Skip to main content


Log in

Wall Shear Stress Alteration: a Local Risk Factor of Atherosclerosis

  • Statin Drugs (R. Ceska, Section Editor)
  • Published:
Current Atherosclerosis Reports Aims and scope Submit manuscript


Purpose of Review

Wall shear stress describes the mechanical influence of blood flow on the arterial wall. In this review, we discuss the role of the wall shear stress in the development of atherosclerosis and its complications.

Recent Findings

Areas with chronically low, oscillating wall shear stress are most prone to plaque development and include outer bifurcation walls and inner walls of arches. In some diseases, patients have lower wall shear stress even in straight arterial segments; also, these findings were associated with atherosclerosis. High wall shear stress develops in the distal part (shoulder) of a stenosis and contributes to plaque destabilization.


Wall shear stress changes are involved in the development of atherosclerosis. They are not fully understood yet and act in concert with tangential wall stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others



Computerized tomography


Computerized tomography coronary angiography


Endothelial cells


Intravascular ultrasonography


Four-dimensional magnetic resonance angiography


Magnetic resonance imaging


Optical coherence tomography


Platelet endothelial cell adhesion molecule-1


Vascular endothelial growth factor


Wall shear stress


Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Goyal A, Cho L. Preventive cardiology and risk assessment: beyond LDL. Curr Atheroscler Rep. 2020;22(10):56.

    Article  PubMed  Google Scholar 

  2. •• Kojima K, Hiro T, Koyama Y, Ohgaku A, Fujito H, Ebuchi Y, et al. High wall shear stress is related to atherosclerotic plaque rupture in the aortic arch of patients with cardiovascular disease: a study with computational fluid dynamics model and non-obstructive general angioscopy. J Atheroscler Thromb. 2021;28(7):742–53. (This study demonstrates plaque aortic rupture in areas of high wall shear stress.)

    Article  CAS  PubMed  Google Scholar 

  3. Cunningham KS, Gotlieb AI. The role of shear stress in the pathogenesis of atherosclerosis. Lab Invest. 2005;85(1):9–23.

    Article  CAS  PubMed  Google Scholar 

  4. Murata N, Hiro T, Takayama T, Migita S, Morikawa T, Tamaki T, et al. High shear stress on the coronary arterial wall is related to computed tomography-derived high-risk plaque: a three-dimensional computed tomography and color-coded tissue-characterizing intravascular ultrasonography study. Heart Vessels. 2019;34(9):1429–39.

    Article  PubMed  Google Scholar 

  5. Aizawa K, Ramalli A, Sbragi S, Tortoli P, Casanova F, Morizzo C, et al. Arterial wall shear rate response to reactive hyperaemia is markedly different between young and older humans. J Physiol-London. 2019;597(16):4151–63.

    Article  CAS  PubMed  Google Scholar 

  6. Chytilova E, Malik J, Kasalova Z, Dolezalova R, Stulc T, Ceska R. Lower wall shear rate of the common carotid artery in treated type 2 diabetes mellitus with metabolic syndrome. Physiol Res. 2009;58(2):185–91.

    Article  CAS  PubMed  Google Scholar 

  7. Stroud JS, Berger SA, Saloner D. Numerical analysis of flow through a severely stenotic carotid artery bifurcation. J Biomech Eng. 2002;124(1):9–20.

    Article  CAS  PubMed  Google Scholar 

  8. Razavi A, Shirani E, Sadeghi MR. Numerical simulation of blood pulsatile flow in a stenosed carotid artery using different rheological models. J Biomech. 2011;44(11):2021–30.

    Article  CAS  PubMed  Google Scholar 

  9. Caro C. The Mechanics of the Circulation. 2 ed. Cambridge University Press; 2011.

  10. Franco CA, Jones ML, Bernabeu MO, Geudens I, Mathivet T, Rosa A, et al. Dynamic endothelial cell rearrangements drive developmental vessel regression. PLoS Biol. 2015;13(4):e1002125.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Carter HH, Atkinson CL, Heinonen IH, Haynes A, Robey E, Smith KJ, et al. Evidence for shear stress-mediated dilation of the internal carotid artery in humans. Hypertension. 2016;68(5):1217–24.

    Article  CAS  PubMed  Google Scholar 

  12. Poduri A, Chang AH, Raftrey B, Rhee S, Van M, Red-Horse K. Endothelial cells respond to the direction of mechanical stimuli through SMAD signaling to regulate coronary artery size. Development. 2017;144(18):3241–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wragg JW, Durant S, McGettrick HM, Sample KM, Egginton S, Bicknell R. Shear stress regulated gene expression and angiogenesis in vascular endothelium. Microcirculation. 2014;21(4):290–300.

    Article  CAS  PubMed  Google Scholar 

  14. Malek AM, Alper SL, Izumo S. Hemodynamic shear stress and its role in atherosclerosis. JAMA. 1999;282(21):2035–42.

    Article  CAS  PubMed  Google Scholar 

  15. Frangos JA, Eskin SG, McIntire LV, Ives CL. Flow effects on prostacyclin production by cultured human endothelial cells. Science. 1985;227(4693):1477–9.

    Article  CAS  PubMed  Google Scholar 

  16. Joannides R, Haefeli WE, Linder L, Richard V, Bakkali EH, Thuillez C, et al. Nitric oxide is responsible for flow-dependent dilatation of human peripheral conduit arteries in vivo. Circulation. 1995;91(5):1314–9.

    Article  CAS  PubMed  Google Scholar 

  17. Celermajer DS, Sorensen KE, Bull C, Robinson J, Deanfield JE. Endothelium-dependent dilation in the systemic arteries of asymptomatic subjects relates to coronary risk factors and their interaction. J Am Coll Cardiol. 1994;24(6):1468–74.

    Article  CAS  PubMed  Google Scholar 

  18. Tuka V, Malik J, Chytilova E, Kudlicka J, Slavikova M, Wijnen E, Tordoir JHM, et al. Long-term arterial adaptation to high blood flow in the feeding artery of vascular access for hemodialysis. J Vasc Access. 2012;13(3):305–9.

    Article  PubMed  Google Scholar 

  19. Zarins CK, Zatina MA, Giddens DP, Ku DN, Glagov S. Shear stress regulation of artery lumen diameter in experimental atherogenesis. J Vasc Surg. 1987;5(3):413–20.

    Article  CAS  Google Scholar 

  20. Kamiya A, Togawa T. Adaptive regulation of wall shear stress to flow change in the canine carotid artery. Am J Physiol. 1980;239(1):H14-21.

    Article  CAS  PubMed  Google Scholar 

  21. Langille BL, O’Donnell F. Reductions in arterial diameter produced by chronic decreases in blood flow are endothelium-dependent. Science. 1986;231(4736):405–7.

    Article  CAS  PubMed  Google Scholar 

  22. Langille BL, Bendeck MP, Keeley FW. Adaptations of carotid arteries of young and mature rabbits to reduced carotid blood flow. Am J Physiol. 1989;256(4 Pt 2):H931–9.

    Article  CAS  PubMed  Google Scholar 

  23. Eigenbrodt ML, Bursac Z, Rose KM, Couper DJ, Tracy RE, Evans GW, et al. Common carotid arterial interadventitial distance (diameter) as an indicator of the damaging effects of age and atherosclerosis, a cross-sectional study of the Atherosclerosis Risk in Community Cohort Limited Access Data (ARICLAD), 1987–89. Cardiovasc Ultrasound. 2006;4:1.

    Article  PubMed  PubMed Central  Google Scholar 

  24. • Ciurica S, Lopez-Sublet M, Loeys BL, Radhouani I, Natarajan N, Vikkula M, et al. Arterial Tortuosity. Hypertension. 2019;73(5):951–60. (Detailed review about arterial tortuosities.)

    Article  CAS  PubMed  Google Scholar 

  25. Strecker C, Krafft AJ, Kaufhold L, Hüllebrandt M, Weber S, Ludwig U, et al. Carotid geometry is an independent predictor of wall thickness - a 3D cardiovascular magnetic resonance study in patients with high cardiovascular risk. J Cardiovasc Magn Reson. 2020;22(1):67.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Zhou J, Li YS, Chien S. Shear stress-initiated signaling and its regulation of endothelial function. Arterioscler Thromb Vasc Biol. 2014;34(10):2191–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Roux E, Bougaran P, Dufourcq P, Couffinhal T. Fluid shear stress sensing by the endothelial layer. Front Physiol. 2020;11:861.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Resnick N, Yahav H, Shay-Salit A, Shushy M, Schubert S, Zilberman LC, et al. Fluid shear stress and the vascular endothelium: for better and for worse. Prog Biophys Mol Biol. 2003;81(3):177–99.

    Article  PubMed  Google Scholar 

  29. Woodfin A, Voisin MB, Nourshargh S. PECAM-1: a multi-functional molecule in inflammation and vascular biology. Arterioscler Thromb Vasc Biol. 2007;27(12):2514–23.

    Article  CAS  PubMed  Google Scholar 

  30. Shin H, Haga JH, Kosawada T, Kimura K, Li YS, Chien S, et al. Fine control of endothelial VEGFR-2 activation: caveolae as fluid shear stress shelters for membrane receptors. Biomech Model Mechanobiol. 2019;18(1):5–16.

    Article  CAS  PubMed  Google Scholar 

  31. Lim YC, Cooling MT, Long DS. Computational models of the primary cilium and endothelial mechanotransmission. Biomech Model Mechanobiol. 2015;14(3):665–78.

    Article  PubMed  Google Scholar 

  32. Caplan BA, Schwartz CJ. Increased endothelial cell turnover in areas of in vivo Evans blue uptake in the pig aorta. Atherosclerosis. 1973;17(3):401–17.

    Article  CAS  PubMed  Google Scholar 

  33. Silva T, Jäger W, Neuss-Radu M, Sequeira A. Modeling of the early stage of atherosclerosis with emphasis on the regulation of the endothelial permeability. J Theor Biol. 2020;496:110229.

    Article  CAS  PubMed  Google Scholar 

  34. Zhang B, Ma Y, Ding F. Evaluation of spatial distribution and characterization of wall shear stress in carotid sinus based on two-dimensional color Doppler imaging. Biomed Eng Online. 2018;17(1):141.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Malik J, Kudlicka J, Tuka V, Chytilova E, Adamec J, Rocinovaá K, et al. Common carotid wall shear stress and carotid atherosclerosis in end-stage renal disease patients. Physiological Res. 2012;61(4):355–61.

    Article  CAS  Google Scholar 

  36. Zhang B, Gu J, Qian M, Niu L, Zhou H, Ghista D. Correlation between quantitative analysis of wall shear stress and intima-media thickness in atherosclerosis development in carotid arteries. Biomed Eng Online. 2017;16(1):137.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Liu ZD, Zhao YX, Wang XD, Zhang H, Cui Y, Diao YT, et al. Low carotid artery wall shear stress is independently associated with brain white-matter hyperintensities and cognitive impairment in older patients. Atherosclerosis. 2016;247:78–86.

    Article  CAS  PubMed  Google Scholar 

  38. Brown AJ, Teng Z, Evans PC, Gillard JH, Samady H, Bennett MR. Role of biomechanical forces in the natural history of coronary atherosclerosis. Nature Rev Cardiol. 2016;13(4):210–20.

    Article  Google Scholar 

  39. Thijssen DHJ, Carter SE, Green DJ. Arterial structure and function in vascular ageing: are you as old as your arteries? J Physiol-London. 2016;594(8):2275–84.

    Article  CAS  PubMed  Google Scholar 

  40. Brassard PA-O, Labrecque L, Smirl JA-O, Tymko MM, Caldwell HG, Hoiland RL et al. Losing the dogmatic view of cerebral autoregulation. Physiol Rep. 2021;e14982

  41. Wu SP, Ringgaard S, Oyre S, Hansen MS, Rasmus S, Pedersen EM. Wall shear rates differ between the normal carotid, femoral, and brachial arteries: an in vivo MRI study. J Magnet Reson Imaging. 2004;19(2):188–93.

    Article  Google Scholar 

  42. Urschel K, Tauchi M, Achenbach S, Dietel B. Investigation of wall shear stress in cardiovascular research and in clinical practice-from bench to bedside. Int J Mol Sci. 2021;22(11).

  43. Samady H, Molony DS, Coskun AU, Varshney AS, De Bruyne B, Stone PH. Risk stratification of coronary plaques using physiologic characteristics by CCTA: focus on shear stress. J Cardiovasc Comput Tomogr. 2020;14(5):386–93.

    Article  PubMed  Google Scholar 

  44. Wijeratne SS, Botello E, Yeh HC, Zhou Z, Bergeron AL, Frey EW, Patel JM, et al. Mechanical activation of a multimeric adhesive protein through domain conformational change. Phys Rev Lett. 2013;110(10):108102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. • Du Y, Goddi A, Bortolotto C, Shen Y, Dell’Era A, Calliada F, et al. Wall shear stress measurements based on ultrasound vector flow imaging: theoretical studies and clinical examples. J Ultrasound Med. 2020;39(8):1649–64. (An interesting study of the carotid flow visualization by means of ultrasound vector imaging.)

    Article  PubMed  PubMed Central  Google Scholar 

  46. Ghekiere O, Salgado R, Buls N, Leiner T, Mancini I, Vanhoenacker P, et al. Image quality in coronary CT angiography: challenges and technical solutions. Br J Radiol. 2017;90(1072):20160567.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Park JB, Choi G, Chun EJ, Kim HJ, Park J, Jung JH, et al. Computational fluid dynamic measures of wall shear stress are related to coronary lesion characteristics. Heart. 2016;102(20):1655–61.

    Article  PubMed  Google Scholar 

  48. Dyverfeldt P, Bissell M, Barker AJ, Bolger AF, Carlhäll CJ, Ebbers T, et al. 4D flow cardiovascular magnetic resonance consensus statement. J Cardiovasc Magn Res. 2015;17(1):72.

    Article  Google Scholar 

  49. Morgant MA, Lin S, Marin-Castrillon D, Bernard CA-O, Laubriet A, Cochet A et al. Comparison of two techniques (in vivo and ex-vivo) for evaluating the elastic properties of the ascending aorta: prospective cohort study. PLoS One 2021; e0256278.

  50. Hajjar LA, Teboul JL. Mechanical circulatory support devices for cardiogenic shock: state of the art. Crit Care. 2019;23(1):76.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Birukov KG, Shirinsky VP, Stepanova OV, Tkachuk VA, Hahn AW, Resink TJ, et al. Stretch affects phenotype and proliferation of vascular smooth muscle cells. Mol Cell Biochem. 1995;144(2):131–9.

    Article  CAS  PubMed  Google Scholar 

  52. Yao Q, Hayman DM, Dai Q, Lindsey ML, Han HC. Alterations of pulse pressure stimulate arterial wall matrix remodeling. J Biomech Eng. 2009;131(10):101011.

    Article  PubMed  Google Scholar 

  53. Segura AM, Gregoric I, Radovancevic R, Demirozu ZT, Buja LM, Frazier OH. Morphologic changes in the aortic wall media after support with a continuous-flow left ventricular assist device. J Heart Lung Transplant. 2013;32(11):1096–100.

    Article  PubMed  Google Scholar 

  54. Kihara S, Litwak Kn Fau - Nichols L, Nichols L Fau - Litwak P, Litwak P Fau - Kameneva MV, Kameneva Mv Fau - Wu Z, Wu Z Fau - Kormos RL et al. Smooth muscle cell hypertrophy of renal cortex arteries with chronic continuous flow left ventricular assist. Ann Thorac Surh 2003;75(1):178–83.

  55. Ootaki C, Yamashita M Fau - Ootaki Y, Ootaki Y Fau - Kamohara K, Kamohara K Fau - Weber S, Weber S Fau - Klatte RS, Klatte Rs Fau - Smith WA et al. Reduced pulsatility induces periarteritis in kidney: role of the local renin-angiotensin system. J Thorac Cardiovasc Surg 2008;136(1):150–8.

  56. He G, Gao Y, Feng L, He G, Wu Q, Gao W, et al. Correlation between wall shear stress and acute degradation of the endothelial glycocalyx during cardiopulmonary bypass. J Cardiovasc Transl Res. 2020;13(6):1024–32.

    Article  PubMed  Google Scholar 

  57. Ivak P, Netuka I, Tucanova Z, Wohlfahrt P, Konarik M, Szarszoi O et al. The effect of artificial pulsatility on the peripheral vasculature in patients with a continuous-flow ventricular assist device. Can J Cardiol 2021;S0828–282X(21)00289–0.

  58. Layek GC, Mukhopadhyay S. Laminar flow separation in an axi-symmetric sudden smooth expanded circular tube. J Appl Math Comput. 2008;28:235–47.

    Article  Google Scholar 

  59. Banerjee RK, Back LH, Back MR, Cho YI. Physiological flow analysis in significant human coronary artery stenoses. Biorheology. 2003;40(4):451–76.

    PubMed  Google Scholar 

  60. Long Q, Xu XY, Ramnarine KV, Hoskins P. Numerical investigation of physiologically realistic pulsatile flow through arterial stenosis. J Biomech. 2001;34(10):1229–42.

    Article  CAS  PubMed  Google Scholar 

  61. Deplano V, Siouffi M. Experimental and numerical study of pulsatile flows through stenosis: wall shear stress analysis. J Biomech. 1999;32(10):1081–90.

    Article  CAS  PubMed  Google Scholar 

  62. Novakova L, Kolinsky J, Adamec J, Kudlicka J, Malik J. Vascular stenosis asymmetry influences considerably pressure gradient and flow volume. Physiol Res. 2016;65(1):63–9.

    Article  CAS  PubMed  Google Scholar 

Download references


This work was supported by MH CZ — DRO (General University Hospital in Prague — VFN, 00064165).

Author information

Authors and Affiliations


Corresponding author

Correspondence to Malik J..

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Statin Drugs

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

J., M., L., N., A., V. et al. Wall Shear Stress Alteration: a Local Risk Factor of Atherosclerosis. Curr Atheroscler Rep 24, 143–151 (2022).

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: