Skip to main content
Log in

Lipoprotein (a): When to Measure and How to Treat?

  • Cardiometabolic Disease and Treatment (E. Brinton, Section Editor)
  • Published:
Current Atherosclerosis Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

The purpose of this article is to review current evidence for lipoprotein (a) (Lp(a)) as a risk factor for multiple cardiovascular (CV) disease phenotypes, provide a rationale for Lp(a) lowering to reduce CV risk, identify therapies that lower Lp(a) levels that are available clinically and under investigation, and discuss future directions.

Recent Findings

Mendelian randomization and epidemiological studies have shown that elevated Lp(a) is an independent and causal risk factor for atherosclerosis and major CV events. Lp(a) is also associated with non-atherosclerotic endpoints such as venous thromboembolism and calcific aortic valve disease. It contributes to residual CV risk in patients receiving standard-of-care LDL-lowering therapy. Plasma Lp(a) levels present a skewed distribution towards higher values and vary widely between individuals and according to ethnic background due to genetic variants in the LPA gene, but remain relatively constant throughout a person’s life. Thus, elevated Lp(a) (≥50 mg/dL) is a prevalent condition affecting >20% of the population but is still underdiagnosed. Treatment guidelines have begun to advocate measurement of Lp(a) to identify patients with very high levels that have a family history of premature CVD or elevated Lp(a). Lipoprotein apheresis (LA) efficiently lowers Lp(a) and was recently associated with a reduction of incident CV events. Statins have neutral or detrimental effects on Lp(a), while PCSK9 inhibitors significantly reduce its level by up to 30%. Specific lowering of Lp(a) with antisense oligonucleotides (ASO) shows good safety and strong efficacy with up to 90% reductions. The ongoing CV outcomes study Lp(a)HORIZON will provide a first answer as to whether selective Lp(a) lowering with ASO reduces the risk of major CV events.

Summary

Given the recently established association between Lp(a) level and CV risk, guidelines now recommend Lp(a) measurement in specific clinical conditions. Accordingly, Lp(a) is a current target for drug development to reduce CV risk in patients with elevated levels, and lowering Lp(a) with ASO represents a promising avenue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Berg K. A New serum type system in man--the Lp system. Acta Pathol Microbiol Scand. 1963;59:369–82. https://doi.org/10.1111/j.1699-0463.1963.tb01808.x.

    Article  CAS  PubMed  Google Scholar 

  2. Kostner KM, Kostner GM. Lipoprotein (a): a historical appraisal. J Lipid Res. 2017;58(1):1–14. https://doi.org/10.1194/jlr.R071571.

    Article  CAS  PubMed  Google Scholar 

  3. Ridker PM, Hennekens CH, Stampfer MJ. A prospective study of lipoprotein(a) and the risk of myocardial infarction. JAMA. 1993;270(18):2195–9.

    Article  CAS  Google Scholar 

  4. Tregouet DA, Konig IR. Erdmann J, Munteanu A, Braund PS, Hall AS et al. Genome-wide haplotype association study identifies the SLC22A3-LPAL2-LPA gene cluster as a risk locus for coronary artery disease. Nat Genet. 2009;41(3):283–5. https://doi.org/10.1038/ng.314.

    Article  CAS  PubMed  Google Scholar 

  5. Clarke R, Peden JF, Hopewell JC, Kyriakou T, Goel A, Heath SC, et al. Genetic variants associated with Lp(a) lipoprotein level and coronary disease. N Engl J Med. 2009;361(26):2518–28. https://doi.org/10.1056/NEJMoa0902604.

    Article  CAS  PubMed  Google Scholar 

  6. Nordestgaard BG, Chapman MJ, Ray K, Boren J, Andreotti F, Watts GF, et al. Lipoprotein(a) as a cardiovascular risk factor: current status. Eur Heart J. 2010;31(23):2844–53. https://doi.org/10.1093/eurheartj/ehq386.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Emerging Risk Factors C, Erqou S, Kaptoge S, Perry PL, Di Angelantonio E, Thompson A, et al. Lipoprotein(a) concentration and the risk of coronary heart disease, stroke, and nonvascular mortality. JAMA. 2009;302(4):412–23. https://doi.org/10.1001/jama.2009.1063.

    Article  Google Scholar 

  8. Kamstrup PR, Tybjaerg-Hansen A, Nordestgaard BG. Elevated lipoprotein(a) and risk of aortic valve stenosis in the general population. J Am Coll Cardiol. 2014;63(5):470–7. https://doi.org/10.1016/j.jacc.2013.09.038.

    Article  CAS  PubMed  Google Scholar 

  9. Kamstrup PR, Nordestgaard BG. Elevated lipoprotein(a) levels, LPA risk genotypes, and increased risk of heart failure in the general population. JACC Heart Fai. 2016;4(1):78–87. https://doi.org/10.1016/j.jchf.2015.08.006.

    Article  Google Scholar 

  10. Kamstrup PR, Tybjaerg-Hansen A, Steffensen R, Nordestgaard BG. Genetically elevated lipoprotein(a) and increased risk of myocardial infarction. JAMA. 2009;301(22):2331–9. https://doi.org/10.1001/jama.2009.801.

    Article  CAS  PubMed  Google Scholar 

  11. Thanassoulis G, Campbell CY, Owens DS, Smith JG, Smith AV, Peloso GM, et al. Genetic associations with valvular calcification and aortic stenosis. N Engl J Med. 2013;368(6):503–12. https://doi.org/10.1056/NEJMoa1109034.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Burgess S, Ference BA, Staley JR, Freitag DF, Mason AM, Nielsen SF, et al. Association of LPA variants with risk of coronary disease and the implications for lipoprotein(a)-lowering therapies: a Mendelian randomization analysis. JAMA Cardiol. 2018;3(7):619–27. https://doi.org/10.1001/jamacardio.2018.1470.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Willeit P, Ridker PM, Nestel PJ, Simes J, Tonkin AM, Pedersen TR, et al. Baseline and on-statin treatment lipoprotein(a) levels for prediction of cardiovascular events: individual patient-data meta-analysis of statin outcome trials. Lancet. 2018;392(10155):1311–20. https://doi.org/10.1016/S0140-6736(18)31652-0Along with reference 86, these show that Lp(a) levels and genetic variants that influence lipid levels are independent risk factors for CVD in statin-treated patients.

    Article  CAS  PubMed  Google Scholar 

  14. O'Donoghue ML, Fazio S, Giugliano RP, Stroes ESG, Kanevsky E, Gouni-Berthold I, et al. Lipoprotein(a), PCSK9 inhibition, and cardiovascular risk. Circulation. 2019;139(12):1483–92. https://doi.org/10.1161/CIRCULATIONAHA.118.037184This article demonstrates that reductions in Lp(a) obtained through PCSK9 inhibitors contribute to reduction of CV risk.

    Article  CAS  PubMed  Google Scholar 

  15. Mach F, Baigent C, Catapano AL, Koskinas KC, Casula M, Badimon L, et al. 2019 ESC/EAS Guidelines for the management of dyslipidaemias: lipid modification to reduce cardiovascular risk. Eur Heart J. 2019;41:111–88. https://doi.org/10.1093/eurheartj/ehz455New recommendations in European guidelines for dyslipidemia include measuring Lp(a) at least once in adult life to allow detection of subjects with very high Lp(a) and a CV risk equivalent to heterozygous FH patients.

    Article  Google Scholar 

  16. Grundy SM, Stone NJ, Bailey AL, Beam C, Birtcher KK, Blumenthal RS, et al. 2018 AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/APhA/ASPC/NLA/PCNA Guideline on the management of blood cholesterol: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation. 2019;139(25):e1082–e143. https://doi.org/10.1161/CIR.0000000000000625.

    Article  PubMed  Google Scholar 

  17. Koschinsky ML, Cote GP, Gabel B, van der Hoek YY. Identification of the cysteine residue in apolipoprotein(a) that mediates extracellular coupling with apolipoprotein B-100. J Biol Chem. 1993;268(26):19819–25.

    Article  CAS  Google Scholar 

  18. McLean JW, Tomlinson JE, Kuang WJ, Eaton DL, Chen EY, Fless GM, et al. cDNA sequence of human apolipoprotein(a) is homologous to plasminogen. Nature. 1987;330(6144):132–7. https://doi.org/10.1038/330132a0.

    Article  CAS  PubMed  Google Scholar 

  19. Tardif JC, Rheaume E, Rhainds D, Dube MP. Lipoprotein (a), arterial inflammation, and PCSK9 inhibition. Eur Heart J. 2019;40(33):2782–4. https://doi.org/10.1093/eurheartj/ehz087.

    Article  PubMed  Google Scholar 

  20. Guevara J Jr, Knapp RD, Honda S, Northup SR, Morrisett JD. A structural assessment of the apo[a] protein of human lipoprotein[a]. Proteins. 1992;12(2):188–99. https://doi.org/10.1002/prot.340120212.

    Article  CAS  PubMed  Google Scholar 

  21. Lackner C, Boerwinkle E, Leffert CC, Rahmig T, Hobbs HH. Molecular basis of apolipoprotein (a) isoform size heterogeneity as revealed by pulsed-field gel electrophoresis. J Clin Invest. 1991;87(6):2153–61. https://doi.org/10.1172/JCI115248.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. van der Hoek YY, Wittekoek ME, Beisiegel U, Kastelein JJ, Koschinsky ML. The apolipoprotein(a) kringle IV repeats which differ from the major repeat kringle are present in variably-sized isoforms. Hum Mol Genet. 1993;2(4):361–6. https://doi.org/10.1093/hmg/2.4.361.

    Article  PubMed  Google Scholar 

  23. White AL, Guerra B, Lanford RE. Influence of allelic variation on apolipoprotein(a) folding in the endoplasmic reticulum. J Biol Chem. 1997;272(8):5048–55. https://doi.org/10.1074/jbc.272.8.5048.

    Article  CAS  PubMed  Google Scholar 

  24. Rader DJ, Cain W, Ikewaki K, Talley G, Zech LA, Usher D, et al. The inverse association of plasma lipoprotein(a) concentrations with apolipoprotein(a) isoform size is not due to differences in Lp(a) catabolism but to differences in production rate. J Clin Invest. 1994;93(6):2758–63. https://doi.org/10.1172/JCI117292.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Boerwinkle E, Leffert CC, Lin J, Lackner C, Chiesa G, Hobbs HH. Apolipoprotein(a) gene accounts for greater than 90% of the variation in plasma lipoprotein(a) concentrations. J Clin Invest. 1992;90(1):52–60. https://doi.org/10.1172/JCI115855.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Mooser V, Scheer D, Marcovina SM, Wang J, Guerra R, Cohen J, et al. The Apo(a) gene is the major determinant of variation in plasma Lp(a) levels in African Americans. Am J Hum Genet. 1997;61(2):402–17. https://doi.org/10.1086/514851.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Sandholzer C, Hallman DM, Saha N, Sigurdsson G, Lackner C, Csaszar A, et al. Effects of the apolipoprotein(a) size polymorphism on the lipoprotein(a) concentration in 7 ethnic groups. Hum Genet. 1991;86(6):607–14. https://doi.org/10.1007/BF00201550.

    Article  CAS  PubMed  Google Scholar 

  28. Tomlinson JE, McLean JW, Lawn RM. Rhesus monkey apolipoprotein(a). Sequence, evolution, and sites of synthesis. J Biol Chem. 1989;264(10):5957–65.

    Article  CAS  Google Scholar 

  29. Lobentanz EM, Krasznai K, Gruber A, Brunner C, Muller HJ, Sattler J, et al. Intracellular metabolism of human apolipoprotein(a) in stably transfected Hep G2 cells. Biochemistry. 1998;37(16):5417–25. https://doi.org/10.1021/bi972761t.

    Article  CAS  PubMed  Google Scholar 

  30. Demant T, Seeberg K, Bedynek A, Seidel D. The metabolism of lipoprotein(a) and other apolipoprotein B-containing lipoproteins: a kinetic study in humans. Atherosclerosis. 2001;157(2):325–39. https://doi.org/10.1016/s0021-9150(00)00732-2.

    Article  CAS  PubMed  Google Scholar 

  31. Bonen DK, Hausman AM, Hadjiagapiou C, Skarosi SF, Davidson NO. Expression of a recombinant apolipoprotein(a) in HepG2 cells. Evidence for intracellular assembly of lipoprotein(a). J Biol Chem. 1997;272(9):5659–67. https://doi.org/10.1074/jbc.272.9.5659.

    Article  CAS  PubMed  Google Scholar 

  32. Frischmann ME, Ikewaki K, Trenkwalder E, Lamina C, Dieplinger B, Soufi M, et al. In vivo stable-isotope kinetic study suggests intracellular assembly of lipoprotein(a). Atherosclerosis. 2012;225(2):322–7. https://doi.org/10.1016/j.atherosclerosis.2012.09.031.

    Article  CAS  PubMed  Google Scholar 

  33. Chan DC, Watts GF, Coll B, Wasserman SM, Marcovina SM, Barrett PHR. Lipoprotein(a) particle production as a determinant of plasma lipoprotein(a) concentration across varying apolipoprotein(a) isoform sizes and background cholesterol-lowering therapy. J Am Heart Assoc. 2019;8(7):e011781. https://doi.org/10.1161/JAHA.118.011781.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Reblin T, Donarski N, Fineder L, Brasen JH, Dieplinger H, Thaiss F, et al. Renal handling of human apolipoprotein(a) and its fragments in the rat. Am J Kidney Dis. 2001;38(3):619–30. https://doi.org/10.1053/ajkd.2001.26889.

    Article  CAS  PubMed  Google Scholar 

  35. Kronenberg F, Konig P, Lhotta K, Ofner D, Sandholzer C, Margreiter R, et al. Apolipoprotein(a) phenotype-associated decrease in lipoprotein(a) plasma concentrations after renal transplantation. Arterioscler Thromb. 1994;14(9):1399–404. https://doi.org/10.1161/01.atv.14.9.1399.

    Article  CAS  PubMed  Google Scholar 

  36. Cain WJ, Millar JS, Himebauch AS, Tietge UJ, Maugeais C, Usher D, et al. Lipoprotein [a] is cleared from the plasma primarily by the liver in a process mediated by apolipoprotein [a]. J Lipid Res. 2005;46(12):2681–91. https://doi.org/10.1194/jlr.M500249-JLR200.

    Article  CAS  PubMed  Google Scholar 

  37. McCormick SPA, Schneider WJ. Lipoprotein(a) catabolism: a case of multiple receptors. Pathology. 2019;51(2):155–64. https://doi.org/10.1016/j.pathol.2018.11.003.

    Article  CAS  PubMed  Google Scholar 

  38. Havekes L, Vermeer BJ, Brugman T, Emeis J. Binding of LP(a) to the low density lipoprotein receptor of human fibroblasts. FEBS Lett. 1981;132(2):169–73. https://doi.org/10.1016/0014-5793(81)81153-2.

    Article  CAS  PubMed  Google Scholar 

  39. Tam SP, Zhang X, Koschinsky ML. Interaction of a recombinant form of apolipoprotein[a] with human fibroblasts and with the human hepatoma cell line HepG2. J Lipid Res. 1996;37(3):518–33.

    Article  CAS  Google Scholar 

  40. Rader DJ, Mann WA, Cain W, Kraft HG, Usher D, Zech LA, et al. The low density lipoprotein receptor is not required for normal catabolism of Lp(a) in humans. J Clin Invest. 1995;95(3):1403–8. https://doi.org/10.1172/JCI117794.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Knight BL, Perombelon YF, Soutar AK, Wade DP, Seed M. Catabolism of lipoprotein(a) in familial hypercholesterolaemic subjects. Atherosclerosis. 1991;87(2-3):227–37. https://doi.org/10.1016/0021-9150(91)90025-x.

    Article  CAS  PubMed  Google Scholar 

  42. Yeang C, Hung MY, Byun YS, Clopton P, Yang X, Witztum JL, et al. Effect of therapeutic interventions on oxidized phospholipids on apolipoprotein B100 and lipoprotein(a). J Clin Lipidol. 2016;10(3):594–603. https://doi.org/10.1016/j.jacl.2016.01.005.

    Article  PubMed  Google Scholar 

  43. Tsimikas S, Gordts P, Nora C, Yeang C, Witztum JL. Statin therapy increases lipoprotein(a) levels. Eur Heart J. 2020;41(24):2275–84. https://doi.org/10.1093/eurheartj/ehz310.

    Article  CAS  PubMed  Google Scholar 

  44. Desai NR, Giugliano RP, Zhou J, Kohli P, Somaratne R, Hoffman E, et al. AMG 145, a monoclonal antibody against PCSK9, facilitates achievement of national cholesterol education program-adult treatment panel III low-density lipoprotein cholesterol goals among high-risk patients: an analysis from the LAPLACE-TIMI 57 trial (LDL-C assessment with PCSK9 monoclonal antibody inhibition combined with statin therapy-thrombolysis in myocardial infarction 57). J Am Coll Cardiol. 2014;63(5):430–3. https://doi.org/10.1016/j.jacc.2013.09.048.

    Article  CAS  PubMed  Google Scholar 

  45. Raal FJ, Giugliano RP, Sabatine MS, Koren MJ, Langslet G, Bays H, et al. Reduction in lipoprotein(a) with PCSK9 monoclonal antibody evolocumab (AMG 145): a pooled analysis of more than 1,300 patients in 4 phase II trials. J Am Coll Cardiol. 2014;63(13):1278–88. https://doi.org/10.1016/j.jacc.2014.01.006.

    Article  CAS  PubMed  Google Scholar 

  46. Watts GF, Chan DC, Pang J, Ma L, Ying Q, Aggarwal S, et al. PCSK9 Inhibition with alirocumab increases the catabolism of lipoprotein(a) particles in statin-treated patients with elevated lipoprotein(a). Metabolism. 2020;107:154221. https://doi.org/10.1016/j.metabol.2020.154221.

    Article  CAS  PubMed  Google Scholar 

  47. Romagnuolo R, Scipione CA, Boffa MB, Marcovina SM, Seidah NG, Koschinsky ML. Lipoprotein(a) catabolism is regulated by proprotein convertase subtilisin/kexin type 9 through the low density lipoprotein receptor. J Biol Chem. 2015;290(18):11649–62. https://doi.org/10.1074/jbc.M114.611988.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Villard EF, Thedrez A, Blankenstein J, Croyal M, Tran TT, Poirier B, et al. PCSK9 modulates the secretion but not the cellular uptake of lipoprotein(a) ex vivo: an effect blunted by alirocumab. JACC Basic Transl Sci. 2016;1(6):419–27. https://doi.org/10.1016/j.jacbts.2016.06.006.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Watts GF, Chan DC, Somaratne R, Wasserman SM, Scott R, Marcovina SM, et al. Controlled study of the effect of proprotein convertase subtilisin-kexin type 9 inhibition with evolocumab on lipoprotein(a) particle kinetics. Eur Heart J. 2018;39(27):2577–85. https://doi.org/10.1093/eurheartj/ehy122.

    Article  CAS  PubMed  Google Scholar 

  50. Knight BL. Lp(a) catabolism in hypercholesterolaemic individuals. Chem Phys Lipids. 1994;67-68:233–9. https://doi.org/10.1016/0009-3084(94)90142-2.

    Article  CAS  PubMed  Google Scholar 

  51. Raal FJ, Honarpour N, Blom DJ, Hovingh GK, Xu F, Scott R, et al. Inhibition of PCSK9 with evolocumab in homozygous familial hypercholesterolaemia (TESLA part B): a randomised, double-blind, placebo-controlled trial. Lancet. 2015;385(9965):341–50. https://doi.org/10.1016/S0140-6736(14)61374-X.

    Article  CAS  PubMed  Google Scholar 

  52. Stein EA, Honarpour N, Wasserman SM, Xu F, Scott R, Raal FJ. Effect of the proprotein convertase subtilisin/kexin 9 monoclonal antibody, AMG 145, in homozygous familial hypercholesterolemia. Circulation. 2013;128(19):2113–20. https://doi.org/10.1161/CIRCULATIONAHA.113.004678.

    Article  CAS  PubMed  Google Scholar 

  53. Bjornsson E, Gunnarsdottir K, Halldorsson GH, Sigurethsson A, Arnadottir GA, Jonsson H, et al. Lifelong reduction in LDL cholesterol due to a gain-of-function mutation in LDLR. Circ Genom Precis Med. 2020;14:e003029. https://doi.org/10.1161/CIRCGEN.120.003029.

    Article  CAS  PubMed  Google Scholar 

  54. Forbes CA, Quek RG, Deshpande S, Worthy G, Wolff R, Stirk L, et al. The relationship between Lp(a) and CVD outcomes: a systematic review. Lipids Health Dis. 2016;15:95. https://doi.org/10.1186/s12944-016-0258-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Argraves KM, Kozarsky KF, Fallon JT, Harpel PC, Strickland DK. The atherogenic lipoprotein Lp(a) is internalized and degraded in a process mediated by the VLDL receptor. J Clin Invest. 1997;100(9):2170–81. https://doi.org/10.1172/JCI119753.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Umahara T, Uchihara T, Yamada S, Hashimoto T, Akimoto J, Haraoka J, et al. Differential expression of oxidized/native lipoprotein(a) and plasminogen in human carotid and cerebral artery plaques. Atherosclerosis. 2011;215(2):392–8. https://doi.org/10.1016/j.atherosclerosis.2010.10.048.

    Article  CAS  PubMed  Google Scholar 

  57. Allen S, Khan S, Tam S, Koschinsky M, Taylor P, Yacoub M. Expression of adhesion molecules by lp(a): a potential novel mechanism for its atherogenicity. FASEB J. 1998;12(15):1765–76. https://doi.org/10.1096/fasebj.12.15.1765.

    Article  CAS  PubMed  Google Scholar 

  58. O'Neil CH, Boffa MB, Hancock MA, Pickering JG, Koschinsky ML. Stimulation of vascular smooth muscle cell proliferation and migration by apolipoprotein(a) is dependent on inhibition of transforming growth factor-beta activation and on the presence of kringle IV type 9. J Biol Chem. 2004;279(53):55187–95. https://doi.org/10.1074/jbc.M409860200.

    Article  CAS  PubMed  Google Scholar 

  59. Leibundgut G, Scipione C, Yin H, Schneider M, Boffa MB, Green S, et al. Determinants of binding of oxidized phospholipids on apolipoprotein (a) and lipoprotein (a). J Lipid Res. 2013;54(10):2815–30. https://doi.org/10.1194/jlr.M040733.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Bergmark C, Dewan A, Orsoni A, Merki E, Miller ER, Shin MJ, et al. A novel function of lipoprotein [a] as a preferential carrier of oxidized phospholipids in human plasma. J Lipid Res. 2008;49(10):2230–9. https://doi.org/10.1194/jlr.M800174-JLR200.

    Article  CAS  PubMed  Google Scholar 

  61. Scipione CA, Sayegh SE, Romagnuolo R, Tsimikas S, Marcovina SM, Boffa MB, et al. Mechanistic insights into Lp(a)-induced IL-8 expression: a role for oxidized phospholipid modification of apo(a). J Lipid Res. 2015;56(12):2273–85. https://doi.org/10.1194/jlr.M060210.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. van der Valk FM, Bekkering S, Kroon J, Yeang C, Van den Bossche J, van Buul JD, et al. Oxidized phospholipids on lipoprotein(a) elicit arterial wall inflammation and an inflammatory monocyte response in humans. Circulation. 2016;134(8):611–24. https://doi.org/10.1161/CIRCULATIONAHA.116.020838.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Cho T, Jung Y, Koschinsky ML. Apolipoprotein(a), through its strong lysine-binding site in KIV(10'), mediates increased endothelial cell contraction and permeability via a Rho/Rho kinase/MYPT1-dependent pathway. J Biol Chem. 2008;283(45):30503–12. https://doi.org/10.1074/jbc.M802648200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Boonmark NW, Lou XJ, Yang ZJ, Schwartz K, Zhang JL, Rubin EM, et al. Modification of apolipoprotein(a) lysine binding site reduces atherosclerosis in transgenic mice. J Clin Invest. 1997;100(3):558–64. https://doi.org/10.1172/JCI119565.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Arsenault BJ, Boekholdt SM, Dube MP, Rheaume E, Wareham NJ, Khaw KT, et al. Lipoprotein(a) levels, genotype, and incident aortic valve stenosis: a prospective Mendelian randomization study and replication in a case-control cohort. Circ Cardiovasc Genet. 2014;7(3):304–10. https://doi.org/10.1161/CIRCGENETICS.113.000400.

    Article  CAS  PubMed  Google Scholar 

  66. Capoulade R, Yeang C, Chan KL, Pibarot P, Tsimikas S. Association of mild to moderate aortic valve stenosis progression with higher lipoprotein(a) and oxidized phospholipid levels: secondary analysis of a randomized clinical trial. JAMA Cardiol. 2018;3(12):1212–7. https://doi.org/10.1001/jamacardio.2018.3798.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Bouchareb R, Mahmut A, Nsaibia MJ, Boulanger MC, Dahou A, Lepine JL, et al. Autotaxin derived from lipoprotein(a) and valve interstitial cells promotes inflammation and mineralization of the aortic valve. Circulation. 2015;132(8):677–90. https://doi.org/10.1161/CIRCULATIONAHA.115.016757.

    Article  CAS  PubMed  Google Scholar 

  68. Boffa MB, Koschinsky ML. Lipoprotein (a): truly a direct prothrombotic factor in cardiovascular disease? J Lipid Res. 2016;57(5):745–57. https://doi.org/10.1194/jlr.R060582.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Dentali F, Gessi V, Marcucci R, Gianni M, Grandi AM, Franchini M. Lipoprotein(a) as a risk factor for venous thromboembolism: a systematic review and meta-analysis of the literature. Semin Thromb Hemost. 2017;43(6):614–20. https://doi.org/10.1055/s-0036-1598002.

    Article  CAS  PubMed  Google Scholar 

  70. Boffa MB, Marar TT, Yeang C, Viney NJ, Xia S, Witztum JL, et al. Potent reduction of plasma lipoprotein (a) with an antisense oligonucleotide in human subjects does not affect ex vivo fibrinolysis. J Lipid Res. 2019;60(12):2082–9. https://doi.org/10.1194/jlr.P094763An elegant appraisal of the effect of Lp(a) lowering on fibrinolytic activity, suggesting that it would not affect this important pathway.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Helgadottir A, Gretarsdottir S, Thorleifsson G, Holm H, Patel RS, Gudnason T, et al. Apolipoprotein(a) genetic sequence variants associated with systemic atherosclerosis and coronary atherosclerotic burden but not with venous thromboembolism. J Am Coll Cardiol. 2012;60(8):722–9. https://doi.org/10.1016/j.jacc.2012.01.078.

    Article  CAS  PubMed  Google Scholar 

  72. Kamstrup PR, Tybjaerg-Hansen A, Nordestgaard BG. Genetic evidence that lipoprotein(a) associates with atherosclerotic stenosis rather than venous thrombosis. Arterioscler Thromb Vasc Biol. 2012;32(7):1732–41. https://doi.org/10.1161/ATVBAHA.112.248765.

    Article  CAS  PubMed  Google Scholar 

  73. McConnell JP, Guadagno PA, Dayspring TD, Hoefner DM, Thiselton DL, Warnick GR, et al. Lipoprotein(a) mass: a massively misunderstood metric. J Clin Lipidol. 2014;8(6):550–3. https://doi.org/10.1016/j.jacl.2014.08.003.

    Article  PubMed  Google Scholar 

  74. Tsimikas S. A test in context: lipoprotein(a): diagnosis, prognosis, controversies, and emerging therapies. J Am Coll Cardiol. 2017;69(6):692–711. https://doi.org/10.1016/j.jacc.2016.11.042.

    Article  CAS  PubMed  Google Scholar 

  75. Marcovina SM, Albers JJ. Lipoprotein (a) measurements for clinical application. J Lipid Res. 2016;57(4):526–37. https://doi.org/10.1194/jlr.R061648.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Marcovina SM, Albers JJ, Gabel B, Koschinsky ML, Gaur VP. Effect of the number of apolipoprotein(a) kringle 4 domains on immunochemical measurements of lipoprotein(a). Clin Chem. 1995;41(2):246–55.

    Article  CAS  Google Scholar 

  77. Group HTRC, Bowman L, Hopewell JC, Chen F, Wallendszus K, Stevens W, et al. Effects of anacetrapib in patients with atherosclerotic vascular disease. N Engl J Med. 2017;377(13):1217–27. https://doi.org/10.1056/NEJMoa1706444.

    Article  Google Scholar 

  78. Pare G, Caku A, McQueen M, Anand SS, Enas E, Clarke R, et al. Lipoprotein(a) levels and the risk of myocardial infarction among 7 ethnic groups. Circulation. 2019;139(12):1472–82. https://doi.org/10.1161/CIRCULATIONAHA.118.034311This analysis of Lp(a) levels in the INTERHEART study provides key observations about the differences in median levels for 7 ethnic groups, suggesting that these should be considered for diagnostic criteria, and shows that isoform size is inversely related to plasma Lp(a) across all populations tested.

    Article  CAS  PubMed  Google Scholar 

  79. Guan W, Cao J, Steffen BT, Post WS, Stein JH, Tattersall MC, et al. Race is a key variable in assigning lipoprotein(a) cutoff values for coronary heart disease risk assessment: the Multi-Ethnic Study of Atherosclerosis. Arterioscler Thromb Vasc Biol. 2015;35(4):996–1001. https://doi.org/10.1161/ATVBAHA.114.304785.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Coassin S, Hermann-Kleiter N, Haun M, Wahl S, Wilson R, Paulweber B, et al. A genome-wide analysis of DNA methylation identifies a novel association signal for Lp(a) concentrations in the LPA promoter. PLoS One. 2020;15(4):e0232073. https://doi.org/10.1371/journal.pone.0232073.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Kamstrup PR, Benn M, Tybjaerg-Hansen A, Nordestgaard BG. Extreme lipoprotein(a) levels and risk of myocardial infarction in the general population: the Copenhagen City Heart Study. Circulation. 2008;117(2):176–84. https://doi.org/10.1161/CIRCULATIONAHA.107.715698.

    Article  CAS  PubMed  Google Scholar 

  82. Gurdasani D, Sjouke B, Tsimikas S, Hovingh GK, Luben RN, Wainwright NW, et al. Lipoprotein(a) and risk of coronary, cerebrovascular, and peripheral artery disease: the EPIC-Norfolk prospective population study. Arterioscler Thromb Vasc Biol. 2012;32(12):3058–65. https://doi.org/10.1161/ATVBAHA.112.255521.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Lamina C, Kronenberg F, Lp GC. Estimation of the required lipoprotein(a)-lowering therapeutic effect size for reduction in coronary heart disease outcomes: a Mendelian randomization analysis. JAMA Cardiol. 2019;4(6):575–9. https://doi.org/10.1001/jamacardio.2019.1041.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Parish S, Hopewell JC, Hill MR, Marcovina S, Valdes-Marquez E, Haynes R, et al. Impact of apolipoprotein(a) isoform size on lipoprotein(a) lowering in the HPS2-THRIVE study. Circ Genom Precis Med. 2018;11(2):e001696. https://doi.org/10.1161/CIRCGEN.117.001696.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Bittner VA, Szarek M, Aylward PE, Bhatt DL, Diaz R, Edelberg JM, et al. Effect of alirocumab on lipoprotein(a) and cardiovascular risk after acute coronary syndrome. J Am Coll Cardiol. 2020;75(2):133–44. https://doi.org/10.1016/j.jacc.2019.10.057.

    Article  CAS  PubMed  Google Scholar 

  86. Schwartz GG, Steg PG, Szarek M, Bittner VA, Diaz R, Goodman SG, et al. Peripheral Artery disease and venous thromboembolic events after acute coronary syndrome: role of lipoprotein(a) and modification by alirocumab: prespecified analysis of the ODYSSEY OUTCOMES randomized clinical trial. Circulation. 2020;141(20):1608–17. https://doi.org/10.1161/CIRCULATIONAHA.120.046524.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Khera AV, Everett BM, Caulfield MP, Hantash FM, Wohlgemuth J, Ridker PM, et al. Lipoprotein(a) concentrations, rosuvastatin therapy, and residual vascular risk: an analysis from the JUPITER Trial (Justification for the Use of Statins in Prevention: an Intervention Trial Evaluating Rosuvastatin). Circulation. 2014;129(6):635–42. https://doi.org/10.1161/CIRCULATIONAHA.113.004406.

    Article  CAS  PubMed  Google Scholar 

  88. Albers JJ, Slee A, O'Brien KD, Robinson JG, Kashyap ML, Kwiterovich PO Jr, et al. Relationship of apolipoproteins A-1 and B, and lipoprotein(a) to cardiovascular outcomes: the AIM-HIGH trial (Atherothrombosis Intervention in Metabolic Syndrome with Low HDL/High Triglyceride and Impact on Global Health Outcomes). J Am Coll Cardiol. 2013;62(17):1575–9. https://doi.org/10.1016/j.jacc.2013.06.051.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Wei WQ, Li X, Feng Q, Kubo M, Kullo IJ, Peissig PL, et al. LPA variants are associated with residual cardiovascular risk in patients receiving statins. Circulation. 2018;138(17):1839–49. https://doi.org/10.1161/CIRCULATIONAHA.117.031356.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Stone NJ, Robinson JG, Lichtenstein AH, Bairey Merz CN, Blum CB, Eckel RH, et al. 2013 ACC/AHA guideline on the treatment of blood cholesterol to reduce atherosclerotic cardiovascular risk in adults: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. Circulation. 2014;129(25 Suppl 2):S1–45. https://doi.org/10.1161/01.cir.0000437738.63853.7a.

    Article  PubMed  Google Scholar 

  91. Wilson DP, Jacobson TA, Jones PH, Koschinsky ML, McNeal CJ, Nordestgaard BG, et al. Use of lipoprotein(a) in clinical practice: a biomarker whose time has come. A scientific statement from the National Lipid Association. J Clin Lipidol. 2019;13(3):374–92. https://doi.org/10.1016/j.jacl.2019.04.010.

    Article  PubMed  Google Scholar 

  92. Hung MY, Tsimikas S. What is the ultimate test that lowering lipoprotein(a) is beneficial for cardiovascular disease and aortic stenosis? Curr Opin Lipidol. 2014;25(6):423–30. https://doi.org/10.1097/MOL.0000000000000131.

    Article  CAS  PubMed  Google Scholar 

  93. Tsimikas S, Gordts P, Nora C, Yeang C, Witztum JL. Statin therapy increases lipoprotein(a) levels. Eur Heart J. 2019. https://doi.org/10.1093/eurheartj/ehz310An important meta-analysis of key statin versus placebo trials or statin versus statin trials demonstrates a general increase in Lp(a) following statin therapy in the studies considered. This goes along with the reported positive effect of statins on oxPL levels in plasma, carried by Lp(a).

  94. Fraley AE, Schwartz GG, Olsson AG, Kinlay S, Szarek M, Rifai N, et al. Relationship of oxidized phospholipids and biomarkers of oxidized low-density lipoprotein with cardiovascular risk factors, inflammatory biomarkers, and effect of statin therapy in patients with acute coronary syndromes: Results from the MIRACL (Myocardial Ischemia Reduction With Aggressive Cholesterol Lowering) trial. J Am Coll Cardiol. 2009;53(23):2186–96. https://doi.org/10.1016/j.jacc.2009.02.041.

    Article  CAS  PubMed  Google Scholar 

  95. Gaudet D, Kereiakes DJ, McKenney JM, Roth EM, Hanotin C, Gipe D, et al. Effect of alirocumab, a monoclonal proprotein convertase subtilisin/kexin 9 antibody, on lipoprotein(a) concentrations (a pooled analysis of 150 mg every two weeks dosing from phase 2 trials). Am J Cardiol. 2014;114(5):711–5. https://doi.org/10.1016/j.amjcard.2014.05.060.

    Article  CAS  PubMed  Google Scholar 

  96. Mahmood T, Minnier J, Ito MK, Li QH, Koren A, Kam IW, Fazio S, Shapiro MD Discordant responses of plasma low-density lipoprotein cholesterol and lipoprotein(a) to alirocumab: a pooled analysis from 10 ODYSSEY phase 3 studies. Eur J Prev Cardiol 2020:2047487320915803. https://doi.org/10.1177/2047487320915803.

  97. Desai NR, Kohli P, Giugliano RP, O'Donoghue ML, Somaratne R, Zhou J, et al. AMG145, a monoclonal antibody against proprotein convertase subtilisin kexin type 9, significantly reduces lipoprotein(a) in hypercholesterolemic patients receiving statin therapy: an analysis from the LDL-C Assessment with Proprotein Convertase Subtilisin Kexin Type 9 Monoclonal Antibody Inhibition Combined with Statin Therapy (LAPLACE)-Thrombolysis in Myocardial Infarction (TIMI) 57 trial. Circulation. 2013;128(9):962–9. https://doi.org/10.1161/CIRCULATIONAHA.113.001969.

    Article  CAS  PubMed  Google Scholar 

  98. Raal FJ, Giugliano RP, Sabatine MS, Koren MJ, Blom D, Seidah NG, et al. PCSK9 inhibition-mediated reduction in Lp(a) with evolocumab: an analysis of 10 clinical trials and the LDL receptor's role. J Lipid Res. 2016;57(6):1086–96. https://doi.org/10.1194/jlr.P065334.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Marston NA, Gurmu Y, Melloni GEM, Bonaca M, Gencer B, Sever PS, et al. The effect of PCSK9 (proprotein convertase subtilisin/kexin type 9) inhibition on the risk of venous thromboembolism. Circulation. 2020;141(20):1600–7. https://doi.org/10.1161/CIRCULATIONAHA.120.046397.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Rader DJ, Kastelein JJ. Lomitapide and mipomersen: two first-in-class drugs for reducing low-density lipoprotein cholesterol in patients with homozygous familial hypercholesterolemia. Circulation. 2014;129(9):1022–32. https://doi.org/10.1161/CIRCULATIONAHA.113.001292.

    Article  PubMed  Google Scholar 

  101. Raal FJ, Santos RD, Blom DJ, Marais AD, Charng MJ, Cromwell WC, et al. Mipomersen, an apolipoprotein B synthesis inhibitor, for lowering of LDL cholesterol concentrations in patients with homozygous familial hypercholesterolaemia: a randomised, double-blind, placebo-controlled trial. Lancet. 2010;375(9719):998–1006. https://doi.org/10.1016/S0140-6736(10)60284-X.

    Article  CAS  PubMed  Google Scholar 

  102. Stein EA, Dufour R, Gagne C, Gaudet D, East C, Donovan JM, et al. Apolipoprotein B synthesis inhibition with mipomersen in heterozygous familial hypercholesterolemia: results of a randomized, double-blind, placebo-controlled trial to assess efficacy and safety as add-on therapy in patients with coronary artery disease. Circulation. 2012;126(19):2283–92. https://doi.org/10.1161/CIRCULATIONAHA.112.104125.

    Article  CAS  PubMed  Google Scholar 

  103. Santos RD, Raal FJ, Catapano AL, Witztum JL, Steinhagen-Thiessen E, Tsimikas S. Mipomersen, an antisense oligonucleotide to apolipoprotein B-100, reduces lipoprotein(a) in various populations with hypercholesterolemia: results of 4 phase III trials. Arterioscler Thromb Vasc Biol. 2015;35(3):689–99. https://doi.org/10.1161/ATVBAHA.114.304549.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Vogt A, Parhofer KG. The potential of mipomersen, an ApoB synthesis inhibitor, to reduce necessity for LDL-apheresis in patients with heterozygous familial hypercholesterolemia and coronary artery disease. Expert Opin Pharmacother. 2013;14(6):691–7. https://doi.org/10.1517/14656566.2013.779253.

    Article  CAS  PubMed  Google Scholar 

  105. Carlson LA, Hamsten A, Asplund A. Pronounced lowering of serum levels of lipoprotein Lp(a) in hyperlipidaemic subjects treated with nicotinic acid. J Intern Med. 1989;226(4):271–6. https://doi.org/10.1111/j.1365-2796.1989.tb01393.x.

    Article  CAS  PubMed  Google Scholar 

  106. Goldberg A, Alagona P Jr, Capuzzi DM, Guyton J, Morgan JM, Rodgers J, et al. Multiple-dose efficacy and safety of an extended-release form of niacin in the management of hyperlipidemia. Am J Cardiol. 2000;85(9):1100–5. https://doi.org/10.1016/s0002-9149(00)00703-7.

    Article  CAS  PubMed  Google Scholar 

  107. Stein EA, Davidson MH, Dujovne CA, Hunninghake DB, Goldberg RB, Illingworth DR, et al. Efficacy and tolerability of low-dose simvastatin and niacin, alone and in combination, in patients with combined hyperlipidemia: a prospective trial. J Cardiovasc Pharmacol Ther. 1996;1(2):107–16. https://doi.org/10.1177/107424849600100204.

    Article  CAS  PubMed  Google Scholar 

  108. Capuzzi DM, Guyton JR, Morgan JM, Goldberg AC, Kreisberg RA, Brusco OA, et al. Efficacy and safety of an extended-release niacin (Niaspan): a long-term study. Am J Cardiol. 1998;82(12A):74U–81U; discussion 5U-6U. https://doi.org/10.1016/s0002-9149(98)00731-0.

    Article  CAS  PubMed  Google Scholar 

  109. Group HTC, Landray MJ, Haynes R, Hopewell JC, Parish S, Aung T, et al. Effects of extended-release niacin with laropiprant in high-risk patients. N Engl J Med. 2014;371(3):203–12. https://doi.org/10.1056/NEJMoa1300955.

    Article  CAS  Google Scholar 

  110. Investigators A-H, Boden WE, Probstfield JL, Anderson T, Chaitman BR, Desvignes-Nickens P, et al. Niacin in patients with low HDL cholesterol levels receiving intensive statin therapy. N Engl J Med. 2011;365(24):2255–67. https://doi.org/10.1056/NEJMoa1107579.

    Article  CAS  Google Scholar 

  111. Tardif JC, Dube MP, Pfeffer MA, Waters DD, Koenig W, Maggioni AP, et al. Study design of Dal-GenE, a pharmacogenetic trial targeting reduction of cardiovascular events with dalcetrapib. Am Heart J. 2020;222:157–65. https://doi.org/10.1016/j.ahj.2020.01.007.

    Article  CAS  PubMed  Google Scholar 

  112. Schwartz GG, Ballantyne CM, Barter PJ, Kallend D, Leiter LA, Leitersdorf E, et al. Association of lipoprotein(a) with risk of recurrent ischemic events following acute coronary syndrome: analysis of the dal-Outcomes randomized clinical trial. JAMA Cardiol. 2018;3(2):164–8. https://doi.org/10.1001/jamacardio.2017.3833.

    Article  PubMed  Google Scholar 

  113. Cannon CP, Shah S, Dansky HM, Davidson M, Brinton EA, Gotto AM, et al. Safety of anacetrapib in patients with or at high risk for coronary heart disease. N Engl J Med. 2010;363(25):2406–15. https://doi.org/10.1056/NEJMoa1009744.

    Article  CAS  PubMed  Google Scholar 

  114. Kastelein JJ, Besseling J, Shah S, Bergeron J, Langslet G, Hovingh GK, et al. Anacetrapib as lipid-modifying therapy in patients with heterozygous familial hypercholesterolaemia (REALIZE): a randomised, double-blind, placebo-controlled, phase 3 study. Lancet. 2015;385(9983):2153–61. https://doi.org/10.1016/S0140-6736(14)62115-2.

    Article  CAS  PubMed  Google Scholar 

  115. Teramoto T, Daida H, Ikewaki K, Arai H, Maeda Y, Nakagomi M, et al. Lipid-modifying efficacy and tolerability of anacetrapib added to ongoing statin therapy in Japanese patients with dyslipidemia. Atherosclerosis. 2017;261:69–77. https://doi.org/10.1016/j.atherosclerosis.2017.03.009.

    Article  CAS  PubMed  Google Scholar 

  116. Thomas T, Zhou H, Karmally W, Ramakrishnan R, Holleran S, Liu Y, et al. CETP (cholesteryl ester transfer protein) inhibition with anacetrapib decreases production of lipoprotein(a) in mildly hypercholesterolemic subjects. Arterioscler Thromb Vasc Biol. 2017;37(9):1770–5. https://doi.org/10.1161/ATVBAHA.117.309549.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Hovingh GK, Kastelein JJ, van Deventer SJ, Round P, Ford J, Saleheen D, et al. Cholesterol ester transfer protein inhibition by TA-8995 in patients with mild dyslipidaemia (TULIP): a randomised, double-blind, placebo-controlled phase 2 trial. Lancet. 2015;386(9992):452–60. https://doi.org/10.1016/S0140-6736(15)60158-1.

    Article  CAS  PubMed  Google Scholar 

  118. Waldmann E, Parhofer KG. Lipoprotein apheresis to treat elevated lipoprotein (a). J Lipid Res. 2016;57(10):1751–7. https://doi.org/10.1194/jlr.R056549.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Thompson GR. Lipoprotein apheresis. Curr Opin Lipidol. 2010;21(6):487–91. https://doi.org/10.1097/MOL.0b013e32833e13fd.

    Article  CAS  PubMed  Google Scholar 

  120. Thompson GR, Group H-ULAW. Recommendations for the use of LDL apheresis. Atherosclerosis. 2008;198(2):247–55. https://doi.org/10.1016/j.atherosclerosis.2008.02.009.

    Article  CAS  PubMed  Google Scholar 

  121. Schettler VJJ, Neumann CL, Peter C, Zimmermann T, Julius U, Roeseler E, et al. Current insights into the German Lipoprotein Apheresis Registry (GLAR) - almost 5 years on. Atheroscler Suppl. 2017;30:50–5. https://doi.org/10.1016/j.atherosclerosissup.2017.05.006.

    Article  CAS  PubMed  Google Scholar 

  122. Schettler VJJ, Neumann CL, Peter C, Zimmermann T, Julius U, Hohenstein B, et al. Lipoprotein apheresis is an optimal therapeutic option to reduce increased Lp(a) levels. Clin Res Cardiol Suppl. 2019;14(Suppl 1):33–8. https://doi.org/10.1007/s11789-019-00094-4This careful analysis of retrospective data from the German Lipoprotein Apheresis Registry shows that a single treatment is very efficient to reduce isolated elevated Lp(a) and observe major adverse CV events rates over 2 and 5 years of follow-up.

    Article  CAS  PubMed  Google Scholar 

  123. Moriarty PM, Gray JV, Gorby LK. Lipoprotein apheresis for lipoprotein(a) and cardiovascular disease. J Clin Lipidol. 2019;13(6):894–900. https://doi.org/10.1016/j.jacl.2019.09.010.

    Article  PubMed  Google Scholar 

  124. Nugent EK, Nugent AK, Nugent R, Nugent C, Nugent K. The management of women's health care by internists with a focus on the utility of ultrasound. Am J Med Sci. 2020;360(5):435–46. https://doi.org/10.1016/j.amjms.2020.05.016.

    Article  PubMed  Google Scholar 

  125. Hohenstein B, Julius U, Lansberg P, Jaeger B, Mellwig KP, Weiss N, et al. Rationale and design of MultiSELECt: a European multicenter study on the effect of lipoprotein(a) elimination by lipoprotein apheresis on cardiovascular outcomes. Atheroscler Suppl. 2017;30:180–6. https://doi.org/10.1016/j.atherosclerosissup.2017.05.009The MultiSELECT pair-matched randomized trial of lipoprotein apheresis vs. optimal care will provide a rigorous answer about the favorable impact of apheresis on CV risk in patients with isolated Lp(a) and high CV risk.

    Article  PubMed  Google Scholar 

  126. Pokrovsky SN, Afanasieva OI, Safarova MS, Balakhonova TV, Matchin YG, Adamova IYU, et al. Specific Lp(a) apheresis: a tool to prove lipoprotein(a) atherogenicity. Atheroscler Suppl. 2017;30:166–73. https://doi.org/10.1016/j.atherosclerosissup.2017.05.004.

    Article  CAS  PubMed  Google Scholar 

  127. Tsimikas S, Viney NJ, Hughes SG, Singleton W, Graham MJ, Baker BF, et al. Antisense therapy targeting apolipoprotein(a): a randomised, double-blind, placebo-controlled phase 1 study. Lancet. 2015;386(10002):1472–83. https://doi.org/10.1016/S0140-6736(15)61252-1.

    Article  CAS  PubMed  Google Scholar 

  128. Viney NJ, van Capelleveen JC, Geary RS, Xia S, Tami JA, Yu RZ, et al. Antisense oligonucleotides targeting apolipoprotein(a) in people with raised lipoprotein(a): two randomised, double-blind, placebo-controlled, dose-ranging trials. Lancet. 2016;388(10057):2239–53. https://doi.org/10.1016/S0140-6736(16)31009-1.

    Article  CAS  PubMed  Google Scholar 

  129. Tsimikas S, Karwatowska-Prokopczuk E, Gouni-Berthold I, Tardif JC, Baum SJ, Steinhagen-Thiessen E, et al. Lipoprotein(a) reduction in persons with cardiovascular disease. N Engl J Med. 2020;382(3):244–55. https://doi.org/10.1056/NEJMoa1905239This phase 2 trial of ligand-modified antisense oligonucleotide against apo(a), APO(a)-LRX, demonstrates that this agent is safe and well-tolerated and dose-dependently reduces Lp(a) by up to 90% in patients with elevated Lp(a) and established CAD. It paves the way for the phase 3 trials Lp(a)HORIZON that started its recruitment in December 2019 in a very similar patient profile, but with a higher dosage of APO(a)-LRx.

    Article  CAS  PubMed  Google Scholar 

  130. Prakash TP, Graham MJ, Yu J, Carty R, Low A, Chappell A, et al. Targeted delivery of antisense oligonucleotides to hepatocytes using triantennary N-acetyl galactosamine improves potency 10-fold in mice. Nucleic Acids Res. 2014;42(13):8796–807. https://doi.org/10.1093/nar/gku531.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Claude Tardif.

Ethics declarations

Conflict of Interest

David Rhainds and Mathieu R. Brodeur declare that they have no conflict of interest.

Jean-Claude Tardif reports grants from Amarin, Esperion, Ionis, and Pfizer and grants and personal fees from AstraZeneca, Sanofi, and Servier; grants, personal fees, and other from Dalcor; and personal fees from HLS Therapeutics, outside the submitted work. In addition, Dr. Tardif has a patent on Genetic markers for predicting responsiveness to therapy with HDL-raising or HDL mimicking agent pending (US20170233812A1) and a patent on Methods for using low dose colchicine after myocardial infarction with the invention assigned to the Montreal Heart Institute (US Provisional Applications No.62/935,751 and 62/935,865).

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rhainds, D., Brodeur, M.R. & Tardif, JC. Lipoprotein (a): When to Measure and How to Treat?. Curr Atheroscler Rep 23, 51 (2021). https://doi.org/10.1007/s11883-021-00951-2

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11883-021-00951-2

Keywords

Navigation