Skip to main content

The Role of Calorie Restriction in the Prevention of Cardiovascular Disease

Abstract

Purpose of Review

Calorie restriction (CR) has emerged as a non-pharmacological treatment to prevent cardiovascular disease (CVD). This article reviews recent progress regarding the role of CR in CVD prevention via reduction of cardiometabolic risk factors and promoting atherosclerotic stability.

Recent Findings

Calorie restriction may be an approach to reduce the development of atherosclerosis. CR promotes eNOS activity and SIRT1 expression which in turn improves vasodilation resulting in greater regulation of blood pressure and blood flow. Modest CR in nonobese young and middle-aged adults results in improved cardiometabolic risk profile.

Summary

The evidence for CR in CVD prevention has accumulated in the recent years. Most evidence, however, is from rodent or small human trials. Our understanding of the magnitude of calorie reduction that leads to the long-term therapeutic effects on cardiovascular health is limited. More well-designed controlled trials conducted in diverse populations with larger sample sizes and longer follow-ups are warranted.

This is a preview of subscription content, access via your institution.

Fig. 1

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. World Health Organization. Cardiovascular diseases (CVDs). Accessed September 9, 2021. http://www.who.int/mediacentre/factsheets/fs317/en/

  2. Virani SS, Alonso A, Aparicio HJ, Benjamin EJ, Bittencourt MS, Callaway CW, et al. American Heart Association Council on Epidemiology and Prevention Statistics Committee and Stroke Statistics Subcommittee Heart disease and stroke statistics-2021 update: a report from the American Heart Association. Circulation. 2021;143(8):e254–743. https://doi.org/10.1161/CIR.0000000000000950 (Epub 2021 Jan 27. PMID: 33501848).

    Article  PubMed  Google Scholar 

  3. Agency for Healthcare Research and Quality. Medical Expenditure Panel Survey (MEPS): household component summary tables, medical conditions, United States. Accessed September 9, 2021. https://meps.ahrq.gov/mep-strends/ home/index.html

  4. Man AWC, Li H, Xia N. Impact of lifestyles (diet and exercise) on vascular health: oxidative stress and endothelial function. Oxid Med Cell Longev. 2020;26(2020):1496462. https://doi.org/10.1155/2020/1496462.PMID:33062134;PMCID:PMC7533760.

    Article  Google Scholar 

  5. Daiber A, Steven S, Weber A, Shuvaev VV, Muzykantov VR, Laher I, Li H, Lamas S, Münzel T. Targeting vascular (endothelial) dysfunction. Br J Pharmacol. 2017;174(12):1591–619. https://doi.org/10.1111/bph.13517 (Epub 2016 Jul 4. PMID: 27187006; PMCID: PMC5446575).

    CAS  Article  PubMed  Google Scholar 

  6. Stanek A, Fazeli B, Bartuś S, Sutkowska E. The role of endothelium in physiological and pathological states: new data. Biomed Res Int. 2018;18(2018):1098039. https://doi.org/10.1155/2018/1098039.PMID:30581842;PMCID:PMC6276514.

    Article  Google Scholar 

  7. Most J, Redman LM. Aging and cardiovascular disease: lessons from calorie restriction. In Nutrition and cardiometabolic health, ed. N Bergeron, PW Siri-Tarino, GA Bray, RM Krauss, 2017 pp. 191–208.Boca Raton, FL: CRC

  8. Caristia S, Vito M, Sarro A, Leone A, Pecere A, Zibetti A, Filigheddu N, Zeppegno P, Prodam F, Faggiano F, Marzullo P. Is caloric restriction associated with better healthy aging outcomes? A systematic review and meta-analysis of randomized controlled trials. Nutrients. 2020;12(8):2290. https://doi.org/10.3390/nu12082290.PMID:32751664;PMCID:PMC7468870.

    CAS  Article  PubMed Central  Google Scholar 

  9. Ungvari Z, Parrado-Fernandez C, Csiszar A, de Cabo R. Mechanisms underlying caloric restriction and lifespan regulation: implications for vascular aging. Circ Res. 2008;102(5):519–28. https://doi.org/10.1161/CIRCRESAHA.107.168369.PMID:18340017;PMCID:PMC2424221.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  10. National Heart, Lung and Blood Institute, National Institutes of Health: https://www.nhlbi.nih.gov/health-topics/atherosclerosis, Accessed September 29, 2021

  11. Yang J, Zeng P, Liu L, Yu M, Su J, Yan Y, Ma J, Hu W, Yang X, Han J, Duan Y, Chen Y. Food with calorie restriction reduces the development of atherosclerosis in apoE-deficient mice. Biochem Biophys Res Commun. 2020;524(2):439–45. https://doi.org/10.1016/j.bbrc.2020.01.109 (Epub 2020 Jan 29 PMID: 32007274).

    CAS  Article  PubMed  Google Scholar 

  12. Rajendran P, Rengarajan T, Thangavel J, Nishigaki Y, Sakthisekaran D, Sethi G, Nishigaki I. The vascular endothelium and human diseases. Int J Biol Sci. 2013;9(10):1057–69. https://doi.org/10.7150/ijbs.7502.PMID:24250251;PMCID:PMC3831119.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  13. Durand MJ, Gutterman DD. Diversity in mechanisms of endothelium-dependent vasodilation in health and disease. Microcirculation. 2013;20(3):239–47. https://doi.org/10.1111/micc.12040.PMID:23311975;PMCID:PMC3625248.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  14. Cyr AR, Huckaby LV, Shiva SS, Zuckerbraun BS. Nitric oxide and endothelial dysfunction. Crit Care Clin. 2020;36(2):307–21. https://doi.org/10.1016/j.ccc.2019.12.009 (PMID: 32172815).

    Article  PubMed  PubMed Central  Google Scholar 

  15. • Man AWC, Li H, Xia N. The role of sirtuin1 in regulating endothelial function, arterial remodeling and vascular aging. Front Physiol. 2019;10:1173. https://doi.org/10.3389/fphys.2019.01173. (Findings from this study demonstrate that the positive effect of calorie restriction on endothelial function may be through the interrelationship between eNOS and SIRT1.•)

    Article  PubMed  PubMed Central  Google Scholar 

  16. Dolinsky VW, Dyck JR. Calorie restriction and resveratrol in cardiovascular health and disease. Biochim Biophys Acta. 2011;1812(11):1477–89. https://doi.org/10.1016/j.bbadis.2011.06.010 (Epub 2011 Jul 1 PMID: 21749920).

    CAS  Article  PubMed  Google Scholar 

  17. Tahir UA, Gerszten RE. Omics and cardiometabolic disease risk prediction. Annu Rev Med. 2020;27(71):163–75. https://doi.org/10.1146/annurev-med-042418-010924 (PMID: 31986080).

    CAS  Article  Google Scholar 

  18. •• Kraus WE, Bhapkar M, Huffman KM, Pieper CF, Krupa Das S, Redman LM, Villareal DT, Rochon J, Roberts SB, Ravussin E, Holloszy JO, Fontana L, CALERIE Investigators. 2 years of calorie restriction and cardiometabolic risk (CALERIE): exploratory outcomes of a multicentre, phase 2, randomised controlled trial. Lancet Diabetes Endocrinol. 2019;7(9):673–83. https://doi.org/10.1016/S2213-8587(19)30151-2. (Findings from this study show that moderate calorie restriction improves cardiometabolic risk factors in young and middle-aged adults with implications toward greater long-term cardiovascular health.••)

    Article  PubMed  PubMed Central  Google Scholar 

  19. Rubin R. Modest calorie reduction can improve cardiometabolic health. JAMA. 2019;322(11):1032–3. https://doi.org/10.1001/jama.2019.12314 (PMID: 31461122).

    Article  PubMed  Google Scholar 

  20. Forman DE, Maurer MS, Boyd C, Brindis R, Salive ME, Horne FM, Bell SP, Fulmer T, Reuben DB, Zieman S, Rich MW. Multimorbidity in older adults with cardiovascular disease. J Am Coll Cardiol. 2018;71(19):2149–61. https://doi.org/10.1016/j.jacc.2018.03.022.PMID:29747836;PMCID:PMC6028235.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Perry CA, Van Guilder GP, Kauffman A, Hossain M. A calorie-restricted DASH diet reduces body fat and maintains muscle strength in obese older adults. Nutrients. 2019;12(1):102. https://doi.org/10.3390/nu12010102.PMID:31905920;PMCID:PMC7019370.

    Article  PubMed Central  Google Scholar 

  22. Perry CA, Van Guilder GP, Hossain M, Kauffman A. Cardiometabolic changes in response to a calorie-restricted DASH diet in obese older adults. Front Nutr. 2021;19(8):647847. https://doi.org/10.3389/fnut.2021.647847.PMID:33816541;PMCID:PMC8017169.

    Article  Google Scholar 

  23. Ard JD, Gower B, Hunter G, Ritchie CS, Roth DL, Goss A, Wingo BC, Bodner EV, Brown CJ, Bryan D, Buys DR, Haas MC, Keita AD, Flagg LA, Williams CP, Locher JL. Effects of calorie restriction in obese older adults: the CROSSROADS randomized controlled trial. J Gerontol A Biol Sci Med Sci. 2017;73(1):73–80. https://doi.org/10.1093/gerona/glw237.PMID:28003374;PMCID:PMC5861948.

    Article  PubMed  Google Scholar 

  24. Maroofi M, Nasrollahzadeh J. Effect of intermittent versus continuous calorie restriction on body weight and cardiometabolic risk markers in subjects with overweight or obesity and mild-to-moderate hypertriglyceridemia: a randomized trial. Lipids Health Dis. 2020;19(1):216. https://doi.org/10.1186/s12944-020-01399-0.PMID:33028352;PMCID:PMC7542333.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  25. Oh M, Kim S, An KY, Min J, Yang HI, Lee J, Lee MK, Kim DI, Lee HS, Lee JW, Jeon JY. Effects of alternate day calorie restriction and exercise on cardio-metabolic risk factors in overweight and obese adults: an exploratory randomized controlled study. BMC Public Health. 2018;18(1):1124. https://doi.org/10.1186/s12889-018-6009-1.PMID:30219052;PMCID:PMC6139127.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  26. Gabel K, Cienfuegos S, Kalam F, Ezpeleta M, Varady KA. Time-restricted eating to improve cardiovascular health. Curr Atheroscler Rep. 2021;23(5):22. https://doi.org/10.1007/s11883-021-00922-7.PMID:33772388;PMCID:PMC8218778.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  27. Davinelli S, De Stefani D, De Vivo I, Scapagnini G. Polyphenols as caloric restriction mimetics regulating mitochondrial biogenesis and mitophagy. Trends Endocrinol Metab. 2020;31(7):536–50. https://doi.org/10.1016/j.tem.2020.02.011 (Epub 2020 Mar 17 PMID: 32521237).

    CAS  Article  PubMed  Google Scholar 

  28. Ingram DK, Roth GS. Glycolytic inhibition: an effective strategy for developing calorie restriction mimetics. Geroscience. 2021;43(3):1159–69. https://doi.org/10.1007/s11357-020-00298-7 (Epub 2020 Nov 12. PMID: 33184758; PMCID: PMC8190254).

    CAS  Article  PubMed  Google Scholar 

  29. Madeo F, Carmona-Gutierrez D, Hofer SJ, Kroemer G. Caloric restriction mimetics against age-associated disease: targets, mechanisms, and therapeutic potential. Cell Metab. 2019;29(3):592–610. https://doi.org/10.1016/j.cmet.2019.01.018 (PMID: 30840912).

    CAS  Article  PubMed  Google Scholar 

  30. Hofer SJ, Davinelli S, Bergmann M, Scapagnini G, Madeo F. Caloric restriction mimetics in nutrition and clinical trials. Front Nutr. 2021;6(8):717343. https://doi.org/10.3389/fnut.2021.717343.PMID:34552954;PMCID:PMC8450594.

    Article  Google Scholar 

  31. Wan R, Camandola S, Mattson MP. Intermittent fasting and dietary supplementation with 2-deoxy-D-glucose improve functional and metabolic cardiovascular risk factors in rats. FASEB J. 2003;17(9):1133–4. https://doi.org/10.1096/fj.02-0996fje (Epub 2003 Apr 22 PMID: 12709404).

    CAS  Article  PubMed  Google Scholar 

  32. Minor RK, Smith DL Jr, Sossong AM, Kaushik S, Poosala S, Spangler EL, Roth GS, Lane M, Allison DB, de Cabo R, Ingram DK, Mattison JA. Chronic ingestion of 2-deoxy-D-glucose induces cardiac vacuolization and increases mortality in rats. Toxicol Appl Pharmacol. 2010;243(3):332–9. https://doi.org/10.1016/j.taap.2009.11.025 (Epub 2009 Dec 22. PMID: 20026095; PMCID: PMC2830378).

    CAS  Article  PubMed  Google Scholar 

  33. Schulz TJ, Zarse K, Voigt A, Urban N, Birringer M, Ristow M. Glucose restriction extends Caenorhabditis elegans life span by inducing mitochondrial respiration and increasing oxidative stress. Cell Metab. 2007;6(4):280–93. https://doi.org/10.1016/j.cmet.2007.08.011 (PMID: 17908557).

    CAS  Article  PubMed  Google Scholar 

  34. Qato DM, Alexander GC, Conti RM, Johnson M, Schumm P, Lindau ST. Use of prescription and over-the-counter medications and dietary supplements among older adults in the United States. JAMA. 2008;300(24):2867–78. https://doi.org/10.1001/jama.2008.892.PMID:19109115;PMCID:PMC2702513.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  35. King DE, Xiang J. Glucosamine/chondroitin and mortality in a US NHANES cohort. J Am Board Fam Med. 2020;33(6):842–7. https://doi.org/10.3122/jabfm.2020.06.200110 (PMID: 33219063; PMCID: PMC8366581).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Li ZH, Gao X, Chung VC, Zhong WF, Fu Q, Lv YB, Wang ZH, Shen D, Zhang XR, Zhang PD, Li FR, Huang QM, Chen Q, Song WQ, Wu XB, Shi XM, Kraus VB, Yang X, Mao C. Associations of regular glucosamine use with all-cause and cause-specific mortality: a large prospective cohort study. Ann Rheum Dis. 2020;79(6):829–36. https://doi.org/10.1136/annrheumdis-2020-217176 (Epub 2020 Apr 6. PMID: 32253185; PMCID: PMC7286049).

    CAS  Article  PubMed  Google Scholar 

  37. Hemati N, Asis M, Moradi S, Mollica A, Stefanucci A, Nikfar S, Mohammadi E, Farzaei MH, Abdollahi M. Effects of genistein on blood pressure: a systematic review and meta-analysis. Food Res Int. 2020;128:108764. https://doi.org/10.1016/j.foodres.2019.108764 (Epub 2019 Oct 31 PMID: 31955737).

    CAS  Article  PubMed  Google Scholar 

  38. Spagnuolo C, Russo GL, Orhan IE, Habtemariam S, Daglia M, Sureda A, Nabavi SF, Devi KP, Loizzo MR, Tundis R, Nabavi SM. Genistein and cancer: current status, challenges, and future directions. Adv Nutr. 2015;6(4):408–19. https://doi.org/10.3945/an.114.008052.PMID:26178025;PMCID:PMC4496735.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  39. Katsyuba E, Romani M, Hofer D, Auwerx J. NAD+ homeostasis in health and disease. Nat Metab. 2020;2(1):9–31. https://doi.org/10.1038/s42255-019-0161-5 (Epub 2020 Jan 20 PMID: 32694684).

    CAS  Article  PubMed  Google Scholar 

  40. Abdellatif M, Baur JA. NAD+ metabolism and cardiometabolic health: the human evidence. Cardiovasc Res. 2021;117(9):e106–9. https://doi.org/10.1093/cvr/cvab212.PMID:34320167;PMCID:PMC8318105.

    CAS  Article  PubMed  Google Scholar 

  41. Abdellatif M, Trummer-Herbst V, Koser F, Durand S, Adão R, Vasques-Nóvoa F, Freundt JK, Voglhuber J, Pricolo MR, Kasa M, Türk C, Aprahamian F, Herrero-Galán E, Hofer SJ, Pendl T, Rech L, Kargl J, Anto-Michel N, Ljubojevic-Holzer S, Schipke J, Brandenberger C, Auer M, Schreiber R, Koyani CN, Heinemann A, Zirlik A, Schmidt A, von Lewinski D, Scherr D, Rainer PP, von Maltzahn J, Mühlfeld C, Krüger M, Frank S, Madeo F, Eisenberg T, Prokesch A, Leite-Moreira AF, Lourenço AP, Alegre-Cebollada J, Kiechl S, Linke WA, Kroemer G, Sedej S. Nicotinamide for the treatment of heart failure with preserved ejection fraction. Sci Transl Med. 2021;13(580):eabd7064. https://doi.org/10.1126/scitranslmed.abd7064 (PMID: 33568522; PMCID: PMC7611499).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  42. Covarrubias AJ, Perrone R, Grozio A, Verdin E. NAD+ metabolism and its roles in cellular processes during ageing. Nat Rev Mol Cell Biol. 2021;22(2):119–41. https://doi.org/10.1038/s41580-020-00313-x (Epub 2020 Dec 22. PMID: 33353981; PMCID: PMC7963035).

    CAS  Article  PubMed  Google Scholar 

  43. Das A, Huang GX, Bonkowski MS, Longchamp A, Li C, Schultz MB, Kim LJ, Osborne B, Joshi S, Lu Y, Treviño-Villarreal JH, Kang MJ, Hung TT, Lee B, Williams EO, Igarashi M, Mitchell JR, Wu LE, Turner N, Arany Z, Guarente L, Sinclair DA. Impairment of an endothelial NAD+-H2S signaling network is a reversible cause of vascular aging. Cell. 2018;173(1):74-89.e20. https://doi.org/10.1016/j.cell.2018.02.008.Erratum.In:Cell.2019Feb7;176(4):944-945.PMID:29570999;PMCID:PMC5884172.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  44. Rajman L, Chwalek K, Sinclair DA. Therapeutic potential of NAD-boosting molecules: the in vivo evidence. Cell Metab. 2018;27(3):529–47. https://doi.org/10.1016/j.cmet.2018.02.011.PMID:29514064;PMCID:PMC6342515.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  45. Garg A, Sharma A, Krishnamoorthy P, Garg J, Virmani D, Sharma T, Stefanini G, Kostis JB, Mukherjee D, Sikorskaya E. Role of niacin in current clinical practice: a systematic review. Am J Med. 2017;130(2):173–87. https://doi.org/10.1016/j.amjmed.2016.07.038 (Epub 2016 Oct 26 PMID: 27793642).

    CAS  Article  PubMed  Google Scholar 

  46. Fang EF, Lautrup S, Hou Y, Demarest TG, Croteau DL, Mattson MP, Bohr VA. NAD+ in aging: molecular mechanisms and translational implications. Trends Mol Med. 2017;23(10):899–916. https://doi.org/10.1016/j.molmed.2017.08.001 (Epub 2017 Sep 9. PMID: 28899755; PMCID: PMC7494058).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  47. Eisenberg T, Abdellatif M, Schroeder S, Primessnig U, Stekovic S, Pendl T, Harger A, Schipke J, Zimmermann A, Schmidt A, Tong M, Ruckenstuhl C, Dammbrueck C, Gross AS, Herbst V, Magnes C, Trausinger G, Narath S, Meinitzer A, Hu Z, Kirsch A, Eller K, Carmona-Gutierrez D, Büttner S, Pietrocola F, Knittelfelder O, Schrepfer E, Rockenfeller P, Simonini C, Rahn A, Horsch M, Moreth K, Beckers J, Fuchs H, Gailus-Durner V, Neff F, Janik D, Rathkolb B, Rozman J, de Angelis MH, Moustafa T, Haemmerle G, Mayr M, Willeit P, von Frieling-Salewsky M, Pieske B, Scorrano L, Pieber T, Pechlaner R, Willeit J, Sigrist SJ, Linke WA, Mühlfeld C, Sadoshima J, Dengjel J, Kiechl S, Kroemer G, Sedej S, Madeo F. Cardioprotection and lifespan extension by the natural polyamine spermidine. Nat Med. 2016;22(12):1428–38. https://doi.org/10.1038/nm.4222 (Epub 2016 Nov 14. PMID: 27841876; PMCID: PMC5806691).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  48. Kiechl S, Pechlaner R, Willeit P, Notdurfter M, Paulweber B, Willeit K, Werner P, Ruckenstuhl C, Iglseder B, Weger S, Mairhofer B, Gartner M, Kedenko L, Chmelikova M, Stekovic S, Stuppner H, Oberhollenzer F, Kroemer G, Mayr M, Eisenberg T, Tilg H, Madeo F, Willeit J. Higher spermidine intake is linked to lower mortality: a prospective population-based study. Am J Clin Nutr. 2018;108(2):371–80. https://doi.org/10.1093/ajcn/nqy102 (PMID: 29955838).

    Article  PubMed  Google Scholar 

  49. Qin S, Huang L, Gong J, Shen S, Huang J, Ren H, Hu H. Efficacy and safety of turmeric and curcumin in lowering blood lipid levels in patients with cardiovascular risk factors: a meta-analysis of randomized controlled trials. Nutr J. 2017;16(1):68. https://doi.org/10.1186/s12937-017-0293-y.PMID:29020971;PMCID:PMC5637251.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Yuan F, Dong H, Gong J, Wang D, Hu M, Huang W, Fang K, Qin X, Qiu X, Yang X, Lu F. A systematic review and meta-analysis of randomized controlled trials on the effects of turmeric and curcuminoids on blood lipids in adults with metabolic diseases. Adv Nutr. 2019;10(5):791–802. https://doi.org/10.1093/advances/nmz021.PMID:31212316;PMCID:PMC6743846.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Simental-Mendía LE, Pirro M, Gotto AM Jr, Banach M, Atkin SL, Majeed M, Sahebkar A. Lipid-modifying activity of curcuminoids: a systematic review and meta-analysis of randomized controlled trials. Crit Rev Food Sci Nutr. 2019;59(7):1178–87. https://doi.org/10.1080/10408398.2017.1396201 (Epub 2017 Nov 29 PMID: 29185808).

    CAS  Article  PubMed  Google Scholar 

  52. Guo W, Gong X, Li M. Quercetin actions on lipid profiles in overweight and obese individuals: a systematic review and meta-analysis. Curr Pharm Des. 2019;25(28):3087–95. https://doi.org/10.2174/1381612825666190829153552 (PMID: 31465275).

    CAS  Article  PubMed  Google Scholar 

  53. Huang H, Liao D, Dong Y, Pu R. Effect of quercetin supplementation on plasma lipid profiles, blood pressure, and glucose levels: a systematic review and meta-analysis. Nutr Rev. 2020;78(8):615–26. https://doi.org/10.1093/nutrit/nuz071 (PMID: 31940027).

    Article  PubMed  Google Scholar 

  54. Sahebkar A. Effects of quercetin supplementation on lipid profile: a systematic review and meta-analysis of randomized controlled trials. Crit Rev Food Sci Nutr. 2017;57(4):666–76. https://doi.org/10.1080/10408398.2014.948609 (PMID: 25897620).

    CAS  Article  PubMed  Google Scholar 

  55. Tabrizi R, Tamtaji OR, Mirhosseini N, Lankarani KB, Akbari M, Heydari ST, Dadgostar E, Asemi Z. The effects of quercetin supplementation on lipid profiles and inflammatory markers among patients with metabolic syndrome and related disorders: a systematic review and meta-analysis of randomized controlled trials. Crit Rev Food Sci Nutr. 2020;60(11):1855–68. https://doi.org/10.1080/10408398.2019.1604491 (Epub 2019 Apr 24 PMID: 31017459).

    CAS  Article  PubMed  Google Scholar 

  56. Mattison JA, Colman RJ, Beasley TM, Allison DB, Kemnitz JW, Roth GS, Ingram DK, Weindruch R, de Cabo R, Anderson RM. Caloric restriction improves health and survival of rhesus monkeys. Nat Commun. 2017;17(8):14063. https://doi.org/10.1038/ncomms14063.PMID:28094793;PMCID:PMC5247583.

    Article  Google Scholar 

  57. Flanagan EW, Most J, Mey JT, Redman LM. Calorie restriction and aging in humans. Annu Rev Nutr. 2020;23(40):105–33. https://doi.org/10.1146/annurev-nutr-122319-034601 (Epub 2020 Jun 19 PMID: 32559388).

    CAS  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cydne A. Perry.

Ethics declarations

Conflict of Interest

Cydne A. Perry reports a grant to her institution from the National Beef Cattleman’s Association, outside the submitted work. Kishore M. Gadde reports grants to his institution from AstraZeneca, BioKier, and National Institutes of Health, outside the submitted work.

Human and Animal Rights and Informed Consent

This article is a review of recent published work in the field of calorie restriction and cardiovascular disease. It reports previous publications based on human and animal trials.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Nutrition

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Perry, C.A., Gadde, K.M. The Role of Calorie Restriction in the Prevention of Cardiovascular Disease. Curr Atheroscler Rep 24, 235–242 (2022). https://doi.org/10.1007/s11883-022-00999-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11883-022-00999-8

Keywords

  • Cardiovascular disease
  • Calorie restriction
  • Calorie restriction mimetics
  • Cardiometabolic health
  • Atherosclerosis
  • Vascular endothelium