randomised, double-blind, phase 3a trial. Lancet. 2019;394:39–50.

    Article  CAS  Google Scholar 

  43. Kalra S, Bhattacharya S, Kapoor N. Contemporary classification of glucagon-like peptide 1 receptor agonists (GLP1RAs). Diabetes Ther. 2021;12(8):2133–47. https://doi.org/10.1007/s13300-021-01113-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Geiser JS, Heathman MA, Cui X, Martin J, Loghin C, Chien JY, de la Peña A. Clinical pharmacokinetics of dulaglutide in patients with type 2 diabetes: analyses of data from clinical trials. Clin Pharmacokinet. 2016;55(5):625–34. https://doi.org/10.1007/s40262-015-0338-3.

    Article  CAS  PubMed  Google Scholar 

  45. Matthews JE, Stewart MW, De Boever EH, Dobbins RL, Hodge RJ, Walker SE, et al. Pharmacodynamics, pharmacokinetics, safety, and tolerability of albiglutide, a long-acting glucagon-like peptide-1 mimetic, in patients with type 2 diabetes. J Clin Endocrinol Metab. 2008;93(12):4810–7. https://doi.org/10.1210/jc.2008-1518.

    Article  CAS  PubMed  Google Scholar 

  46. Marbury TC, Flint A, Jacobsen JB, Derving Karsbøl J, Lasseter K. Pharmacokinetics and tolerability of a single dose of semaglutide, a human glucagon-like peptide-1 analog, in subjects with and without renal impairment. Clin Pharmacokinet. 2017;56(11):1381–90. https://doi.org/10.1007/s40262-017-0528-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Eliaschewitz FG, Canani LH. Advances in GLP-1 treatment: focus on oral semaglutide. Diabetol Metab Syndr. 2021;13(1):99. https://doi.org/10.1186/s13098-021-00713-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Meier JJ. GLP-1 receptor agonists for individualized treatment of type 2 diabetes mellitus. Nat Rev Endocrinol. 2012;8(12):728–42. https://doi.org/10.1038/nrendo.2012.140.

    Article  CAS  PubMed  Google Scholar 

  49. Bethel MA, Patel RA, Merrill P, Lokhnygina Y, Buse JB, Mentz RJ, et al. Cardiovascular outcomes with glucagon-like peptide-1 receptor agonists in patients with type 2 diabetes: a meta-analysis. Lancet Diabetes Endocrinol. 2018;6(2):105–13. https://doi.org/10.1016/S2213-8587(17)30412-6.

    Article  PubMed  Google Scholar 

  50. Pfeffer MA, Claggett B, Diaz R, Dickstein K, Gerstein HC, Køber LV, et al. Lixisenatide in patients with type 2 diabetes and acute coronary syndrome. N Engl J Med. 2015;373(23):2247–57. https://doi.org/10.1056/NEJMoa1509225.

    Article  CAS  PubMed  Google Scholar 

  51. Holman RR, Bethel MA, Mentz RJ, Thompson VP, Lokhnygina Y, Buse JB, Chan JC, Choi J, Gustavson SM, Iqbal N, Maggioni AP, Marso SP, Öhman P, Pagidipati NJ, Poulter N, Ramachandran A, Zinman B, Hernandez AF, EXSCEL Study Group. Effects of once-weekly exenatide on cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2017;377(13):1228–39. https://doi.org/10.1056/NEJMoa1612917.

    Article  CAS  PubMed  Google Scholar 

  52. Gerstein HC, Sattar N, Rosenstock J, Ramasundarahettige C, Pratley R, Lopes RD, et al. Cardiovascular and renal outcomes with efpeglenatide in type 2 diabetes. N Engl J Med. 2021;385(10):896–907. https://doi.org/10.1056/NEJMoa2108269.

    Article  CAS  PubMed  Google Scholar 

  53. Ferrannini G, Gerstein H, Colhoun HM, Dagenais GR, Diaz R, Dyal L, et al. Similar cardiovascular outcomes in patients with diabetes and established or high risk for coronary vascular disease treated with dulaglutide with and without baseline metformin. Eur Heart J. 2021;42(26):2565–73. https://doi.org/10.1093/eurheartj/ehaa777.

    Article  PubMed  Google Scholar 

  54. Buse JB, Wexler DJ, Tsapas A, Rossing P, Mingrone G, Mathieu C, et al. 2019 Update to: management of hyperglycemia in type 2 diabetes, 2018. A consensus report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care. 2020 Feb;43(2):487–493. https://doi.org/10.2337/dci19-0066. Erratum in: Diabetes Care. 2020 Jul;43(7):1670. PMID: 31857443; PMCID: PMC6971782.

  55. Giugliano D, Maiorino MI, Bellastella G, Chiodini P, Esposito K. Glycemic control, preexisting cardiovascular disease, and risk of major cardiovascular events in patients with type 2 diabetes mellitus: systematic review with meta-analysis of cardiovascular outcome trials and intensive glucose control trials. J Am Heart Assoc. 2019;8(12):e012356. https://doi.org/10.1161/JAHA.119.012356.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Maiorino MI, Longo M, Scappaticcio L, Bellastella G, Chiodini P, Esposito K, et al. Improvement of glycemic control and reduction of major cardiovascular events in 18 cardiovascular outcome trials: an updated meta-regression. Cardiovasc Diabetol. 2021;20(1):210. https://doi.org/10.1186/s12933-021-01401-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Ismail-Beigi F, Craven T, Banerji MA, Basile J, Calles J, Cohen RM, et al. Effect of intensive treatment of hyperglycaemia on microvascular outcomes in type 2 diabetes: an analysis of the ACCORD randomised trial. Lancet. 2010;376(9739):419–30. https://doi.org/10.1016/S0140-6736(10)60576-4 (Erratum in: Lancet. 2010 Oct 30;376(9751):1466).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Hernandez AF, Green JB, Janmohamed S, D’Agostino RB Sr, Granger CB, Jones NP, et al. Albiglutide and cardiovascular outcomes in patients with type 2 diabetes and cardiovascular disease (Harmony Outcomes): a double-blind, randomised placebo-controlled trial. Lancet. 2018;392(10157):1519–29. https://doi.org/10.1016/S0140-6736(18)32261-X.

    Article  CAS  PubMed  Google Scholar 

  59. Nauck MA, Meier JJ, Cavender MA, Abd El Aziz M, Drucker DJ. Cardiovascular actions and clinical outcomes with glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors. Circulation. 2017;136(9):849–70. https://doi.org/10.1161/CIRCULATIONAHA.117.028136.

    Article  CAS  PubMed  Google Scholar 

  60. Konig M, Riddle MC, Colhoun HM, Branch KR, Atisso CM, Lakshmanan MC, et al. Exploring potential mediators of the cardiovascular benefit of dulaglutide in type 2 diabetes patients in REWIND. Cardiovasc Diabetol. 2021;20(1):194. https://doi.org/10.1186/s12933-021-01386-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Buse JB, Bain SC, Mann JFE, Nauck MA, Nissen SE, Pocock S, et al. Cardiovascular risk reduction with liraglutide: an exploratory mediation analysis of the LEADER trial. Diabetes Care. 2020;43(7):1546–52. https://doi.org/10.2337/dc19-2251.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Marso SP, Bain SC, Consoli A, Eliaschewitz FG, Jódar E, Leiter LA, et al. Semaglutide and cardiovascular outcomes in patients with type 2 diabetes. N Engl J Med. 2016;375(19):1834–44. https://doi.org/10.1056/NEJMoa1607141.

    Article  CAS  PubMed  Google Scholar 

  63. Husain M, Birkenfeld AL, Donsmark M, Dungan K, Eliaschewitz FG, Franco DR, et al. Oral semaglutide and cardiovascular outcomes in patients with type 2 diabetes. N Engl J Med. 2019;381(9):841–51. https://doi.org/10.1056/NEJMoa1901118.

    Article  CAS  PubMed  Google Scholar 

  64. Libby P. The changing landscape of atherosclerosis. Nature. 2021;592(7855):524–33. https://doi.org/10.1038/s41586-021-03392-8. (Excellent review on the pathophysiology of atherosclerosis)

    Article  CAS  PubMed  Google Scholar 

  65. Barale C, Buracco S, Cavalot F, Frascaroli C, Guerrasio A, Russo I. Glucagon-like peptide 1-related peptides increase nitric oxide effects to reduce platelet activation. Thromb Haemost. 2017;117(6):1115–28. https://doi.org/10.1160/TH16-07-0586.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Ding L, Zhang J. Glucagon-like peptide-1 activates endothelial nitric oxide synthase in human umbilical vein endothelial cells. Acta Pharmacol Sin. 2012;33(1):75–81. https://doi.org/10.1038/aps.2011.149.

    Article  CAS  PubMed  Google Scholar 

  67. Helmstädter J, Frenis K, Filippou K, Grill A, Dib M, Kalinovic S, et al. Endothelial GLP-1 (glucagon-like peptide-1) receptor mediates cardiovascular protection by liraglutide in mice with experimental arterial hypertension. Arterioscler Thromb Vasc Biol. 2020;40(1):145–58. https://doi.org/10.1161/atv.0000615456.97862.30.

    Article  CAS  PubMed  Google Scholar 

  68. Dai Y, Mehta JL, Chen M. Glucagon-like peptide-1 receptor agonist liraglutide inhibits endothelin-1 in endothelial cell by repressing nuclear factor-kappa B activation. Cardiovasc Drugs Ther. 2013;27(5):371–80. https://doi.org/10.1007/s10557-013-6463-z.

    Article  CAS  PubMed  Google Scholar 

  69. Dorecka M, Siemianowicz K, Francuz T, Garczorz W, Chyra A, Klych A, et al. Exendin-4 and GLP-1 decreases induced expression of ICAM-1, VCAM-1 and RAGE in human retinal pigment epithelial cells. Pharmacol Rep. 2013;65(4):884–90. https://doi.org/10.1016/s1734-1140(13)71069-7.

    Article  CAS  PubMed  Google Scholar 

  70. Wei R, Ma S, Wang C, Ke J, Yang J, Li W, et al. Exenatide exerts direct protective effects on endothelial cells through the AMPK/Akt/eNOS pathway in a GLP-1 receptor-dependent manner. Am J Physiol Endocrinol Metab. 2016;310(11):E947–57. https://doi.org/10.1152/ajpendo.00400.2015.

    Article  PubMed  Google Scholar 

  71. Chang W, Zhu F, Zheng H, Zhou Z, Miao P, Zhao L, et al. Glucagon-like peptide-1 receptor agonist dulaglutide prevents ox-LDL-induced adhesion of monocytes to human endothelial cells: an implication in the treatment of atherosclerosis. Mol Immunol. 2019;116:73–9. https://doi.org/10.1016/j.molimm.2019.09.021.

    Article  CAS  PubMed  Google Scholar 

  72. Arakawa M, Mita T, Azuma K, Ebato C, Goto H, Nomiyama T, et al. Inhibition of monocyte adhesion to endothelial cells and attenuation of atherosclerotic lesion by a glucagon-like peptide-1 receptor agonist, exendin-4. Diabetes. 2010;59(4):1030–7. https://doi.org/10.2337/db09-1694.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Hirano T, Mori Y. Anti-atherogenic and anti-inflammatory properties of glucagon-like peptide-1, glucose-dependent insulinotropic polypepide, and dipeptidyl peptidase-4 inhibitors in experimental animals. J Diabetes Investig. 2016;7(Suppl 1):80–6. https://doi.org/10.1111/jdi.12446.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Nagashima M, Watanabe T, Terasaki M, Tomoyasu M, Nohtomi K, Kim-Kaneyama J, et al. Native incretins prevent the development of atherosclerotic lesions in apolipoprotein E knockout mice. Diabetologia. 2011;54(10):2649–59. https://doi.org/10.1007/s00125-011-2241-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Tashiro Y, Sato K, Watanabe T, Nohtomi K, Terasaki M, Nagashima M, et al. A glucagon-like peptide-1 analog liraglutide suppresses macrophage foam cell formation and atherosclerosis. Peptides. 2014;54:19–26. https://doi.org/10.1016/j.peptides.2013.12.015.

    Article  CAS  PubMed  Google Scholar 

  76. Zhan Y, Sun HL, Chen H, Zhang H, Sun J, Zhang Z, et al. Glucagon-like peptide-1 (GLP-1) protects vascular endothelial cells against advanced glycation end products (AGEs)-induced apoptosis. Med Sci Monit. 2012;18(7):BR286-91. https://doi.org/10.12659/msm.883207.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Yang X, Feng P, Zhang X, Li D, Wang R, Ji C, et al. The diabetes drug semaglutide reduces infarct size, inflammation, and apoptosis, and normalizes neurogenesis in a rat model of stroke. Neuropharmacology. 2019;1(158):107748. https://doi.org/10.1016/j.neuropharm.2019.107748.

    Article  CAS  Google Scholar 

  78. Burgmaier M, Liberman A, Möllmann J, Kahles F, Reith S, Lebherz C, et al. Glucagon-like peptide-1 (GLP-1) and its split products GLP-1(9–37) and GLP-1(28–37) stabilize atherosclerotic lesions in apoe-/- mice. Atherosclerosis. 2013;231(2):427–35. https://doi.org/10.1016/j.atherosclerosis.2013.08.033.

    Article  CAS  PubMed  Google Scholar 

  79. Rakipovski G, Rolin B, Nøhr J, Klewe I, Frederiksen KS, Augustin R, et al. The GLP-1 analogs liraglutide and semaglutide reduce atherosclerosis in ApoE-/- and LDLr-/- mice by a mechanism that includes inflammatory pathways. JACC Basic Transl Sci. 2018;3(6):844–57. https://doi.org/10.1016/j.jacbts.2018.09.004.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Garczorz W, Gallego-Colon E, Kosowska A, Kłych-Ratuszny A, Woźniak M, Marcol W, et al. Exenatide exhibits anti-inflammatory properties and modulates endothelial response to tumor necrosis factor α-mediated activation. Cardiovasc Ther. 2018 Apr;36(2). https://doi.org/10.1111/1755-5922.12317.

  81. Anholm C, Kumarathurai P, Pedersen LR, Samkani A, Walzem RL, Nielsen OW, et al. Liraglutide in combination with metformin may improve the atherogenic lipid profile and decrease C-reactive protein level in statin treated obese patients with coronary artery disease and newly diagnosed type 2 diabetes: a randomized trial. Atherosclerosis. 2019;288:60–6. https://doi.org/10.1016/j.atherosclerosis.2019.07.007.

    Article  CAS  PubMed  Google Scholar 

  82. Balestrieri ML, Rizzo MR, Barbieri M, Paolisso P, D’Onofrio N, Giovane A, et al. Sirtuin 6 expression and inflammatory activity in diabetic atherosclerotic plaques: effects of incretin treatment. Diabetes. 2015;64(4):1395–406. https://doi.org/10.2337/db14-1149.

    Article  CAS  PubMed  Google Scholar 

  83. Gabery S, Salinas CG, Paulsen SJ, Ahnfelt-Rønne J, Alanentalo T, Baquero AF, et al. Semaglutide lowers body weight in rodents via distributed neural pathways. JCI Insight. 2020;5(6):e133429. https://doi.org/10.1172/jci.insight.133429.

    Article  PubMed Central  Google Scholar 

  84. Ludwig MQ, Cheng W, Gordian D, Lee J, Paulsen SJ, Hansen SN, et al. A genetic map of the mouse dorsal vagal complex and its role in obesity. Nat Metab. 2021;3(4):530–45. https://doi.org/10.1038/s42255-021-00363-1.

    Article  CAS  PubMed  Google Scholar 

  85. Overgaard RV, Navarria A, Ingwersen SH, Bækdal TA, Kildemoes RJ. Clinical pharmacokinetics of oral semaglutide: analyses of data from clinical pharmacology trials. Clin Pharmacokinet. 2021;60(10):1335–48. https://doi.org/10.1007/s40262-021-01025-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Bonora E, Frias JP, Tinahones FJ, Van J, Malik RE, Yu Z, et al. Effect of dulaglutide 3.0 and 4.5 mg on weight in patients with type 2 diabetes: exploratory analyses of AWARD-11. Diabetes Obes Metab. 2021;23(10):2242–50. https://doi.org/10.1111/dom.14465.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Hiatt WR, Goldfine AB, Kaul S. Cardiovascular risk assessment in the development of new drugs for obesity. JAMA. 2012;308(11):1099–100. https://doi.org/10.1001/jama.2012.9931.

    Article  CAS  PubMed  Google Scholar 

  88. Wilding JPH, Jacob S. Cardiovascular outcome trials in obesity: a review. Obes Rev. 2021;22(1):e13112. https://doi.org/10.1111/obr.13112. (Excellent discussion of the challenges of conducting clinical trials in obesity)

    Article  PubMed  Google Scholar 

  89. Pi-Sunyer X, Astrup A, Fujioka K, Greenway F, Halpern A, Krempf M, Lau DC, le Roux CW, Violante Ortiz R, Jensen CB, Wilding JP, SCALE Obesity and Prediabetes NN8022-1839 Study Group. A randomized, controlled trial of 3.0 mg of liraglutide in weight management. N Engl J Med. 2015;373(1):11–22. https://doi.org/10.1056/NEJMoa1411892.

    Article  CAS  PubMed  Google Scholar 

  90. le Roux CW, Astrup A, Fujioka K, Greenway F, Lau DCW, Van Gaal L, et al. 3 years of liraglutide versus placebo for type 2 diabetes risk reduction and weight management in individuals with prediabetes: a randomised, double-blind trial. Lancet. 2017;389(10077):1399–409. https://doi.org/10.1016/S0140-6736(17)30069-7 (Erratum in: Lancet. 2017 Apr 8;389(10077):1398).

    Article  CAS  PubMed  Google Scholar 

  91. Davies MJ, Bergenstal R, Bode B, Kushner RF, Lewin A, Skjøth TV, et al. Efficacy of liraglutide for weight loss among patients with type 2 diabetes: the SCALE diabetes randomized clinical trial. JAMA. 2015;314(7):687–99. https://doi.org/10.1001/jama.2015.9676 (Erratum in: JAMA. 2016 Jan 5;315(1):90).

    Article  CAS  PubMed  Google Scholar 

  92. Blackman A, Foster GD, Zammit G, Rosenberg R, Aronne L, Wadden T, et al. Effect of liraglutide 3.0 mg in individuals with obesity and moderate or severe obstructive sleep apnea: the SCALE Sleep Apnea randomized clinical trial. Int J Obes (Lond). 2016;40(8):1310–9. https://doi.org/10.1038/ijo.2016.52.

    Article  CAS  Google Scholar 

  93. Wadden TA, Hollander P, Klein S, Niswender K, Woo V, Hale PM, et al. Weight maintenance and additional weight loss with liraglutide after low-calorie-diet-induced weight loss: the SCALE Maintenance randomized study. Int J Obes (Lond). 2013;37(11):1443–51. https://doi.org/10.1038/ijo.2013.120 (Erratum in: Int J Obes (Lond). 2013 Nov;37(11):1514. Erratum in: Int J Obes (Lond). 2015 Jan;39(1):187).

    Article  CAS  Google Scholar 

  94. Davies MJ, Aronne LJ, Caterson ID, Thomsen AB, Jacobsen PB, Marso SP, et al. Liraglutide and cardiovascular outcomes in adults with overweight or obesity: a post hoc analysis from SCALE randomized controlled trials. Diabetes Obes Metab. 2018;20(3):734–9. https://doi.org/10.1111/dom.13125.

    Article  CAS  PubMed  Google Scholar 

  95. Wadden TA, Tronieri JS, Sugimoto D, Lund MT, Auerbach P, Jensen C, et al. Liraglutide 3.0 mg and Intensive Behavioral Therapy (IBT) for Obesity in Primary Care: The SCALE IBT randomized controlled trial. Obesity (Silver Spring). 2020;28(3):529–36. https://doi.org/10.1002/oby.22726.

    Article  CAS  PubMed Central  Google Scholar 

  96. Jensterle M, Janež A. Glucagon like peptide 1 receptor agonists in the treatment of obesity. Horm Res Paediatr. 2021. https://doi.org/10.1159/000521264.

    Article  PubMed  Google Scholar 

  97. Kelly AS, Auerbach P, Barrientos-Perez M, Gies I, Hale PM, Marcus C, et al. A randomized, controlled trial of liraglutide for adolescents with obesity. N Engl J Med. 2020;382(22):2117–28. https://doi.org/10.1056/NEJMoa1916038.

    Article  CAS  PubMed  Google Scholar 

  98. Ryan PM, Seltzer S, Hayward NE, Rodriguez DA, Sless RT, Hawkes CP. Safety and efficacy of glucagon-like peptide-1 receptor agonists in children and adolescents with obesity: a meta-analysis. J Pediatr. 2021;236:137-147.e13. https://doi.org/10.1016/j.jpeds.2021.05.009.

    Article  CAS  PubMed  Google Scholar 

  99. Kushner RF, Calanna S, Davies M, Dicker D, Garvey WT, Goldman B, et al. Semaglutide 24 mg for the treatment of obesity: key elements of the STEP trials 1 to 5. obesity (Silver Spring). 2020;28(6):1050–61. https://doi.org/10.1002/oby.22794.

    Article  CAS  PubMed Central  Google Scholar 

  100. Wilding JPH, Batterham RL, Calanna S, Davies M, Van Gaal LF, Lingvay I, et al. Once-weekly semaglutide in adults with overweight or obesity. N Engl J Med. 2021;384(11):989. https://doi.org/10.1056/NEJMoa2032183.

    Article  CAS  PubMed  Google Scholar 

  101. Davies M, Færch L, Jeppesen OK, Pakseresht A, Pedersen SD, Perreault L, et al. Semaglutide 2·4 mg once a week in adults with overweight or obesity, and type 2 diabetes (STEP 2): a randomised, double-blind, double-dummy, placebo-controlled, phase 3 trial. Lancet. 2021;397(10278):971–84. https://doi.org/10.1016/S0140-6736(21)00213-0.

    Article  CAS  PubMed  Google Scholar 

  102. Wadden TA, Bailey TS, Billings LK, Davies M, Frias JP, Koroleva A, et al. Effect of subcutaneous semaglutide vs placebo as an adjunct to intensive behavioral therapy on body weight in adults with overweight or obesity: the STEP 3 randomized clinical trial. JAMA. 2021;325(14):1403–13. https://doi.org/10.1001/jama.2021.1831.

    Article  CAS  PubMed  Google Scholar 

  103. Rubino D, Abrahamsson N, Davies M, Hesse D, Greenway FL, Jesen C, et al. Effect of continued weekly subcutaneous semaglutide vs placebo on weight loss maintenance in adults with overweight or obesity: the STEP 4 randomized clinical trial. JAMA. 2021;325(14):1414–25. https://doi.org/10.1001/jama.2021.3224.

    Article  CAS  PubMed  Google Scholar 

  104. Friedrichsen M, Breitschaft A, Tadayon S, Wizert A, Skovgaard D. The effect of semaglutide 2.4 mg once weekly on energy intake, appetite, control of eating, and gastric emptying in adults with obesity. Diabetes Obes Metab. 2021;23(3):754–62. https://doi.org/10.1111/dom.14280.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Garvey WT, Batterham RL, Bhatta M, Buscemi S, Christensen LN,Frias JP, et al. Two-year effect of semaglutide 2.4 mg vs placebo in adults with overweight or obesity: STEP 5. Presented at the 39th Annual Meeting of The Obesity Society (TOS) held at ObesityWeek®, virtual meeting. 2021 Nov:15.

  106. Kadowaki T, Isendahl J, Khalid U, Lee SY, Nishida T, Ogawa W, et al. Semaglutide once a week in adults with overweight or obesity, with or without type 2 diabetes in an east Asian population (STEP 6): a randomised, double-blind, double-dummy, placebo-controlled, phase 3a trial. Lancet Diabetes Endocrinol. 2022;10(3):193–206. https://doi.org/10.1016/S2213-8587(22)00008-0.

    Article  CAS  PubMed  Google Scholar 

  107. Rubino DM, Greenway FL, Khalid U, O’Neil PM, Rosenstock J, Sørrig R, et al. Effect of weekly subcutaneous semaglutide vs daily liraglutide on body weight in adults with overweight or obesity without diabetes: the STEP 8 randomized clinical trial. JAMA. 2022;327(2):138–50. https://doi.org/10.1001/jama.2021.23619.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Fisman EZ, Tenenbaum A. The dual glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1) receptor agonist tirzepatide: a novel cardiometabolic therapeutic prospect. Cardiovasc Diabetol. 2021;20(1):225. https://doi.org/10.1186/s12933-021-01412-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Coskun T, Sloop KW, Loghin C, Alsina-Fernandez J, Urva S, Bokvist KB, et al. LY3298176, a novel dual GIP and GLP-1 receptor agonist for the treatment of type 2 diabetes mellitus: from discovery to clinical proof of concept. Mol Metab. 2018;18:3–14. https://doi.org/10.1016/j.molmet.2018.09.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Baggio LL, Drucker DJ. Glucagon-like peptide-1 receptor co-agonists for treating metabolic disease. Mol Metab. 2021;46:101090. https://doi.org/10.1016/j.molmet.2020.101090.

    Article  CAS  PubMed  Google Scholar 

  111. Rosenstock J, Wysham C, Frías JP, Kaneko S, Lee CJ, Fernández Landó L, et al. Efficacy and safety of a novel dual GIP and GLP-1 receptor agonist tirzepatide in patients with type 2 diabetes (SURPASS-1): a double-blind, randomised, phase 3 trial. Lancet. 2021;398(10295):143–55. https://doi.org/10.1016/S0140-6736(21)01324-6 (Erratum in: Lancet. 2021 Jul 17;398(10296):212).

    Article  CAS  PubMed  Google Scholar 

  112. Frías JP, Davies MJ, Rosenstock J, Pérez Manghi FC, Fernández Landó L, Bergman BK, et al. Tirzepatide versus semaglutide once weekly in patients with type 2 diabetes. N Engl J Med. 2021;385(6):503–15. https://doi.org/10.1056/NEJMoa2107519.

    Article  PubMed  Google Scholar 

  113. Dahl D, Onishi Y, Norwood P, Huh R, Bray R, Patel H, et al. Effect of subcutaneous tirzepatide vs placebo added to titrated insulin glargine on glycemic control in patients with type 2 diabetes: the SURPASS-5 randomized clinical trial. JAMA. 2022;327(6):534–45. https://doi.org/10.1001/jama.2022.0078.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Pelle MC, Provenzano M, Zaffina I, Pujia R, Giofrè F, Lucà S, et al. Role of a dual glucose-dependent insulinotropic peptide (GIP)/Glucagon-like peptide-1 receptor agonist (twincretin) in glycemic control: from pathophysiology to treatment. Life (Basel). 2021;12(1):29. https://doi.org/10.3390/life12010029.

    Article  CAS  Google Scholar 

  115. Wilson JM, Nikooienejad A, Robins DA, Roell WC, Riesmeyer JS, Haupt A, et al. The dual glucose-dependent insulinotropic peptide and glucagon-like peptide-1 receptor agonist, tirzepatide, improves lipoprotein biomarkers associated with insulin resistance and cardiovascular risk in patients with type 2 diabetes. Diabetes Obes Metab. 2020;22(12):2451–9. https://doi.org/10.1111/dom.14174.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Sattar N, McGuire DK, Pavo I, Weerakkody GJ, Nishiyama H, Wiese RJ, et al. Tirzepatide cardiovascular event risk assessment: a pre-specified meta-analysis. Nat Med. 2022. https://doi.org/10.1038/s41591-022-01707-4.

    Article  PubMed  PubMed Central  Google Scholar 

  117. Kane JA, Mehmood T, Munir I, Kamran H, Kariyanna PT, Zhyvotovska A, et al. Cardiovascular risk reduction associated with pharmacological weight loss: a meta-analysis. Int J Clin Res Trials. 2019;4(1):131. https://doi.org/10.15344/2456-8007/2019/131.

    Article  PubMed  PubMed Central  Google Scholar 

  118. Klein S, Fontana L, Young VL, Coggan AR, Kilo C, Patterson BW, et al. Absence of an effect of liposuction on insulin action and risk factors for coronary heart disease. N Engl J Med. 2004;350(25):2549–57. https://doi.org/10.1056/NEJMoa033179.

    Article  CAS  PubMed  Google Scholar 

  119. Fabbrini E, Tamboli RA, Magkos F, Marks-Shulman PA, Eckhauser AW, Richards WO, et al. Surgical removal of omental fat does not improve insulin sensitivity and cardiovascular risk factors in obese adults. Gastroenterology. 2010;139(2):448–55. https://doi.org/10.1053/j.gastro.2010.04.056.

    Article  PubMed  Google Scholar 

  120. Ard J, Fitch A, Fruh S, Herman L. Weight loss and maintenance related to the mechanism of action of glucagon-like peptide 1 receptor agonists. Adv Ther. 2021;38(6):2821–39. https://doi.org/10.1007/s12325-021-01710-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maurício Reis Pedrosa.

Ethics declarations

Conflict of Interest

FG Eliaschewitz and D R Franco reports consulting fees from Eli Lily, NovoNordisk, AstraZeneca, and Sanofi-Aventis; payment or honoraria from Eli Lily, NovoNordisk, and Bayer; support for attending meetings and/or travel from NovoNordisk; and participation on a Data Safety Monitoring Board or Advisory Board for NovoNordisk and Pfizer.

The other authors declare no conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Cardiometabolic Disease and Treatment.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pedrosa, M.R., Franco, D.R., Gieremek, H.W. et al. GLP-1 Agonist to Treat Obesity and Prevent Cardiovascular Disease: What Have We Achieved so Far?. Curr Atheroscler Rep 24, 867–884 (2022). https://doi.org/10.1007/s11883-022-01062-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11883-022-01062-2

Keywords

Navigation