Skip to main content

Advertisement

Log in

Premature Atherosclerotic Cardiovascular Disease: What Have We Learned Recently?

  • Coronary Heart Disease (S. Virani and S. Naderi, Section Editor)
  • Published:
Current Atherosclerosis Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

In contrast to patients with non-premature atherosclerotic cardiovascular disease (ASCVD), patients with premature ASCVD have not observed a similar decline in cardiovascular mortality and recurrent adverse events. We sought to review the underlying risk factors, potential gaps in medical management, associated outcomes, and tools for risk prognostication among patients with premature ASCVD.

Recent Findings

In addition to traditional cardiovascular risk factors (i.e., diabetes, familial hypercholesterolemia), non-traditional risk factors such as chronic inflammatory conditions, recreational drug use, genetics, and pregnancy-related complications play a key role in development and progression of premature ASCVD. Patients with premature ASCVD, and especially women, receive less optimal medical management as compared to their non-premature counterparts.

Summary

There is an increasing prevalence of cardiovascular risk factors among young adults. Hence, this population remains at an elevated risk for premature ASCVD and subsequent adverse cardiovascular events. Future studies evaluating different risk assessment tools and focusing on young patients across all three major domains of ASCVD are needed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. World Health Organization. Cardiovascular diseases (CVDs) fact sheet. World Health Organization. 2017 May.

  2. Benjamin EJ, Muntner P, Bittencourt MS. Heart disease and stroke statistics—2019 update: a report from the American Heart Association. Circulation. 2019;139(10):e56–28.

    PubMed  Google Scholar 

  3. Vikulova DN, Grubisic M, Zhao Y, Lynch K, Humphries KH, Pimstone SN, et al. Premature atherosclerotic cardiovascular disease: trends in incidence, risk factors, and sex-related differences, 2000 to 2016. J Am Heart Assoc. 2019 Jul 16;8(14):e012178.

    PubMed  PubMed Central  Google Scholar 

  4. Doughty M, Mehta R, Bruckman D, Das S, Karavite D, Tsai T, et al. Acute myocardial infarction in the young—the University of Michigan experience. Am Heart J. 2002 Jan 1;143(1):56–62.

    PubMed  Google Scholar 

  5. Maaijwee NA, Rutten-Jacobs LC, Schaapsmeerders P, Van Dijk EJ, de Leeuw FE. Ischaemic stroke in young adults: risk factors and long-term consequences. Nat Rev Neurol. 2014 Jun;10(6):315–25.

    PubMed  Google Scholar 

  6. •• Maillet A, Desormais I, Rivière AB, Aboyans V, Lacroix P, Mirault T, Messas E, Bataille V, Constans J, Boulon C. Peripheral atheromatous arterial disease in the young: risk factors, clinical features, and prognosis from the COPART cohort. Angiology. 2017 Nov;68(10):893–8. Contemporary data highlighting risk factors and outcomes from one of the largest cohorts of patients with premature peripheral arterial disease.

  7. Roth GA, Johnson C, Abajobir A, Abd-Allah F, Abera SF, Abyu G, et al. Global, regional, and national burden of cardiovascular diseases for 10 causes, 1990 to 2015. J Am Coll Cardiol. 2017 Jun 26;70(1):1–25.

    PubMed  PubMed Central  Google Scholar 

  8. World Health Organization Global status report on noncommunicable diseases 2014. World Health Organization; 2014.

  9. Eisen A, Giugliano RP, Braunwald E. Updates on acute coronary syndrome: a review. JAMA Cardiol. 2016 Sep 1;1(6):718–30.

    PubMed  Google Scholar 

  10. Wilmot KA, O’Flaherty M, Capewell S, Ford ES, Vaccarino V. Coronary heart disease mortality declines in the United States from 1979 through 2011: evidence for stagnation in young adults, especially women. Circulation. 2015 Sep 15;132(11):997–1002.

    PubMed  PubMed Central  Google Scholar 

  11. Gupta A, Wang Y, Spertus JA, Geda M, Lorenze N, Nkonde-Price C, et al. Trends in acute myocardial infarction in young patients and differences by sex and race, 2001 to 2010. J Am Coll Cardiol. 2014 Jul 29;64(4):337–45.

    PubMed  PubMed Central  Google Scholar 

  12. Kim I, Kim MC, Sim DS, Hong YJ, Kim JH, Jeong MH, et al. Effect of the metabolic syndrome on outcomes in patients aged< 50 years versus> 50 years with acute myocardial infarction. Am J Cardiol. 2018 Jul 15;122(2):192–8.

    PubMed  Google Scholar 

  13. •• Yang J, Biery D, Singh A, Divakaran S, DeFilippis EM, Wu WY, Klein J, Hainer J, Ramsis M, Natarajan P, Januzzi JL. Risk factors and outcomes of very young adults who experience myocardial infarction: the partners YOUNG-MI registry. The American journal of medicine. 2019 Nov 9. Contemporary data highlighting risk factors and outcomes among patients with extremely premature versus premature myocardial infarction.

  14. Divakaran S, Singh A, Biery D, Yang J, DeFilippis EM, Collins BL, Ramsis M, Qamar A, Hainer J, Klein J, Cannon CP. Diabetes is associated with worse long-term outcomes in young adults after myocardial infarction: the partners YOUNG-MI registry. Diabetes care. 2019 Sep 19:dc190998.

  15. • Andersson C, Vasan RS. Epidemiology of cardiovascular disease in young individuals. Nature Reviews Cardiology. 2018 Apr;15(4):230. State-of-the-art review discussing temporal trends and risk factors among patients with premature ischemic heart disease.

  16. Singh A, Collins B, Qamar A, Gupta A, Fatima A, Divakaran S, et al. Study of young patients with myocardial infarction: design and rationale of the YOUNG-MI registry. Clin Cardiol. 2017 Nov;40(11):955–61.

    PubMed  PubMed Central  Google Scholar 

  17. Ekker MS, Verhoeven JI, Vaartjes I, van Nieuwenhuizen KM, Klijn CJ, de Leeuw FE. Stroke incidence in young adults according to age, subtype, sex, and time trends. Neurology. 2019 May 21;92(21):e2444–54.

    CAS  PubMed  Google Scholar 

  18. Putaala J, Metso AJ, Metso TM, Konkola N, Kraemer Y, Haapaniemi E, et al. Analysis of 1008 consecutive patients aged 15 to 49 with first-ever ischemic stroke: the Helsinki young stroke registry. Stroke. 2009 Apr 1;40(4):1195–203.

    PubMed  Google Scholar 

  19. Tibæk M, Dehlendorff C, Jørgensen HS, Forchhammer HB, Johnsen SP, Kammersgaard LP. Increasing incidence of hospitalization for stroke and transient ischemic attack in young adults: a registry-based study. J Am Heart Assoc. 2016 May 11;5(5):e003158.

    PubMed  PubMed Central  Google Scholar 

  20. Arora S, Stouffer GA, Kucharska-Newton AM, Qamar A, Vaduganathan M, Pandey A, et al. Twenty year trends and sex differences in young adults hospitalized with acute myocardial infarction: the ARIC Community Surveillance Study. Circulation. 2019 Feb 19;139(8):1047–56.

    PubMed  PubMed Central  Google Scholar 

  21. Garshick MS, Vaidean GD, Vani A, Underberg JA, Newman JD, Berger JS, et al. Cardiovascular risk factor control and lifestyle factors in young to middle-aged adults with newly diagnosed obstructive coronary artery disease. Cardiology. 2019;142(2):83–90.

    PubMed  PubMed Central  Google Scholar 

  22. Singh A, Gupta A, Collins BL, Qamar A, Monda KL, Biery D, et al. Familial hypercholesterolemia among young adults with myocardial infarction. J Am Coll Cardiol. 2019 May 13;73(19):2439–50.

    PubMed  Google Scholar 

  23. Tungsubutra W, Tresukosol D, Buddhari W, Boonsom W, Sanguanwang S, Srichaiveth B. Acute coronary syndrome in young adults: the Thai ACS registry. J Med Assoc Thail. 2007 Oct 1;90(Suppl 1):81–90.

    Google Scholar 

  24. • Zeitouni M, Collet JP, Hulot JS, Silvain J, Kerneis M, Lattuca B, Barthelemy O, Lavie-Badie Y, Esteve JB, Payot L, Brugier D. P4207 The natural history of premature coronary artery disease over 20 years: the AFIJI registry. European Heart Journal. 2018 Aug 1;39(suppl_1):ehy563-P4207. Data from one of the largest registries evaluating risk factors and outcomes among patients with premature ischemic heart disease.

  25. Collet JP, Zeitouni M, Procopi N, Hulot JS, Silvain J, Kerneis M, et al. Long-term evolution of premature coronary artery disease. J Am Coll Cardiol. 2019 Oct 7;74(15):1868–78.

    CAS  PubMed  Google Scholar 

  26. Lane JS, Vittinghoff E, Lane KT, Hiramoto JS, Messina LM. Risk factors for premature peripheral vascular disease: results for the National Health and Nutritional Survey, 1999-2002. J Vasc Surg. 2006 Aug 1;44(2):319–25.

    PubMed  Google Scholar 

  27. Radak D, Babic S, Peric M, Popov P, Tanaskovic S, Babic D, et al. Distribution of risk factors in patients with premature coronary, supra-aortic branches and peripheral atherosclerotic disease. Med Princ Pract. 2012;21(3):228–33.

    PubMed  Google Scholar 

  28. Silva ES, Giglio PN, Waisberg DR, Filho RG, Casella IB, Puech-Leão P. Obesity is a risk factor for significant carotid atherosclerosis in patients aged 39 to 55 years. Angiology. 2014 Aug;65(7):602–6.

    PubMed  Google Scholar 

  29. George MG, Tong X, Bowman BA. Prevalence of cardiovascular risk factors and strokes in younger adults. JAMA neurology. 2017 Jun 1;74(6):695–703.

    PubMed  PubMed Central  Google Scholar 

  30. Putaala J, Yesilot N, Waje-Andreassen U, Pitkäniemi J, Vassilopoulou S, Nardi K, et al. Demographic and geographic vascular risk factor differences in European young adults with ischemic stroke: the 15 cities young stroke study. Stroke. 2012 Oct;43(10):2624–30.

    PubMed  Google Scholar 

  31. Putaala J, Haapaniemi E, Kaste M, Tatlisumak T. How does number of risk factors affect prognosis in young patients with ischemic stroke? Stroke. 2012 Feb;43(2):356–61.

    PubMed  Google Scholar 

  32. Spengos K, Vemmos K. Risk factors, etiology, and outcome of first-ever ischemic stroke in young adults aged 15 to 45–the Athens young stroke registry. Eur J Neurol. 2010 Nov;17(11):1358–64.

    CAS  PubMed  Google Scholar 

  33. von Sarnowski B, Putaala J, Grittner U, Gaertner B, Schminke U, Curtze S, et al. Lifestyle risk factors for ischemic stroke and transient ischemic attack in young adults in the Stroke in Young Fabry Patients study. Stroke. 2013 Jan;44(1):119–25.

    Google Scholar 

  34. Ji R, Schwamm LH, Pervez MA, Singhal AB. Ischemic stroke and transient ischemic attack in young adults: risk factors, diagnostic yield, neuroimaging, and thrombolysis. JAMA neurology. 2013 Jan 1;70(1):51–7.

    PubMed  Google Scholar 

  35. Zhang YN, He L. Risk factors study of ischemic stroke in young adults in Southwest China. Sichuan da xue xue bao. Yi xue ban= Journal of Sichuan University. Medical science edition 2012 Jul;43(4):553–557.

  36. Ahmed ST, Rehman H, Akeroyd JM, Alam M, Shah T, Kalra A, et al. Premature coronary heart disease in South Asians: burden and determinants. Curr Atheroscler Rep. 2018 Jan 1;20(1):6.

    PubMed  Google Scholar 

  37. Joshi P, Islam S, Pais P, Reddy S, Dorairaj P, Kazmi K, et al. Risk factors for early myocardial infarction in South Asians compared with individuals in other countries. Jama. 2007 Jan 17;297(3):286–94.

    CAS  PubMed  Google Scholar 

  38. Lambert CT, Sandesara PB, Hirsh B, Shaw LJ, Lewis W, Quyyumi AA, et al. HIV, highly active antiretroviral therapy and the heart: a cellular to epidemiological review. HIV medicine. 2016 Jun;17(6):411–24.

    CAS  PubMed  Google Scholar 

  39. Currier JS, Lundgren JD, Carr A, Klein D, Sabin CA, Sax PE, et al. Working Group 2. Epidemiological evidence for cardiovascular disease in HIV-infected patients and relationship to highly active antiretroviral therapy. Circulation. 2008 Jul 8;118(2):e29–35.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Sinha A, Feinstein MJ. Coronary artery disease manifestations in HIV: what, how, and why. Can J Cardiol. 2019 Mar 1;35(3):270–9.

    PubMed  Google Scholar 

  41. Currier JS, Taylor A, Boyd F, Dezii CM, Kawabata H, Burtcel B, Maa JF, Hodder S. Coronary heart disease in HIV-infected individuals. Journal of acquired immune deficiency syndromes (1999). 2003 Aug;33(4):506–12.

  42. Klein D, Hurley LB, Quesenberry JC, Sidney S. Do protease inhibitors increase the risk for coronary heart disease in patients with HIV-1 infection?. Journal of acquired immune deficiency syndromes (1999). 2002 Aug;30(5):471–7.

  43. Triant VA, Lee H, Hadigan C, Grinspoon SK. Increased acute myocardial infarction rates and cardiovascular risk factors among patients with human immunodeficiency virus disease. The Journal of Clinical Endocrinology & Metabolism. 2007 Jul 1;92(7):2506–12.

    CAS  Google Scholar 

  44. Strategies for Management of Antiretroviral Therapy (SMART) Study Group. CD4+ count–guided interruption of antiretroviral treatment. N Engl J Med. 2006 Nov 30;355(22):2283–96.

    Google Scholar 

  45. Lang S, Mary-Krause M, Simon A, Partisani M, Gilquin J, Cotte L, et al. French Hospital Database on HIV (FHDH)–ANRS CO4. HIV replication and immune status are independent predictors of the risk of myocardial infarction in HIV-infected individuals. Clin Infect Dis. 2012 Aug 15;55(4):600–7.

    CAS  PubMed  Google Scholar 

  46. Silverberg MJ, Leyden WA, Xu L, Horberg MA, Chao CR, Towner WJ, et al. Immunodeficiency and risk of myocardial infarction among HIV-positive individuals with access to care. JAIDS Journal of Acquired Immune Deficiency Syndromes. 2014 Feb 1;65(2):160–6.

    CAS  PubMed  Google Scholar 

  47. Post WS, Budoff M, Kingsley L, Palella FJ, Witt MD, Li X, et al. Associations between HIV infection and subclinical coronary atherosclerosis. Ann Intern Med. 2014 Apr 1;160(7):458–67.

    PubMed  PubMed Central  Google Scholar 

  48. Triant VA, Regan S, Lee H, Sax PE, Meigs JB, Grinspoon SK. Association of immunologic and virologic factors with myocardial infarction rates in a US health care system. Journal of acquired immune deficiency syndromes (1999). 2010 Dec 15;55(5):615.

  49. Lacson JC, Barnes RP, Bahrami H. Coronary artery disease in HIV-infected patients: downside of living longer. Curr Atheroscler Rep. 2017 Apr 1;19(4):18.

    PubMed  PubMed Central  Google Scholar 

  50. Ortiz G, Koch S, Romano JG, Forteza AM, Rabinstein AA. Mechanisms of ischemic stroke in HIV-infected patients. Neurology. 2007 Apr 17;68(16):1257–61.

    CAS  PubMed  Google Scholar 

  51. Marcus JL, Leyden WA, Chao CR, Chow FC, Horberg MA, Hurley LB, et al. HIV infection and incidence of ischemic stroke. Aids. 2014 Aug 24;28(13):1911–9.

    CAS  PubMed  Google Scholar 

  52. Sen S, Giamberardino L, Thakker P. HIV and stroke. In Global virology II-HIV and NeuroAIDS 2017 (pp. 601-623). Springer, New York, NY.

  53. Benjamin LA, Corbett EL, Connor MD, Mzinganjira H, Kampondeni S, Choko A, et al. HIV, antiretroviral treatment, hypertension, and stroke in Malawian adults: a case-control study. Neurology. 2016 Jan 26;86(4):324–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Chow FC, Regan S, Zanni MV, Looby SE, Bushnell CD, Meigs JB, Grinspoon SK, Feske SK, Triant VA. Elevated ischemic stroke risk among women living with HIV infection. AIDS (London, England). 2018 Jan 2;32(1):59.

  55. Kwiatkowska W, Knysz B, Arczyńska K, Drelichowska J, Czarnecki M, Gąsiorowski J, Karczewski M, Witkiewicz W. Peripheral arterial disease and ankle-brachial index abnormalites in young and middle-aged HIV-positive patients in lower Silesia, Poland. PLoS One. 2014;9(12).

  56. Canalejo E, Cabello N, Perales I, Allodi S, Sanchez-Purificacion A. Asymptomatic peripheral arterial disease detected by the ankle-brachial index in HIV-infected patients: prevalence and associated risk factors. Enfermedades infecciosas y microbiologia clinica. 2011 Nov;29(9):672–8.

    PubMed  Google Scholar 

  57. Knudsen AD, Gelpi M, Afzal S, Ronit A, Roen A, Mocroft A, et al. Brief report: prevalence of peripheral artery disease is higher in persons living with HIV compared with uninfected controls. JAIDS Journal of Acquired Immune Deficiency Syndromes. 2018 Nov 1;79(3):381–5.

    PubMed  Google Scholar 

  58. Yang Y, Liu DC, Wang QM, Long QQ, Zhao S, Zhang Z, et al. Alcohol consumption and risk of coronary artery disease: a dose-response meta-analysis of prospective studies. Nutrition. 2016 Jun 1;32(6):637–44.

    CAS  PubMed  Google Scholar 

  59. Degerud E, Ariansen I, Ystrom E, Graff-Iversen S, Høiseth G, Mørland J, Smith GD, Næss Ø. Life course socioeconomic position, alcohol drinking patterns in midlife, and cardiovascular mortality: analysis of Norwegian population-based health surveys. PLoS medicine. 2018 Jan;15(1).

  60. DeFilippis EM, Bajaj NS, Singh A, Malloy R, Givertz MM, Blankstein R, et al. Marijuana use in patients with cardiovascular disease: JACC review topic of the week. J Am Coll Cardiol. 2020 Jan 28;75(3):320–32.

    CAS  PubMed  Google Scholar 

  61. Jouanjus E, Raymond V, Lapeyre-Mestre M, Wolff V. What is the current knowledge about the cardiovascular risk for users of cannabis-based products? A systematic review. Curr Atheroscler Rep. 2017 Jun 1;19(6):26.

    PubMed  Google Scholar 

  62. Hemachandra D, McKetin R, Cherbuin N, Anstey KJ. Heavy cannabis users at elevated risk of stroke: evidence from a general population survey. Aust N Z J Public Health. 2016 Jun;40(3):226–30.

    PubMed  Google Scholar 

  63. Rumalla K, Reddy AY, Mittal MK. Recreational marijuana use and acute ischemic stroke: a population-based analysis of hospitalized patients in the United States. J Neurol Sci. 2016 May 15;364:191–6.

    PubMed  Google Scholar 

  64. Mittleman MA, Lewis RA, Maclure M, Sherwood JB, Muller JE. Triggering myocardial infarction by marijuana. Circulation. 2001 Jun 12;103(23):2805–9.

    CAS  PubMed  Google Scholar 

  65. Martin-Blondel G, Koskas F, Cacoub P, Sène D. Is thromboangiitis obliterans presentation influenced by cannabis addiction? Ann Vasc Surg. 2011 May 1;25(4):469–73.

    PubMed  Google Scholar 

  66. Westover AN, McBride S, Haley RW. Stroke in young adults who abuse amphetamines or cocaine: a population-based study of hospitalized patients. Arch Gen Psychiatry. 2007 Apr 1;64(4):495–502.

    PubMed  Google Scholar 

  67. Talarico GP, Crosta ML, Giannico MB, Summaria F, Calò L, Patrizi R. Cocaine and coronary artery diseases: a systematic review of the literature. Journal of Cardiovascular Medicine. 2017 May 1;18(5):291–4.

    CAS  PubMed  Google Scholar 

  68. DeFilippis EM, Singh A, Divakaran S, Gupta A, Collins BL, Biery D, et al. Cocaine and marijuana use among young adults with myocardial infarction. J Am Coll Cardiol. 2018 May 28;71(22):2540–51.

    PubMed  PubMed Central  Google Scholar 

  69. Denegri A, Ameri P, Paparo F, Murialdo G. Lower limb ischemia due to long-term abuse of cocaine. Journal of cardiovascular medicine (Hagerstown, Md.). 2016 Dec;17:e176–7.

  70. Marder VJ, Mellinghoff IK. Cocaine and Buerger disease: is there a pathogenetic association? Arch Intern Med. 2000 Jul 10;160(13):2057–60.

    CAS  PubMed  Google Scholar 

  71. Piazza G, Creager MA. Thromboangiitis obliterans. Circulation. 2010 Apr 27;121(16):1858–61.

    PubMed  PubMed Central  Google Scholar 

  72. Mahtta D, Ramsey D, Al Rifai M, Nasir K, Samad Z, Ballantyne CM, Petersen L, Virani S. Behavioral risk factors and premature atherosclerotic cardiovascular disease: an analysis from the VITAL (Veterans wIth premaTure AtheroscLerosis) registry. Journal of the American College of Cardiology. 2020 Mar 24;75(11 Supplement 1):216.

  73. Schwartz BG, Rezkalla S, Kloner RA. Cardiovascular effects of cocaine. Circulation. 2010 Dec 14;122(24):2558–69.

    PubMed  Google Scholar 

  74. Singh A, Saluja S, Kumar A, Agrawal S, Thind M, Nanda S, et al. Cardiovascular complications of marijuana and related substances: a review. Cardiology and therapy. 2018 Jun 1;7(1):45–59.

    CAS  PubMed  Google Scholar 

  75. Mason JC, Libby P. Cardiovascular disease in patients with chronic inflammation: mechanisms underlying premature cardiovascular events in rheumatologic conditions. Eur Heart J. 2015 Feb 21;36(8):482–9.

    PubMed  Google Scholar 

  76. Dregan A, Charlton J, Chowienczyk P, Gulliford MC. Chronic inflammatory disorders and risk of type 2 diabetes mellitus, coronary heart disease, and stroke: a population-based cohort study. Circulation. 2014 Sep 2;130(10):837–44.

    CAS  PubMed  Google Scholar 

  77. Shoenfeld Y, Gerli R, Doria A, Matsuura E, Cerinic MM, Ronda N, et al. Accelerated atherosclerosis in autoimmune rheumatic diseases. Circulation. 2005 Nov 22;112(21):3337–47.

    PubMed  Google Scholar 

  78. Ku IA, Imboden JB, Hsue PY, Ganz P. Rheumatoid arthritis: model of systemic inflammation driving atherosclerosis. Circ J. 2009;73(6):977–85.

    CAS  PubMed  Google Scholar 

  79. Full LE, Ruisanchez C, Monaco C. The inextricable link between atherosclerosis and prototypical inflammatory diseases rheumatoid arthritis and systemic lupus erythematosus. Arthritis research & therapy. 2009 Apr;11(2):217.

    Google Scholar 

  80. Bartoloni E, Shoenfeld Y, Gerli R. Inflammatory and autoimmune mechanisms in the induction of atherosclerotic damage in systemic rheumatic diseases: two faces of the same coin. Arthritis care & research. 2011 Feb;63(2):178–83.

    CAS  Google Scholar 

  81. Murdaca G, Colombo BM, Cagnati P, Gulli R, Spanò F, Puppo F. Endothelial dysfunction in rheumatic autoimmune diseases. Atherosclerosis. 2012 Oct 1;224(2):309–17.

    CAS  PubMed  Google Scholar 

  82. Rho YH, Chung CP, Oeser A, Solus J, Asanuma Y, Sokka T, et al. Inflammatory mediators and premature coronary atherosclerosis in rheumatoid arthritis. Arthritis Care & Research: Official Journal of the American College of Rheumatology. 2009 Nov 15;61(11):1580–5.

    CAS  Google Scholar 

  83. de Amorim LC, Maia FM, Rodrigues CE. Stroke in systemic lupus erythematosus and antiphospholipid syndrome: risk factors, clinical manifestations, neuroimaging, and treatment. Lupus. 2017 Apr;26(5):529–36.

    PubMed  Google Scholar 

  84. Krishnan E. Stroke subtypes among young patients with systemic lupus erythematosus. Am J Med. 2005 Dec 1;118(12):1415–e1.

    PubMed  Google Scholar 

  85. Ioannidis S, Mavridis M, Mitsias PD. Ischemic stroke as initial manifestation of systemic lupus erythematosus: a case report and review of the literature. eNeurologicalSci. 2018 Dec 1;13:26–30.

    PubMed  PubMed Central  Google Scholar 

  86. Solomon DH, Karlson EW, Rimm EB, Cannuscio CC, Mandl LA, Manson JE, et al. Cardiovascular morbidity and mortality in women diagnosed with rheumatoid arthritis. Circulation. 2003 Mar 11;107(9):1303–7.

    PubMed  Google Scholar 

  87. Krishnan E, Pandya BJ, Chung L, Dabbous O. Hyperuricemia and the risk for subclinical coronary atherosclerosis-data from a prospective observational cohort study. Arthritis research & therapy. 2011 Apr;13(2):R66.

    Google Scholar 

  88. Huang WS, Lin CL, Tsai CH, Chang KH. Association of gout with CAD and effect of antigout therapy on CVD risk among gout patients. Journal of Investigative Medicine. 2020 Feb 24.

  89. Tardif JC, Kouz S, Waters DD, Bertrand OF, Diaz R, Maggioni AP, Pinto FJ, Ibrahim R, Gamra H, Kiwan GS, Berry C. Efficacy and safety of low-dose colchicine after myocardial infarction. N Engl J Med 2019 Dec 26;381(26):2497–2505.

  90. Skaggs BJ, Hahn BH, McMahon M. Accelerated atherosclerosis in patients with SLE—mechanisms and management. Nat Rev Rheumatol. 2012 Apr;8(4):214–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Agarwala A, Michos ED, Samad Z, Ballantyne CM, Virani SS. The use of sex-specific factors in the assessment of women’s cardiovascular risk. Circulation. 2020 Feb 18;141(7):592–9.

    PubMed  Google Scholar 

  92. Robbins CL, Hutchings Y, Dietz PM, Kuklina EV, Callaghan WM. History of preterm birth and subsequent cardiovascular disease: a systematic review. Am J Obstet Gynecol. 2014 Apr 1;210(4):285–97.

    PubMed  Google Scholar 

  93. Ray JG, Vermeulen MJ, Schull MJ, Redelmeier DA. Cardiovascular health after maternal placental syndromes (CHAMPS): population-based retrospective cohort study. Lancet. 2005 Nov 19;366(9499):1797–803.

    PubMed  Google Scholar 

  94. Arnaout R, Nah G, Marcus G, Tseng Z, Foster E, Harris IS, Divanji P, Klein L, Gonzalez J, Parikh N. Pregnancy complications and premature cardiovascular events among 1.6 million California pregnancies. Open heart. 2019 Feb 1;6(1):e000927.

  95. Grandi SM, Filion KB, Yoon S, Ayele HT, Doyle CM, Hutcheon JA, et al. Cardiovascular disease-related morbidity and mortality in women with a history of pregnancy complications: systematic review and meta-analysis. Circulation. 2019 Feb 19;139(8):1069–79.

    PubMed  Google Scholar 

  96. Tomimatsu T, Mimura K, Endo M, Kumasawa K, Kimura T. Pathophysiology of preeclampsia: an angiogenic imbalance and long-lasting systemic vascular dysfunction. Hypertens Res. 2017 Apr;40(4):305–10.

    CAS  PubMed  Google Scholar 

  97. Grand’Maison S, Pilote L, Okano M, Landry T, Dayan N. Markers of vascular dysfunction after hypertensive disorders of pregnancy: a systematic review and meta-analysis. Hypertension. 2016 Dec;68(6):1447–58.

    PubMed  Google Scholar 

  98. Banerjee M, Cruickshank JK. Pregnancy as the prodrome to vascular dysfunction and cardiovascular risk. Nature Clinical Practice Cardiovascular Medicine. 2006 Nov;3(11):596–603.

    CAS  PubMed  Google Scholar 

  99. McPherson R, Pertsemlidis A, Kavaslar N, Stewart A, Roberts R, Cox DR, et al. A common allele on chromosome 9 associated with coronary heart disease. Science. 2007 Jun 8;316(5830):1488–91.

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Coronary Artery Disease (C4D) Genetics Consortium. A genome-wide association study in Europeans and South Asians identifies five new loci for coronary artery disease. Nature genetics. 2011 Apr;43(4):339.

  101. Dandona S, Stewart AF, Chen L, Williams K, So D, O'Brien E, et al. Gene dosage of the common variant 9p21 predicts severity of coronary artery disease. J Am Coll Cardiol. 2010 Aug 3;56(6):479–86.

    CAS  PubMed  Google Scholar 

  102. Smith JG, Melander O, Lövkvist H, Hedblad B, Engström G, Nilsson P, et al. Common genetic variants on chromosome 9p21 confers risk of ischemic stroke: a large-scale genetic association study. Circ Cardiovasc Genet. 2009 Apr;2(2):159–64.

    CAS  PubMed  Google Scholar 

  103. Cluett C, McDermott MM, Guralnik J, Ferrucci L, Bandinelli S, Miljkovic I, et al. The 9p21 myocardial infarction risk allele increases risk of peripheral artery disease in older people. Circ Cardiovasc Genet. 2009 Aug;2(4):347–53.

    PubMed  PubMed Central  Google Scholar 

  104. Consortium MIG. Genome-wide association of early-onset myocardial infarction with single nucleotide polymorphisms and copy number variants. Nat Genet. 2009 Mar;41(3):334.

    Google Scholar 

  105. Coronary Artery Disease (C4D) Genetics Consortium. A genome-wide association study in Europeans and South Asians identifies five new loci for coronary artery disease. Nature genetics. 2011 Apr;43(4):339.

  106. Deloukas P, Kanoni S, Willenborg C, Farrall M, Assimes TL, Thompson JR, et al. Large-scale association analysis identifies new risk loci for coronary artery disease. Nat Genet. 2013 Jan;45(1):25–33.

    CAS  PubMed  Google Scholar 

  107. Abul-Husn NS, Manickam K, Jones LK, Wright EA, Hartzel DN, Gonzaga-Jauregui C, O’Dushlaine C, Leader JB, Kirchner HL, D’Andra ML, Barr ML. Genetic identification of familial hypercholesterolemia within a single US health care system. Science. 2016 Dec 23;354(6319):aaf7000.

  108. Khera AV, Won HH, Peloso GM, Lawson KS, Bartz TM, Deng X, et al. Diagnostic yield and clinical utility of sequencing familial hypercholesterolemia genes in patients with severe hypercholesterolemia. J Am Coll Cardiol. 2016 Jun 7;67(22):2578–89.

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Lali R, Cui E, Ansarikaleibari A, Pigeyre M, Paré G. Genetics of early-onset coronary artery disease: from discovery to clinical translation. Curr Opin Cardiol. 2019 Nov 1;34(6):706–13.

    PubMed  Google Scholar 

  110. Li C, Ren H, Chen H, Song J, Li S, Lee C, Liu J, Cui Y. Prothrombin G20210A (rs1799963) polymorphism increases myocardial infarction risk in an age-related manner: a systematic review and meta-analysis. Sci Rep 2017 Oct 19;7(1):1–0.

  111. Kronenberg F. Human genetics and the causal role of lipoprotein (a) for various diseases. Cardiovasc Drugs Ther. 2016 Feb 1;30(1):87–100.

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Burgess S, Ference BA, Staley JR, Freitag DF, Mason AM, Nielsen SF, et al. Association of LPA variants with risk of coronary disease and the implications for lipoprotein (a)-lowering therapies: a Mendelian randomization analysis. JAMA Cardiol. 2018 Jul 1;3(7):619–27.

    PubMed  PubMed Central  Google Scholar 

  113. Chong M, Sjaarda J, Pigeyre M, Mohammadi-Shemirani P, Lali R, Shoamanesh A, et al. Novel drug targets for ischemic stroke identified through mendelian randomization analysis of the blood proteome. Circulation. 2019 Sep 3;140(10):819–30.

    CAS  PubMed  Google Scholar 

  114. Nikpay M, Goel A, Won HH, Hall LM, Willenborg C, Kanoni S, et al. A comprehensive 1000 genomes–based genome-wide association meta-analysis of coronary artery disease. Nat Genet. 2015 Oct;47(10):1121–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Interleukin-6 Receptor Mendelian Randomisation Analysis (IL6R MR) Consortium. The interleukin-6 receptor as a target for prevention of coronary heart disease: a Mendelian randomisation analysis. The Lancet. 2012 Mar 31;379(9822):1214–24.

  116. Sjaarda J, Gerstein H, Chong M, Yusuf S, Meyre D, Anand SS, et al. Blood CSF1 and CXCL12 as causal mediators of coronary artery disease. J Am Coll Cardiol. 2018 Jul 9;72(3):300–10.

    CAS  PubMed  Google Scholar 

  117. Thériault S, Lali R, Chong M, Velianou JL, Natarajan MK, Paré G. Polygenic contribution in individuals with early-onset coronary artery disease. Circulation: Genomic and Precision Medicine. 2018 Jan;11(1):e001849.

    Google Scholar 

  118. •• Khera AV, Chaffin M, Zekavat SM, Collins RL, Roselli C, Natarajan P, Lichtman JH, D’Onofrio G, Mattera J, Dreyer R, Spertus JA. Whole-genome sequencing to characterize monogenic and polygenic contributions in patients hospitalized with early-onset myocardial infarction. Circulation. 2019 Mar 26;139(13):1593–602. Large whole-genome sequencing analysis demonstrating role of polygenic contribution among patients with premature ischemic heart disease.

  119. Paquette M, Chong M, Thériault S, Dufour R, Paré G, Baass A. Polygenic risk score predicts prevalence of cardiovascular disease in patients with familial hypercholesterolemia. Journal of clinical lipidology. 2017 May 1;11(3):725–32.

    PubMed  Google Scholar 

  120. Severance LM, Contijoch FJ, Carter H, Fan CC, Seibert TM, Dale AM, et al. Using a genetic risk score to calculate the optimal age for an individual to undergo coronary artery calcium screening. Journal of cardiovascular computed tomography. 2019 Jul 1;13(4):203–10.

    PubMed  PubMed Central  Google Scholar 

  121. Kubzansky LD, Huffman JC, Boehm JK, Hernandez R, Kim ES, Koga HK, et al. Positive psychological well-being and cardiovascular disease: JACC health promotion series. J Am Coll Cardiol. 2018 Sep 18;72(12):1382–96.

    PubMed  PubMed Central  Google Scholar 

  122. Twig G, Shina A, Afek A, Derazne E, Tzur D, Cukierman-Yaffe T, et al. Sleep quality and risk of diabetes and coronary artery disease among young men. Acta Diabetol. 2016 Apr 1;53(2):261–70.

    PubMed  Google Scholar 

  123. Puolakka E, Pahkala K, Laitinen TT, Magnussen CG, Hutri-Kähönen N, Kähönen M, et al. Childhood socioeconomic status and arterial stiffness in adulthood: the cardiovascular risk in young finns study. Hypertension. 2017 Oct;70(4):729–35.

    CAS  PubMed  Google Scholar 

  124. Grundy SM, Stone NJ, Bailey AL, Beam C, Birtcher KK, Blumenthal RS, et al. 2018 AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/APhA/ASPC/NLA/PCNA guideline on the management of blood cholesterol: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. J Am Coll Cardiol. 2019 Jun 17;73(24):e285–350.

    PubMed  Google Scholar 

  125. Iyengar SS, Gupta R, Ravi S, Thangam S, Alexander T, Manjunath CN, et al. Premature coronary artery disease in India: coronary artery disease in the young (CADY) registry. Indian Heart J. 2017 Mar 1;69(2):211–6.

    CAS  PubMed  Google Scholar 

  126. • van Dongen MM, Aarnio K, Martinez-Majander N, Pirinen J, Sinisalo J, Lehto M, Kaste M, Tatlisumak T, de Leeuw FE, Putaala J. Use of statins after ischemic stroke in young adults and its association with long-term outcome. Stroke. 2019 Dec;50(12):3385–92. Large population-based study from Helsinki stroke registry demonstrating gaps in secondary prevention of stroke in patients with premature stroke.

  127. Arya S, Khakharia A, Binney ZO, DeMartino RR, Brewster LP, Goodney PP, et al. Statins have a dose-dependent effect on amputation and survival in peripheral artery disease patients: Arya Statin Intensity Peripheral Artery Disease. Circulation. 2018 Apr 3;137(14):1435–46.

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Reynolds K, Mues KE, Harrison TN, Qian L, Chen S, Hsu JW, Philip KJ, Monda KL, Reading SR, Brar SS. Trends in statin utilization among adults with severe peripheral artery disease including critical limb ischemia in an integrated healthcare delivery system. Vascular Medicine. 2019 Sep 12:1358863X19871100.

  129. Mahtta D, Ramsey D, Al Rifai M, Nasir K, Samad Z, Jneid H, Ballantyne CM, Petersen L, Virani S. Use and adherence with statins and aspirin therapy among patients with premature atherosclerotic cardiovascular disease: an analysis from the VITAL (Veterans wIth premaTure AtheroscLerosis) registry. Journal of the American College of Cardiology. 2020 Mar 24;75(11 Supplement 1):2020.

  130. Rutten-Jacobs LC, Arntz RM, Maaijwee NA, Schoonderwaldt HC, Dorresteijn LD, van Dijk EJ, et al. Long-term mortality after stroke among adults aged 18 to 50 years. Jama. 2013 Mar 20;309(11):1136–44.

    CAS  PubMed  Google Scholar 

  131. Vaccarino V. Myocardial infarction in young women: an unrecognized and unexplained epidemic. Circulation. 2019;139:1057–59.

  132. Bandyopadhyay D, Chakraborty S, Amgai B, Patel N, Hajra A, Heise L, et al. Acute myocardial infarction in the young-National Trend Analysis with gender-based difference in outcomes. Int J Cardiol. 2020 Feb 15;301:21–8.

    PubMed  Google Scholar 

  133. Wisman PP, Tangelder MJ, Van Hattum ES, De Borst GJ, Moll FL. Young women with PAD are at high risk of cardiovascular complications. Eur J Vasc Endovasc Surg. 2012 Apr 1;43(4):441–5.

    CAS  PubMed  Google Scholar 

  134. Michos ED, Choi AD. Coronary artery disease in young adults: a hardlesson but a good teacher. J Am Coll Cardiol. 2019;74(15):1879–1882.

  135. Singh A, Collins BL, Gupta A, Fatima A, Qamar A, Biery D, et al. Cardiovascular risk and statin eligibility of young adults after an MI: partners YOUNG-MI registry. J Am Coll Cardiol. 2018 Jan 15;71(3):292–302.

    PubMed  Google Scholar 

  136. Spring B, Moller AC, Colangelo LA, Siddique J, Roehrig M, Daviglus ML, et al. Healthy lifestyle change and subclinical atherosclerosis in young adults: Coronary Artery Risk Development in Young Adults (CARDIA) study. Circulation. 2014 Jul 1;130(1):10–7.

    PubMed  PubMed Central  Google Scholar 

  137. Miedema MD, Dardari ZA, Nasir K, Blankstein R, Knickelbine T, Oberembt S, Shaw L, Rumberger J, Michos ED, Rozanski A, Berman DS. Association of coronary artery calcium with long-term, cause-specific mortality among young adults. JAMA network open. 2019 Jul 3;2(7):e197440-.

  138. Juonala M, Viikari JS, Räsänen L, Helenius H, Pietikäinen M, Raitakari OT. Young adults with family history of coronary heart disease have increased arterial vulnerability to metabolic risk factors: the Cardiovascular Risk in Young Finns Study. Arterioscler Thromb Vasc Biol. 2006 Jun 1;26(6):1376–82.

    CAS  PubMed  Google Scholar 

  139. Gooding HC, Ning H, Gillman MW, Shay C, Allen N, Goff DC, et al. Application of a lifestyle-based tool to estimate premature cardiovascular disease events in young adults: the Coronary Artery Risk Development in Young Adults (CARDIA) Study. JAMA Intern Med. 2017 Sep 1;177(9):1354–60.

    PubMed  PubMed Central  Google Scholar 

  140. Fernández-Alvira JM, Fuster V, Pocock S, Sanz J, Fernández-Friera L, Laclaustra M, et al. Predicting subclinical atherosclerosis in low-risk individuals: ideal cardiovascular health score and fuster-BEWAT score. J Am Coll Cardiol. 2017 Nov 13;70(20):2463–73.

    PubMed  Google Scholar 

  141. Joseph P, Yusuf S, Lee SF, Ibrahim Q, Teo K, Rangarajan S, et al. Prognostic validation of a non-laboratory and a laboratory based cardiovascular disease risk score in multiple regions of the world. Heart. 2018 Apr 1;104(7):581–7.

    CAS  PubMed  Google Scholar 

  142. Martínez PJ, Baldán-Martín M, López JA, Martín-Lorenzo M, Santiago-Hernández A, Agudiez M, et al. Identification of six cardiovascular risk biomarkers in the young population: a promising tool for early prevention. Atherosclerosis. 2019 Mar 1;282:67–74.

    PubMed  Google Scholar 

  143. De Meyer T, Nawrot T, Bekaert S, De Buyzere ML, Rietzschel ER, Andrés V. Telomere length as cardiovascular aging biomarker: JACC review topic of the week. J Am Coll Cardiol. 2018 Aug 14;72(7):805–13.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salim S. Virani.

Ethics declarations

Conflict of Interest

Dhruv Mahtta, Umair Khalid, Arunima Misra, Zainab Samad: none

Khurram Nasir: serves on the advisory board of Medicines company and Regeneron

Salim S. Virani: honorarium, American College of Cardiology (Associate Editor for Innovations, aacc.org); Steering Committee, Patient and Provider Assessment of Lipid Management (PALM registry) at the Duke Clinical Research Institute (no financial remuneration)

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Coronary Heart Disease

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahtta, D., Khalid, U., Misra, A. et al. Premature Atherosclerotic Cardiovascular Disease: What Have We Learned Recently?. Curr Atheroscler Rep 22, 44 (2020). https://doi.org/10.1007/s11883-020-00862-8

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11883-020-00862-8

Keywords

Navigation