World Health Organization. Cardiovascular diseases (CVDs). Accessed September 9, 2021. http://www.who.int/mediacentre/factsheets/fs317/en/
Virani SS, Alonso A, Aparicio HJ, Benjamin EJ, Bittencourt MS, Callaway CW, et al. American Heart Association Council on Epidemiology and Prevention Statistics Committee and Stroke Statistics Subcommittee Heart disease and stroke statistics-2021 update: a report from the American Heart Association. Circulation. 2021;143(8):e254–743. https://doi.org/10.1161/CIR.0000000000000950 (Epub 2021 Jan 27. PMID: 33501848).
Article
PubMed
Google Scholar
Agency for Healthcare Research and Quality. Medical Expenditure Panel Survey (MEPS): household component summary tables, medical conditions, United States. Accessed September 9, 2021. https://meps.ahrq.gov/mep-strends/ home/index.html
Man AWC, Li H, Xia N. Impact of lifestyles (diet and exercise) on vascular health: oxidative stress and endothelial function. Oxid Med Cell Longev. 2020;26(2020):1496462. https://doi.org/10.1155/2020/1496462.PMID:33062134;PMCID:PMC7533760.
Article
Google Scholar
Daiber A, Steven S, Weber A, Shuvaev VV, Muzykantov VR, Laher I, Li H, Lamas S, Münzel T. Targeting vascular (endothelial) dysfunction. Br J Pharmacol. 2017;174(12):1591–619. https://doi.org/10.1111/bph.13517 (Epub 2016 Jul 4. PMID: 27187006; PMCID: PMC5446575).
CAS
Article
PubMed
Google Scholar
Stanek A, Fazeli B, Bartuś S, Sutkowska E. The role of endothelium in physiological and pathological states: new data. Biomed Res Int. 2018;18(2018):1098039. https://doi.org/10.1155/2018/1098039.PMID:30581842;PMCID:PMC6276514.
Article
Google Scholar
Most J, Redman LM. Aging and cardiovascular disease: lessons from calorie restriction. In Nutrition and cardiometabolic health, ed. N Bergeron, PW Siri-Tarino, GA Bray, RM Krauss, 2017 pp. 191–208.Boca Raton, FL: CRC
Caristia S, Vito M, Sarro A, Leone A, Pecere A, Zibetti A, Filigheddu N, Zeppegno P, Prodam F, Faggiano F, Marzullo P. Is caloric restriction associated with better healthy aging outcomes? A systematic review and meta-analysis of randomized controlled trials. Nutrients. 2020;12(8):2290. https://doi.org/10.3390/nu12082290.PMID:32751664;PMCID:PMC7468870.
CAS
Article
PubMed Central
Google Scholar
Ungvari Z, Parrado-Fernandez C, Csiszar A, de Cabo R. Mechanisms underlying caloric restriction and lifespan regulation: implications for vascular aging. Circ Res. 2008;102(5):519–28. https://doi.org/10.1161/CIRCRESAHA.107.168369.PMID:18340017;PMCID:PMC2424221.
CAS
Article
PubMed
PubMed Central
Google Scholar
National Heart, Lung and Blood Institute, National Institutes of Health: https://www.nhlbi.nih.gov/health-topics/atherosclerosis, Accessed September 29, 2021
Yang J, Zeng P, Liu L, Yu M, Su J, Yan Y, Ma J, Hu W, Yang X, Han J, Duan Y, Chen Y. Food with calorie restriction reduces the development of atherosclerosis in apoE-deficient mice. Biochem Biophys Res Commun. 2020;524(2):439–45. https://doi.org/10.1016/j.bbrc.2020.01.109 (Epub 2020 Jan 29 PMID: 32007274).
CAS
Article
PubMed
Google Scholar
Rajendran P, Rengarajan T, Thangavel J, Nishigaki Y, Sakthisekaran D, Sethi G, Nishigaki I. The vascular endothelium and human diseases. Int J Biol Sci. 2013;9(10):1057–69. https://doi.org/10.7150/ijbs.7502.PMID:24250251;PMCID:PMC3831119.
CAS
Article
PubMed
PubMed Central
Google Scholar
Durand MJ, Gutterman DD. Diversity in mechanisms of endothelium-dependent vasodilation in health and disease. Microcirculation. 2013;20(3):239–47. https://doi.org/10.1111/micc.12040.PMID:23311975;PMCID:PMC3625248.
CAS
Article
PubMed
PubMed Central
Google Scholar
Cyr AR, Huckaby LV, Shiva SS, Zuckerbraun BS. Nitric oxide and endothelial dysfunction. Crit Care Clin. 2020;36(2):307–21. https://doi.org/10.1016/j.ccc.2019.12.009 (PMID: 32172815).
Article
PubMed
PubMed Central
Google Scholar
• Man AWC, Li H, Xia N. The role of sirtuin1 in regulating endothelial function, arterial remodeling and vascular aging. Front Physiol. 2019;10:1173. https://doi.org/10.3389/fphys.2019.01173. (Findings from this study demonstrate that the positive effect of calorie restriction on endothelial function may be through the interrelationship between eNOS and SIRT1.•)
Article
PubMed
PubMed Central
Google Scholar
Dolinsky VW, Dyck JR. Calorie restriction and resveratrol in cardiovascular health and disease. Biochim Biophys Acta. 2011;1812(11):1477–89. https://doi.org/10.1016/j.bbadis.2011.06.010 (Epub 2011 Jul 1 PMID: 21749920).
CAS
Article
PubMed
Google Scholar
Tahir UA, Gerszten RE. Omics and cardiometabolic disease risk prediction. Annu Rev Med. 2020;27(71):163–75. https://doi.org/10.1146/annurev-med-042418-010924 (PMID: 31986080).
CAS
Article
Google Scholar
•• Kraus WE, Bhapkar M, Huffman KM, Pieper CF, Krupa Das S, Redman LM, Villareal DT, Rochon J, Roberts SB, Ravussin E, Holloszy JO, Fontana L, CALERIE Investigators. 2 years of calorie restriction and cardiometabolic risk (CALERIE): exploratory outcomes of a multicentre, phase 2, randomised controlled trial. Lancet Diabetes Endocrinol. 2019;7(9):673–83. https://doi.org/10.1016/S2213-8587(19)30151-2. (Findings from this study show that moderate calorie restriction improves cardiometabolic risk factors in young and middle-aged adults with implications toward greater long-term cardiovascular health.••)
Article
PubMed
PubMed Central
Google Scholar
Rubin R. Modest calorie reduction can improve cardiometabolic health. JAMA. 2019;322(11):1032–3. https://doi.org/10.1001/jama.2019.12314 (PMID: 31461122).
Article
PubMed
Google Scholar
Forman DE, Maurer MS, Boyd C, Brindis R, Salive ME, Horne FM, Bell SP, Fulmer T, Reuben DB, Zieman S, Rich MW. Multimorbidity in older adults with cardiovascular disease. J Am Coll Cardiol. 2018;71(19):2149–61. https://doi.org/10.1016/j.jacc.2018.03.022.PMID:29747836;PMCID:PMC6028235.
Article
PubMed
PubMed Central
Google Scholar
Perry CA, Van Guilder GP, Kauffman A, Hossain M. A calorie-restricted DASH diet reduces body fat and maintains muscle strength in obese older adults. Nutrients. 2019;12(1):102. https://doi.org/10.3390/nu12010102.PMID:31905920;PMCID:PMC7019370.
Article
PubMed Central
Google Scholar
Perry CA, Van Guilder GP, Hossain M, Kauffman A. Cardiometabolic changes in response to a calorie-restricted DASH diet in obese older adults. Front Nutr. 2021;19(8):647847. https://doi.org/10.3389/fnut.2021.647847.PMID:33816541;PMCID:PMC8017169.
Article
Google Scholar
Ard JD, Gower B, Hunter G, Ritchie CS, Roth DL, Goss A, Wingo BC, Bodner EV, Brown CJ, Bryan D, Buys DR, Haas MC, Keita AD, Flagg LA, Williams CP, Locher JL. Effects of calorie restriction in obese older adults: the CROSSROADS randomized controlled trial. J Gerontol A Biol Sci Med Sci. 2017;73(1):73–80. https://doi.org/10.1093/gerona/glw237.PMID:28003374;PMCID:PMC5861948.
Article
PubMed
Google Scholar
Maroofi M, Nasrollahzadeh J. Effect of intermittent versus continuous calorie restriction on body weight and cardiometabolic risk markers in subjects with overweight or obesity and mild-to-moderate hypertriglyceridemia: a randomized trial. Lipids Health Dis. 2020;19(1):216. https://doi.org/10.1186/s12944-020-01399-0.PMID:33028352;PMCID:PMC7542333.
CAS
Article
PubMed
PubMed Central
Google Scholar
Oh M, Kim S, An KY, Min J, Yang HI, Lee J, Lee MK, Kim DI, Lee HS, Lee JW, Jeon JY. Effects of alternate day calorie restriction and exercise on cardio-metabolic risk factors in overweight and obese adults: an exploratory randomized controlled study. BMC Public Health. 2018;18(1):1124. https://doi.org/10.1186/s12889-018-6009-1.PMID:30219052;PMCID:PMC6139127.
CAS
Article
PubMed
PubMed Central
Google Scholar
Gabel K, Cienfuegos S, Kalam F, Ezpeleta M, Varady KA. Time-restricted eating to improve cardiovascular health. Curr Atheroscler Rep. 2021;23(5):22. https://doi.org/10.1007/s11883-021-00922-7.PMID:33772388;PMCID:PMC8218778.
CAS
Article
PubMed
PubMed Central
Google Scholar
Davinelli S, De Stefani D, De Vivo I, Scapagnini G. Polyphenols as caloric restriction mimetics regulating mitochondrial biogenesis and mitophagy. Trends Endocrinol Metab. 2020;31(7):536–50. https://doi.org/10.1016/j.tem.2020.02.011 (Epub 2020 Mar 17 PMID: 32521237).
CAS
Article
PubMed
Google Scholar
Ingram DK, Roth GS. Glycolytic inhibition: an effective strategy for developing calorie restriction mimetics. Geroscience. 2021;43(3):1159–69. https://doi.org/10.1007/s11357-020-00298-7 (Epub 2020 Nov 12. PMID: 33184758; PMCID: PMC8190254).
CAS
Article
PubMed
Google Scholar
Madeo F, Carmona-Gutierrez D, Hofer SJ, Kroemer G. Caloric restriction mimetics against age-associated disease: targets, mechanisms, and therapeutic potential. Cell Metab. 2019;29(3):592–610. https://doi.org/10.1016/j.cmet.2019.01.018 (PMID: 30840912).
CAS
Article
PubMed
Google Scholar
Hofer SJ, Davinelli S, Bergmann M, Scapagnini G, Madeo F. Caloric restriction mimetics in nutrition and clinical trials. Front Nutr. 2021;6(8):717343. https://doi.org/10.3389/fnut.2021.717343.PMID:34552954;PMCID:PMC8450594.
Article
Google Scholar
Wan R, Camandola S, Mattson MP. Intermittent fasting and dietary supplementation with 2-deoxy-D-glucose improve functional and metabolic cardiovascular risk factors in rats. FASEB J. 2003;17(9):1133–4. https://doi.org/10.1096/fj.02-0996fje (Epub 2003 Apr 22 PMID: 12709404).
CAS
Article
PubMed
Google Scholar
Minor RK, Smith DL Jr, Sossong AM, Kaushik S, Poosala S, Spangler EL, Roth GS, Lane M, Allison DB, de Cabo R, Ingram DK, Mattison JA. Chronic ingestion of 2-deoxy-D-glucose induces cardiac vacuolization and increases mortality in rats. Toxicol Appl Pharmacol. 2010;243(3):332–9. https://doi.org/10.1016/j.taap.2009.11.025 (Epub 2009 Dec 22. PMID: 20026095; PMCID: PMC2830378).
CAS
Article
PubMed
Google Scholar
Schulz TJ, Zarse K, Voigt A, Urban N, Birringer M, Ristow M. Glucose restriction extends Caenorhabditis elegans life span by inducing mitochondrial respiration and increasing oxidative stress. Cell Metab. 2007;6(4):280–93. https://doi.org/10.1016/j.cmet.2007.08.011 (PMID: 17908557).
CAS
Article
PubMed
Google Scholar
Qato DM, Alexander GC, Conti RM, Johnson M, Schumm P, Lindau ST. Use of prescription and over-the-counter medications and dietary supplements among older adults in the United States. JAMA. 2008;300(24):2867–78. https://doi.org/10.1001/jama.2008.892.PMID:19109115;PMCID:PMC2702513.
CAS
Article
PubMed
PubMed Central
Google Scholar
King DE, Xiang J. Glucosamine/chondroitin and mortality in a US NHANES cohort. J Am Board Fam Med. 2020;33(6):842–7. https://doi.org/10.3122/jabfm.2020.06.200110 (PMID: 33219063; PMCID: PMC8366581).
Article
PubMed
PubMed Central
Google Scholar
Li ZH, Gao X, Chung VC, Zhong WF, Fu Q, Lv YB, Wang ZH, Shen D, Zhang XR, Zhang PD, Li FR, Huang QM, Chen Q, Song WQ, Wu XB, Shi XM, Kraus VB, Yang X, Mao C. Associations of regular glucosamine use with all-cause and cause-specific mortality: a large prospective cohort study. Ann Rheum Dis. 2020;79(6):829–36. https://doi.org/10.1136/annrheumdis-2020-217176 (Epub 2020 Apr 6. PMID: 32253185; PMCID: PMC7286049).
CAS
Article
PubMed
Google Scholar
Hemati N, Asis M, Moradi S, Mollica A, Stefanucci A, Nikfar S, Mohammadi E, Farzaei MH, Abdollahi M. Effects of genistein on blood pressure: a systematic review and meta-analysis. Food Res Int. 2020;128:108764. https://doi.org/10.1016/j.foodres.2019.108764 (Epub 2019 Oct 31 PMID: 31955737).
CAS
Article
PubMed
Google Scholar
Spagnuolo C, Russo GL, Orhan IE, Habtemariam S, Daglia M, Sureda A, Nabavi SF, Devi KP, Loizzo MR, Tundis R, Nabavi SM. Genistein and cancer: current status, challenges, and future directions. Adv Nutr. 2015;6(4):408–19. https://doi.org/10.3945/an.114.008052.PMID:26178025;PMCID:PMC4496735.
CAS
Article
PubMed
PubMed Central
Google Scholar
Katsyuba E, Romani M, Hofer D, Auwerx J. NAD+ homeostasis in health and disease. Nat Metab. 2020;2(1):9–31. https://doi.org/10.1038/s42255-019-0161-5 (Epub 2020 Jan 20 PMID: 32694684).
CAS
Article
PubMed
Google Scholar
Abdellatif M, Baur JA. NAD+ metabolism and cardiometabolic health: the human evidence. Cardiovasc Res. 2021;117(9):e106–9. https://doi.org/10.1093/cvr/cvab212.PMID:34320167;PMCID:PMC8318105.
CAS
Article
PubMed
Google Scholar
Abdellatif M, Trummer-Herbst V, Koser F, Durand S, Adão R, Vasques-Nóvoa F, Freundt JK, Voglhuber J, Pricolo MR, Kasa M, Türk C, Aprahamian F, Herrero-Galán E, Hofer SJ, Pendl T, Rech L, Kargl J, Anto-Michel N, Ljubojevic-Holzer S, Schipke J, Brandenberger C, Auer M, Schreiber R, Koyani CN, Heinemann A, Zirlik A, Schmidt A, von Lewinski D, Scherr D, Rainer PP, von Maltzahn J, Mühlfeld C, Krüger M, Frank S, Madeo F, Eisenberg T, Prokesch A, Leite-Moreira AF, Lourenço AP, Alegre-Cebollada J, Kiechl S, Linke WA, Kroemer G, Sedej S. Nicotinamide for the treatment of heart failure with preserved ejection fraction. Sci Transl Med. 2021;13(580):eabd7064. https://doi.org/10.1126/scitranslmed.abd7064 (PMID: 33568522; PMCID: PMC7611499).
CAS
Article
PubMed
PubMed Central
Google Scholar
Covarrubias AJ, Perrone R, Grozio A, Verdin E. NAD+ metabolism and its roles in cellular processes during ageing. Nat Rev Mol Cell Biol. 2021;22(2):119–41. https://doi.org/10.1038/s41580-020-00313-x (Epub 2020 Dec 22. PMID: 33353981; PMCID: PMC7963035).
CAS
Article
PubMed
Google Scholar
Das A, Huang GX, Bonkowski MS, Longchamp A, Li C, Schultz MB, Kim LJ, Osborne B, Joshi S, Lu Y, Treviño-Villarreal JH, Kang MJ, Hung TT, Lee B, Williams EO, Igarashi M, Mitchell JR, Wu LE, Turner N, Arany Z, Guarente L, Sinclair DA. Impairment of an endothelial NAD+-H2S signaling network is a reversible cause of vascular aging. Cell. 2018;173(1):74-89.e20. https://doi.org/10.1016/j.cell.2018.02.008.Erratum.In:Cell.2019Feb7;176(4):944-945.PMID:29570999;PMCID:PMC5884172.
CAS
Article
PubMed
PubMed Central
Google Scholar
Rajman L, Chwalek K, Sinclair DA. Therapeutic potential of NAD-boosting molecules: the in vivo evidence. Cell Metab. 2018;27(3):529–47. https://doi.org/10.1016/j.cmet.2018.02.011.PMID:29514064;PMCID:PMC6342515.
CAS
Article
PubMed
PubMed Central
Google Scholar
Garg A, Sharma A, Krishnamoorthy P, Garg J, Virmani D, Sharma T, Stefanini G, Kostis JB, Mukherjee D, Sikorskaya E. Role of niacin in current clinical practice: a systematic review. Am J Med. 2017;130(2):173–87. https://doi.org/10.1016/j.amjmed.2016.07.038 (Epub 2016 Oct 26 PMID: 27793642).
CAS
Article
PubMed
Google Scholar
Fang EF, Lautrup S, Hou Y, Demarest TG, Croteau DL, Mattson MP, Bohr VA. NAD+ in aging: molecular mechanisms and translational implications. Trends Mol Med. 2017;23(10):899–916. https://doi.org/10.1016/j.molmed.2017.08.001 (Epub 2017 Sep 9. PMID: 28899755; PMCID: PMC7494058).
CAS
Article
PubMed
PubMed Central
Google Scholar
Eisenberg T, Abdellatif M, Schroeder S, Primessnig U, Stekovic S, Pendl T, Harger A, Schipke J, Zimmermann A, Schmidt A, Tong M, Ruckenstuhl C, Dammbrueck C, Gross AS, Herbst V, Magnes C, Trausinger G, Narath S, Meinitzer A, Hu Z, Kirsch A, Eller K, Carmona-Gutierrez D, Büttner S, Pietrocola F, Knittelfelder O, Schrepfer E, Rockenfeller P, Simonini C, Rahn A, Horsch M, Moreth K, Beckers J, Fuchs H, Gailus-Durner V, Neff F, Janik D, Rathkolb B, Rozman J, de Angelis MH, Moustafa T, Haemmerle G, Mayr M, Willeit P, von Frieling-Salewsky M, Pieske B, Scorrano L, Pieber T, Pechlaner R, Willeit J, Sigrist SJ, Linke WA, Mühlfeld C, Sadoshima J, Dengjel J, Kiechl S, Kroemer G, Sedej S, Madeo F. Cardioprotection and lifespan extension by the natural polyamine spermidine. Nat Med. 2016;22(12):1428–38. https://doi.org/10.1038/nm.4222 (Epub 2016 Nov 14. PMID: 27841876; PMCID: PMC5806691).
CAS
Article
PubMed
PubMed Central
Google Scholar
Kiechl S, Pechlaner R, Willeit P, Notdurfter M, Paulweber B, Willeit K, Werner P, Ruckenstuhl C, Iglseder B, Weger S, Mairhofer B, Gartner M, Kedenko L, Chmelikova M, Stekovic S, Stuppner H, Oberhollenzer F, Kroemer G, Mayr M, Eisenberg T, Tilg H, Madeo F, Willeit J. Higher spermidine intake is linked to lower mortality: a prospective population-based study. Am J Clin Nutr. 2018;108(2):371–80. https://doi.org/10.1093/ajcn/nqy102 (PMID: 29955838).
Article
PubMed
Google Scholar
Qin S, Huang L, Gong J, Shen S, Huang J, Ren H, Hu H. Efficacy and safety of turmeric and curcumin in lowering blood lipid levels in patients with cardiovascular risk factors: a meta-analysis of randomized controlled trials. Nutr J. 2017;16(1):68. https://doi.org/10.1186/s12937-017-0293-y.PMID:29020971;PMCID:PMC5637251.
Article
PubMed
PubMed Central
Google Scholar
Yuan F, Dong H, Gong J, Wang D, Hu M, Huang W, Fang K, Qin X, Qiu X, Yang X, Lu F. A systematic review and meta-analysis of randomized controlled trials on the effects of turmeric and curcuminoids on blood lipids in adults with metabolic diseases. Adv Nutr. 2019;10(5):791–802. https://doi.org/10.1093/advances/nmz021.PMID:31212316;PMCID:PMC6743846.
Article
PubMed
PubMed Central
Google Scholar
Simental-Mendía LE, Pirro M, Gotto AM Jr, Banach M, Atkin SL, Majeed M, Sahebkar A. Lipid-modifying activity of curcuminoids: a systematic review and meta-analysis of randomized controlled trials. Crit Rev Food Sci Nutr. 2019;59(7):1178–87. https://doi.org/10.1080/10408398.2017.1396201 (Epub 2017 Nov 29 PMID: 29185808).
CAS
Article
PubMed
Google Scholar
Guo W, Gong X, Li M. Quercetin actions on lipid profiles in overweight and obese individuals: a systematic review and meta-analysis. Curr Pharm Des. 2019;25(28):3087–95. https://doi.org/10.2174/1381612825666190829153552 (PMID: 31465275).
CAS
Article
PubMed
Google Scholar
Huang H, Liao D, Dong Y, Pu R. Effect of quercetin supplementation on plasma lipid profiles, blood pressure, and glucose levels: a systematic review and meta-analysis. Nutr Rev. 2020;78(8):615–26. https://doi.org/10.1093/nutrit/nuz071 (PMID: 31940027).
Article
PubMed
Google Scholar
Sahebkar A. Effects of quercetin supplementation on lipid profile: a systematic review and meta-analysis of randomized controlled trials. Crit Rev Food Sci Nutr. 2017;57(4):666–76. https://doi.org/10.1080/10408398.2014.948609 (PMID: 25897620).
CAS
Article
PubMed
Google Scholar
Tabrizi R, Tamtaji OR, Mirhosseini N, Lankarani KB, Akbari M, Heydari ST, Dadgostar E, Asemi Z. The effects of quercetin supplementation on lipid profiles and inflammatory markers among patients with metabolic syndrome and related disorders: a systematic review and meta-analysis of randomized controlled trials. Crit Rev Food Sci Nutr. 2020;60(11):1855–68. https://doi.org/10.1080/10408398.2019.1604491 (Epub 2019 Apr 24 PMID: 31017459).
CAS
Article
PubMed
Google Scholar
Mattison JA, Colman RJ, Beasley TM, Allison DB, Kemnitz JW, Roth GS, Ingram DK, Weindruch R, de Cabo R, Anderson RM. Caloric restriction improves health and survival of rhesus monkeys. Nat Commun. 2017;17(8):14063. https://doi.org/10.1038/ncomms14063.PMID:28094793;PMCID:PMC5247583.
Article
Google Scholar
Flanagan EW, Most J, Mey JT, Redman LM. Calorie restriction and aging in humans. Annu Rev Nutr. 2020;23(40):105–33. https://doi.org/10.1146/annurev-nutr-122319-034601 (Epub 2020 Jun 19 PMID: 32559388).
CAS
Article
Google Scholar