Skip to main content

Non-nutritive Sweeteners and Glycaemic Control


Purpose of Review

The consumption of foods and beverages containing non-nutritive sweeteners (NNS) has increased worldwide over the last three decades. Consumers’ choice of NNS rather than sugar or other nutritive sweeteners may be attributable to their potential to reduce weight gain.

Recent Findings

It is not clear what the effects of NNS consumption are on glycaemic control and the incidence of type 2 diabetes. This review aims to examine this question in epidemiological, human intervention and animal studies.


It is not clear that NNS consumption has an effect on the incidence of type 2 diabetes or on glycaemic control even though there is some evidence for the modification of the microbiome and for interaction with sweet taste receptors in the oral cavity and the intestines’ modification of secretion of glucagon-like peptide-1 (GLP-1), peptide YY (PYY), ghrelin and glucose-dependent insulinotropic polypeptide (GIP), which may affect glycaemia following consumption of NNS. In conclusion, long-term studies of NNS consumption are required to draw a firm conclusion about the role of NNS consumption on glycaemic control.

This is a preview of subscription content, access via your institution.

Fig. 1


Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.

    Sylvetsky AC, Rother KI. Trends in the consumption of low-calorie sweeteners. Physiol Behav. 2016;164(Pt B):446–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. 2.

    Sylvetsky AC, Jin Y, Clark EJ, Welsh JA, Rother KI, Talegawkar SA. Consumption of low-calorie sweeteners among children and adults in the United States. J Acad Nutr Diet. 2017;117(3):441–448.e442.

    PubMed  PubMed Central  Google Scholar 

  3. 3.

    Sylvetsky AC, Welsh JA, Brown RJ, Vos MB. Low-calorie sweetener consumption is increasing in the United States. Am J Clin Nutr. 2012;96(3):640–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Markets. Ra: Global food sweetener market—growth, trends, forecast for the period (2015-2020). 2015.

  5. 5.

    Agriculture USDo: Sugar and sweeteners outlook. 2012.

    Google Scholar 

  6. 6.

    Organization WH. World Health Organization Guideline: sugars intake for adults and children. Geneva: Switzerland; 2015.

    Google Scholar 

  7. 7.

    Malek AM, Hunt KJ, DellaValle DM, Greenberg D, St Peter JV, Marriott BP. Reported consumption of low-calorie sweetener in foods, beverages, and food and beverage additions by US adults: NHANES 2007-2012. Curr Dev Nutr. 2018;2(9):nzy054.

    PubMed  PubMed Central  Google Scholar 

  8. 8.

    Patil S, Ravi R, Saraswathi G, Prakash M. Development of low calorie snack food based on intense sweeteners. J Food Sci Technol. 2014;51(12):4096–101.

    CAS  PubMed  Google Scholar 

  9. 9.

    Chattopadhyay S, Raychaudhuri U, Chakraborty R. Artificial sweeteners—a review. J Food Sci Technol. 2014;51(4):611–21.

    CAS  PubMed  Google Scholar 

  10. 10.

    High-intensity sweeteners [https:// ucm397716.htm]

  11. 11.

    Nahon DF, Roozen JP, de Graaf C. Sensory evaluation of mixtures of maltitol or aspartame, sucrose and an orange aroma. Chem Senses. 1998;23(1):59–66.

    CAS  PubMed  Google Scholar 

  12. 12.

    •• Malik VS, Li Y, Pan A, et al. Long-term consumption of sugar-sweetened and artificially sweetened beverages and risk of mortality in US adults. Circulation. 2019; This is a recent publication showing the association between artificially sweetened beverage and total and cause-specific mortality.

  13. 13.

    Mullee A, Romaguera D, Pearson-Stuttard J, et al. Association between soft drink consumption and mortality in 10 European countries. JAMA Intern Med. 2019.

  14. 14.

    •• Mossavar-Rahmani Y, Kamensky V, Manson JE, et al. Artificially sweetened beverages and stroke, coronary heart disease, and all-cause mortality in the Women’s Health Initiative. Stroke. 2019;50(3):555–62 This is a recent publication examining the association between artificially sweetened beverages and stroke.

    PubMed  Google Scholar 

  15. 15.

    Vyas A, Rubenstein L, Robinson J, et al. Diet drink consumption and the risk of cardiovascular events: a report from the Women’s Health Initiative. J Gen Intern Med. 2015;30(4):462–8.

    PubMed  Google Scholar 

  16. 16.

    •• Pase MP, Himali JJ, Beiser AS, et al. Sugar- and artificially sweetened beverages and the risks of incident stroke and dementia: a prospective cohort study. Stroke. 2017;48(5):1139–46 This prospective study shows the association between artificially sweetened beverages and stroke and dementia.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Gardener H, Rundek T, Markert M, Wright CB, Elkind MS, Sacco RL. Diet soft drink consumption is associated with an increased risk of vascular events in the Northern Manhattan Study. J Gen Intern Med. 2012;27(9):1120–6.

    PubMed  PubMed Central  Google Scholar 

  18. 18.

    Sakurai M, Nakamura K, Miura K, et al. Sugar-sweetened beverage and diet soda consumption and the 7-year risk for type 2 diabetes mellitus in middle-aged Japanese men. Eur J Nutr. 2014;53(4):1137–8.

    CAS  PubMed  Google Scholar 

  19. 19.

    O’Connor L, Imamura F, Lentjes MA, Khaw KT, Wareham NJ, Forouhi NG. Prospective associations and population impact of sweet beverage intake and type 2 diabetes, and effects of substitutions with alternative beverages. Diabetologia. 2015;58(7):1474–83.

    PubMed  PubMed Central  Google Scholar 

  20. 20.

    Bhupathiraju SN, Pan A, Malik VS, et al. Caffeinated and caffeine-free beverages and risk of type 2 diabetes. Am J Clin Nutr. 2013;97(1):155–66.

    CAS  PubMed  Google Scholar 

  21. 21.

    Fagherazzi G, Vilier A, Saes Sartorelli D, Lajous M, Balkau B, Clavel-Chapelon F. Consumption of artificially and sugar-sweetened beverages and incident type 2 diabetes in the Etude Epidemiologique aupres des femmes de la Mutuelle Generale de l'Education Nationale-European Prospective Investigation into Cancer and Nutrition cohort. Am J Clin Nutr. 2013;97(3):517–23.

    CAS  PubMed  Google Scholar 

  22. 22.

    Palmer JR, Boggs DA, Krishnan S, Hu FB, Singer M, Rosenberg L. Sugar-sweetened beverages and incidence of type 2 diabetes mellitus in African American women. Arch Intern Med. 2008;168(14):1487–92.

    PubMed  PubMed Central  Google Scholar 

  23. 23.

    Pan A, Malik VS, Schulze MB, Manson JE, Willett WC, Hu FB. Plain-water intake and risk of type 2 diabetes in young and middle-aged women. Am J Clin Nutr. 2012;95(6):1454–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Nettleton JA, Lutsey PL, Wang Y, Lima JA, Michos ED, Jacobs DR Jr. Diet soda intake and risk of incident metabolic syndrome and type 2 diabetes in the Multi-Ethnic Study of Atherosclerosis (MESA). Diabetes Care. 2009;32(4):688–94.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Schulze MB, Manson JE, Ludwig DS, et al. Sugar-sweetened beverages, weight gain, and incidence of type 2 diabetes in young and middle-aged women. JAMA. 2004;292(8):927–34.

    CAS  PubMed  Google Scholar 

  26. 26.

    Romaguera D, Norat T, Wark PA, et al. Consumption of sweet beverages and type 2 diabetes incidence in European adults: results from EPIC-InterAct. Diabetologia. 2013;56(7):1520–30.

    CAS  PubMed  Google Scholar 

  27. 27.

    de Koning L, Malik VS, Rimm EB, Willett WC, Hu FB. Sugar-sweetened and artificially sweetened beverage consumption and risk of type 2 diabetes in men. Am J Clin Nutr. 2011;93(6):1321–7.

    PubMed  PubMed Central  Google Scholar 

  28. 28.

    • Huang M, Quddus A, Stinson L, et al. Artificially sweetened beverages, sugar-sweetened beverages, plain water, and incident diabetes mellitus in postmenopausal women: the prospective Women’s Health Initiative observational study. Am J Clin Nutr. 2017;106(2):614–22 This recent publication shows the association between artificially sweetened beverages and risk of diabetes in a certain population.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Yarmolinsky J, Duncan BB, Chambless LE, et al. Artificially sweetened beverage consumption is positively associated with newly diagnosed diabetes in normal-weight but not in overweight or obese Brazilian adults. J Nutr. 2016;146(2):290–7.

    CAS  PubMed  Google Scholar 

  30. 30.

    Hinkle SN, Rawal S, Bjerregaard AA, et al. A prospective study of artificially sweetened beverage intake and cardiometabolic health among women at high risk. Am J Clin Nutr. 2019.

  31. 31.

    Duffey KJ, Steffen LM, Van Horn L, Jacobs DR Jr, Popkin BM. Dietary patterns matter: diet beverages and cardiometabolic risks in the longitudinal Coronary Artery Risk Development in Young Adults (CARDIA) Study. Am J Clin Nutr. 2012;95(4):909–15.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Lutsey PL, Steffen LM, Stevens J. Dietary intake and the development of the metabolic syndrome: the Atherosclerosis Risk in Communities study. Circulation. 2008;117(6):754–61.

    PubMed  Google Scholar 

  33. 33.

    Fowler SP, Williams K, Resendez RG, Hunt KJ, Hazuda HP, Stern MP. Fueling the obesity epidemic? Artificially sweetened beverage use and long-term weight gain. Obesity (Silver Spring, Md). 2008;16(8):1894–900.

    Google Scholar 

  34. 34.

    Dhingra R, Sullivan L, Jacques PF, et al. Soft drink consumption and risk of developing cardiometabolic risk factors and the metabolic syndrome in middle-aged adults in the community. Circulation. 2007;116(5):480–8.

    PubMed  Google Scholar 

  35. 35.

    Stinson LJ, Bansari A, Quddus A, et al: Abstract MP95: association between artificially sweetened beverages and the incidence of type 2 diabetes in postmenopausal women. 2013, 127(suppl_12):AMP95-AMP95.

  36. 36.

    Azad MB, Abou-Setta AM, Chauhan BF, et al. Nonnutritive sweeteners and cardiometabolic health: a systematic review and meta-analysis of randomized controlled trials and prospective cohort studies. CMAJ: Canadian Medical Association Journal = journal de l'Association medicale canadienne. 2017;189(28):E929–e939.

    PubMed  Google Scholar 

  37. 37.

    Greenwood DC, Threapleton DE, Evans CE, et al. Association between sugar-sweetened and artificially sweetened soft drinks and type 2 diabetes: systematic review and dose-response meta-analysis of prospective studies. Br J Nutr. 2014;112(5):725–34.

    CAS  PubMed  Google Scholar 

  38. 38.

    Imamura F, O'Connor L, Ye Z, et al. Consumption of sugar sweetened beverages, artificially sweetened beverages, and fruit juice and incidence of type 2 diabetes: systematic review, meta-analysis, and estimation of population attributable fraction. BMJ. 2015;351:h3576.

    PubMed  PubMed Central  Google Scholar 

  39. 39.

    Muraki I, Imamura F, Manson JE, et al. Fruit consumption and risk of type 2 diabetes: results from three prospective longitudinal cohort studies. BMJ. 2013;347:f5001.

    PubMed  PubMed Central  Google Scholar 

  40. 40.

    Bazzano LA, Li TY, Joshipura KJ, Hu FB. Intake of fruit, vegetables, and fruit juices and risk of diabetes in women. Diabetes Care. 2008;31(7):1311–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. 41.

    Duffey KJ, Gordon-Larsen P, Steffen LM, Jacobs DR Jr, Popkin BM. Drinking caloric beverages increases the risk of adverse cardiometabolic outcomes in the Coronary Artery Risk Development in Young Adults (CARDIA) Study. Am J Clin Nutr. 2010;92(4):954–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. 42.

    Fowler SP, Williams K, Hazuda HP. Diet soda intake is associated with long-term increases in waist circumference in a biethnic cohort of older adults: the San Antonio Longitudinal Study of Aging. J Am Geriatr Soc. 2015;63(4):708–15.

    PubMed  PubMed Central  Google Scholar 

  43. 43.

    Onakpoya IJ, Heneghan CJ. Effect of the natural sweetener, steviol glycoside, on cardiovascular risk factors: a systematic review and meta-analysis of randomised clinical trials. Eur J Prev Cardiol. 2015;22(12):1575–87.

    PubMed  Google Scholar 

  44. 44.

    Gardner C. Non-nutritive sweeteners: evidence for benefit vs. risk. Curr Opin Lipidol. 2014;25(1):80–4.

    CAS  PubMed  Google Scholar 

  45. 45.

    Lohner S, Toews I, Meerpohl JJ. Health outcomes of non-nutritive sweeteners: analysis of the research landscape. Nutr J. 2017;16(1):55.

    PubMed  PubMed Central  Google Scholar 

  46. 46.

    Romo-Romo A, Aguilar-Salinas CA, Brito-Cordova GX, Gomez Diaz RA, Vilchis Valentin D, Almeda-Valdes P. Effects of the non-nutritive sweeteners on glucose metabolism and appetite regulating hormones: systematic review of observational prospective studies and clinical trials. PLoS One. 2016;11(8):e0161264.

    PubMed  PubMed Central  Google Scholar 

  47. 47.

    Bryant CE, Wasse LK, Astbury N, Nandra G, McLaughlin JT. Non-nutritive sweeteners: no class effect on the glycaemic or appetite responses to ingested glucose. Eur J Clin Nutr. 2014;68(5):629–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. 48.

    Reyna NY, Cano C, Bermudez VJ, et al. Sweeteners and beta-glucans improve metabolic and anthropometrics variables in well controlled type 2 diabetic patients. Am J Ther. 2003;10(6):438–43.

    PubMed  Google Scholar 

  49. 49.

    Grotz VL, Henry RR, McGill JB, et al. Lack of effect of sucralose on glucose homeostasis in subjects with type 2 diabetes. J Am Diet Assoc. 2003;103(12):1607–12.

    PubMed  Google Scholar 

  50. 50.

    Horwitz DL, McLane M, Kobe P. Response to single dose of aspartame or saccharin by NIDDM patients. Diabetes Care. 1988;11(3):230–4.

    CAS  PubMed  Google Scholar 

  51. 51.

    Olalde-Mendoza L, Moreno-Gonzalez YE. Modification of fasting blood glucose in adults with diabetes mellitus type 2 after regular soda and diet soda intake in the State of Queretaro, Mexico. Arch Latinoam Nutr. 2013;63(2):142–7.

    PubMed  Google Scholar 

  52. 52.

    Stern SB, Bleicher SJ, Flores A, Gombos G, Recitas D, Shu J. Administration of aspartame in non-insulin-dependent diabetics. J Toxicol Environ Health. 1976;2(2):429–39.

    CAS  PubMed  Google Scholar 

  53. 53.

    Koyuncu BUBM. Metabolic effects of dissolved aspartame in the mouth before meals in prediabetic patients; a randomized controlled crossover study. J Endocrinol Diabetes Obes. 2014;2:1032.

    Google Scholar 

  54. 54.

    Chantelau EA, Gosseringer G, Sonnenberg GE, Berger M. Moderate intake of sucrose does not impair metabolic control in pump-treated diabetic out-patients. Diabetologia. 1985;28(4):204–7.

    CAS  PubMed  Google Scholar 

  55. 55.

    Cooper PL, Wahlqvist ML, Simpson RW. Sucrose versus saccharin as an added sweetener in non-insulin-dependent diabetes: short- and medium-term metabolic effects. Diabetic Medicine: a journal of the British Diabetic Association. 1988;5(7):676–80.

    CAS  Google Scholar 

  56. 56.

    Colagiuri S, Miller JJ, Edwards RA. Metabolic effects of adding sucrose and aspartame to the diet of subjects with noninsulin-dependent diabetes mellitus. Am J Clin Nutr. 1989;50(3):474–8.

    CAS  PubMed  Google Scholar 

  57. 57.

    Nehrling JK, Kobe P, McLane MP, Olson RE, Kamath S, Horwitz DL. Aspartame use by persons with diabetes. Diabetes Care. 1985;8(5):415–7.

    CAS  PubMed  Google Scholar 

  58. 58.

    Mezitis NH, Maggio CA, Koch P, Quddoos A, Allison DB, Pi-Sunyer FX. Glycemic effect of a single high oral dose of the novel sweetener sucralose in patients with diabetes. Diabetes Care. 1996;19(9):1004–5.

    CAS  PubMed  Google Scholar 

  59. 59.

    Temizkan S DO, Gunes M, Yasar M, Yazici D, Imeryuz N, Haklar G, Sirikci O, Yavuz D.: Effect of artificial sweeteners on blood glucose, GLP-1, PYY, insulin and C-peptide levels in patients with type 2 diabetes. In.; 2013.

  60. 60.

    Maki KC, Curry LL, Reeves MS, et al. Chronic consumption of rebaudioside A, a steviol glycoside, in men and women with type 2 diabetes mellitus. Food and Chemical Toxicology: an international journal published for the British Industrial Biological Research Association. 2008;46(Suppl 7):S47–53.

    CAS  Google Scholar 

  61. 61.

    Barriocanal LA, Palacios M, Benitez G, et al. Apparent lack of pharmacological effect of steviol glycosides used as sweeteners in humans. A pilot study of repeated exposures in some normotensive and hypotensive individuals and in type 1 and type 2 diabetics. Regulatory Toxicology and Pharmacology: RTP. 2008;51(1):37–41.

    CAS  PubMed  Google Scholar 

  62. 62.

    Maki KC, Curry LL, McKenney JM, et al: Glycemic and blood pressure responses to acute doses of rebaudioside A, a steviol glycoside, in subjects with normal glucose tolerance or type 2 diabetes mellitus. 2009, 23(1_supplement):351.356-351.356.

  63. 63.

    Gregersen S, Jeppesen PB, Holst JJ, Hermansen K. Antihyperglycemic effects of stevioside in type 2 diabetic subjects. Metabolism. 2004;53(1):73–6.

    CAS  PubMed  Google Scholar 

  64. 64.

    Argyri K, Sotiropoulos A, Psarou E, Papazafiropoulou A, Zampelas A, Kapsokefalou M. Dessert formulation using sucralose and dextrin affects favorably postprandial response to glucose, insulin, and C-peptide in type 2 diabetic patients. The Review of Diabetic Studies: RDS. 2013;10(1):39–48.

    PubMed  Google Scholar 

  65. 65.

    Okuno G, Kawakami F, Tako H, et al. Glucose tolerance, blood lipid, insulin and glucagon concentration after single or continuous administration of aspartame in diabetics. Diabetes Res Clin Pract. 1986;2(1):23–7.

    CAS  PubMed  Google Scholar 

  66. 66.

    Prols H, Haslbeck M, Mehnert H. Investigations into the action of high doses of saccharin on the metabolism in diabetics (author’s transl). Deutsche medizinische Wochenschrift (1946). 1973;98(41):1901–4.

    CAS  Google Scholar 

  67. 67.

    Shigeta H, Yoshida T, Nakai M, et al. Effects of aspartame on diabetic rats and diabetic patients. J Nutr Sci Vitaminol. 1985;31(5):533–40.

    CAS  PubMed  Google Scholar 

  68. 68.

    Ritu M, Nandini J. Nutritional composition of Stevia rebaudiana, a sweet herb, and its hypoglycaemic and hypolipidaemic effect on patients with non-insulin dependent diabetes mellitus. J Sci Food Agric. 2016;96(12):4231–4.

    CAS  PubMed  Google Scholar 

  69. 69.

    Kassi ELG, Pavlaki A, Lambrou G, Mantzou E, Androulakis I, Giannakou A, et al. Acute effects of Stevia rebaudiana extract on postprandial glucose metabolism in patients with metabolic syndrome. Endocr Rev. 2016;37.

  70. 70.

    Kassi ENLG, Pavlaki A, Lambrou G, Mantzou E, Androulakis I, Giannakou A, et al. Long-term effects of stevia rebaudiana on glucose and lipid profile, adipocytokines, markers of inflammation and oxidation status in patients with metabolic syndrome. Endocr Rev. 2016;37.

  71. 71.

    Shin DHLJ, Kang MS, Kim TH, Jeong SJ, Kim CH, Kim SS, et al. Glycemic effects of rebaudioside a and erythritol in people with glucose intolerance. Diabetes Metab J. 2016;40:283–9.

    PubMed  PubMed Central  Google Scholar 

  72. 72.

    Rodin J. Comparative effects of fructose, aspartame, glucose, and water preloads on calorie and macronutrient intake. Am J Clin Nutr. 1990;51(3):428–35.

    CAS  PubMed  Google Scholar 

  73. 73.

    A HBGHSBB. The influence of sweetener solutions on the secretion of insulin and blood glucose level. Ernährungsunschau. 1993;40(4):152–5.

    Google Scholar 

  74. 74.

    Melanson KJ, Westerterp-Plantenga MS, Campfield LA, Saris WH. Blood glucose and meal patterns in time-blinded males, after aspartame, carbohydrate, and fat consumption, in relation to sweetness perception. Br J Nutr. 1999;82(6):437–46.

    CAS  PubMed  Google Scholar 

  75. 75.

    Hall WL, Millward DJ, Rogers PJ, Morgan LM. Physiological mechanisms mediating aspartame-induced satiety. Physiol Behav. 2003;78(4-5):557–62.

    CAS  PubMed  Google Scholar 

  76. 76.

    Ma J, Bellon M, Wishart JM, et al. Effect of the artificial sweetener, sucralose, on gastric emptying and incretin hormone release in healthy subjects. Am J Physiol Gastrointest Liver Physiol. 2009;296(4):G735–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. 77.

    Anton SD, Martin CK, Han H, et al. Effects of stevia, aspartame, and sucrose on food intake, satiety, and postprandial glucose and insulin levels. Appetite. 2010;55(1):37–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. 78.

    Ma J, Chang J, Checklin HL, et al. Effect of the artificial sweetener, sucralose, on small intestinal glucose absorption in healthy human subjects. Br J Nutr. 2010;104(6):803–6.

    CAS  PubMed  Google Scholar 

  79. 79.

    Brown AW, Bohan Brown MM, Onken KL, Beitz DC. Short-term consumption of sucralose, a nonnutritive sweetener, is similar to water with regard to select markers of hunger signaling and short-term glucose homeostasis in women. Nutrition Research (New York, NY). 2011;31(12):882–8.

    CAS  Google Scholar 

  80. 80.

    Steinert RE, Frey F, Topfer A, Drewe J, Beglinger C. Effects of carbohydrate sugars and artificial sweeteners on appetite and the secretion of gastrointestinal satiety peptides. Br J Nutr. 2011;105(9):1320–8.

    CAS  PubMed  Google Scholar 

  81. 81.

    Ford HE, Peters V, Martin NM, et al. Effects of oral ingestion of sucralose on gut hormone response and appetite in healthy normal-weight subjects. Eur J Clin Nutr. 2011;65(4):508–13.

    CAS  PubMed  Google Scholar 

  82. 82.

    Maersk M, Belza A, Holst JJ, et al. Satiety scores and satiety hormone response after sucrose-sweetened soft drink compared with isocaloric semi-skimmed milk and with non-caloric soft drink: a controlled trial. Eur J Clin Nutr. 2012;66(4):523–9.

    CAS  PubMed  Google Scholar 

  83. 83.

    Wu T, Zhao BR, Bound MJ, et al. Effects of different sweet preloads on incretin hormone secretion, gastric emptying, and postprandial glycemia in healthy humans. Am J Clin Nutr. 2012;95(1):78–83.

    CAS  PubMed  Google Scholar 

  84. 84.

    Brown RJ, Walter M, Rother KI. Effects of diet soda on gut hormones in youths with diabetes. Diabetes Care. 2012;35(5):959–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. 85.

    Pepino MY, Tiemann CD, Patterson BW, Wice BM, Klein S. Sucralose affects glycemic and hormonal responses to an oral glucose load. Diabetes Care. 2013;36(9):2530–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. 86.

    Suez J, Korem T, Zeevi D, et al. Artificial sweeteners induce glucose intolerance by altering the gut microbiota. Nature. 2014;514(7521):181–6.

    CAS  PubMed  Google Scholar 

  87. 87.

    Temizkan S, Deyneli O, Yasar M, et al. Sucralose enhances GLP-1 release and lowers blood glucose in the presence of carbohydrate in healthy subjects but not in patients with type 2 diabetes. Eur J Clin Nutr. 2015;69(2):162–6.

    CAS  PubMed  Google Scholar 

  88. 88.

    Chan P, Tomlinson B, Chen YJ, Liu JC, Hsieh MH, Cheng JT. A double-blind placebo-controlled study of the effectiveness and tolerability of oral stevioside in human hypertension. Br J Clin Pharmacol. 2000;50(3):215–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  89. 89.

    Ferri LA, Alves-Do-Prado W, Yamada SS, Gazola S, Batista MR, Bazotte RB. Investigation of the antihypertensive effect of oral crude stevioside in patients with mild essential hypertension. Phytotherapy Research: PTR. 2006;20(9):732–6.

    CAS  PubMed  Google Scholar 

  90. 90.

    Hsieh MH, Chan P, Sue YM, et al. Efficacy and tolerability of oral stevioside in patients with mild essential hypertension: a two-year, randomized, placebo-controlled study. Clin Ther. 2003;25(11):2797–808.

    CAS  PubMed  Google Scholar 

  91. 91.

    Da Silva GEC, Bazotte RB, Assef AH, et al. Investigation of the tolerability of oral stevioside in Brazilian hyperlipidemic patients. Braz Arch Biol Technol. 2006;49(4):583–7.

    Google Scholar 

  92. 92.

    Karimian Azari E, Smith KR, Yi F, et al. Inhibition of sweet chemosensory receptors alters insulin responses during glucose ingestion in healthy adults: a randomized crossover interventional study. Am J Clin Nutr. 2017;105(4):1001–9.

    PubMed  PubMed Central  Google Scholar 

  93. 93.

    Tey SL, Salleh NB, Henry J, Forde CG. Effects of aspartame-, monk fruit-, stevia- and sucrose-sweetened beverages on postprandial glucose, insulin and energy intake. Int J Obe(2005). 2017;41(3):450–7.

    CAS  Google Scholar 

  94. 94.

    Gallagher C, Keogh JB, Pedersen E, Clifton PM. Fructose acute effects on glucose, insulin, and triglyceride after a solid meal compared with sucralose and sucrose in a randomized crossover study. Am J Clin Nutr. 2016;103(6):1453–7.

    CAS  PubMed  Google Scholar 

  95. 95.

    Sylvetsky AC, Brown RJ, Blau JE, Walter M, Rother KI. Hormonal responses to non-nutritive sweeteners in water and diet soda. Nutrition & Metabolism. 2016;13:71.

    Google Scholar 

  96. 96.

    Hazali N, Mohamed A, Ibrahim M, Masri M, Isa KAM, Nor NM. Effect of acute Stevia consumption on blood glucose response in healthy Malay young adults. Sains Malays. 2014;43(43):649–54.

    CAS  Google Scholar 

  97. 97.

    Wu T, Bound MJ, Standfield SD, et al. Artificial sweeteners have no effect on gastric emptying, glucagon-like peptide-1, or glycemia after oral glucose in healthy humans. Diabetes Care. 2013;36(12):e202–3.

    PubMed  PubMed Central  Google Scholar 

  98. 98.

    Wu T, Bound MJ, Zhao BR, et al. Effects of a D-xylose preload with or without sitagliptin on gastric emptying, glucagon-like peptide-1, and postprandial glycemia in type 2 diabetes. Diabetes Care. 2013;36(7):1913–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  99. 99.

    Little TJ, Gupta N, Case RM, Thompson DG, McLaughlin JT. Sweetness and bitterness taste of meals per se does not mediate gastric emptying in humans. Am J Physiol Regul Integr Comp Physiol. 2009;297(3):R632–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  100. 100.

    Brown RJ, Walter M, Rother KI. Ingestion of diet soda before a glucose load augments glucagon-like peptide-1 secretion. Diabetes Care. 2009;32(12):2184–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  101. 101.

    Just T, Pau HW, Engel U, Hummel T. Cephalic phase insulin release in healthy humans after taste stimulation? Appetite. 2008;51(3):622–7.

    CAS  PubMed  Google Scholar 

  102. 102.

    Geuns JM, Buyse J, Vankeirsbilck A, Temme EH. Metabolism of stevioside by healthy subjects. Experimental Biology and Medicine (Maywood, NJ). 2007;232(1):164–73.

    CAS  Google Scholar 

  103. 103.

    Smeets PA, de Graaf C, Stafleu A, van Osch MJ, van der Grond J. Functional magnetic resonance imaging of human hypothalamic responses to sweet taste and calories. Am J Clin Nutr. 2005;82(5):1011–6.

    CAS  PubMed  Google Scholar 

  104. 104.

    Prat-Larquemin L, Oppert JM, Bellisle F, Guy-Grand B. Sweet taste of aspartame and sucrose: effects on diet-induced thermogenesis. Appetite. 2000;34(3):245–51.

    CAS  PubMed  Google Scholar 

  105. 105.

    Nguyen UN, Dumoulin G, Henriet MT, Regnard J. Aspartame ingestion increases urinary calcium, but not oxalate excretion, in healthy subjects. J Clin Endocrinol Metab. 1998;83(1):165–8.

    CAS  PubMed  Google Scholar 

  106. 106.

    Brandt KR, Sunram-Lea SI, Qualtrough K. The effect of glucose administration on the emotional enhancement effect in recognition memory. Biol Psychol. 2006;73(2):199–208.

    PubMed  Google Scholar 

  107. 107.

    Gonder-Frederick L, Hall JL, Vogt J, Cox DJ, Green J, Gold PE. Memory enhancement in elderly humans: effects of glucose ingestion. Physiol Behav. 1987;41(5):503–4.

    CAS  PubMed  Google Scholar 

  108. 108.

    Burns TS, Stargel WW, Tschanz C, Kotsonis FN, Hurwitz A. Aspartame and sucrose produce a similar increase in the plasma phenylalanine to large neutral amino acid ratio in healthy subjects. Pharmacology. 1991;43(4):210–9.

    CAS  PubMed  Google Scholar 

  109. 109.

    Manning CA, Parsons MW, Gold PE. Anterograde and retrograde enhancement of 24-h memory by glucose in elderly humans. Behav Neural Biol. 1992;58(2):125–30.

    CAS  PubMed  Google Scholar 

  110. 110.

    Messier C, Gagnon M, Knott V. Effect of glucose and peripheral glucose regulation on memory in the elderly. Neurobiol Aging. 1997;18(3):297–304.

    CAS  PubMed  Google Scholar 

  111. 111.

    Manning CA, Stone WS, Korol DL, Gold PE. Glucose enhancement of 24-h memory retrieval in healthy elderly humans. Behav Brain Res. 1998;93(1-2):71–6.

    CAS  PubMed  Google Scholar 

  112. 112.

    Foster JK, Lidder PG, Sunram SI. Glucose and memory: fractionation of enhancement effects? Psychopharmacology. 1998;137(3):259–70.

    CAS  PubMed  Google Scholar 

  113. 113.

    Newcomer JW, Craft S, Fucetola R, et al. Glucose-induced increase in memory performance in patients with schizophrenia. Schizophr Bull. 1999;25(2):321–35.

    CAS  PubMed  Google Scholar 

  114. 114.

    Green MW, Taylor MA, Elliman NA, Rhodes O. Placebo expectancy effects in the relationship between glucose and cognition. Br J Nutr. 2001;86(2):173–9.

    CAS  PubMed  Google Scholar 

  115. 115.

    Coppola L, Coppola A, Grassia A, et al. Acute hyperglycemia alters von Willebrand factor but not the fibrinolytic system in elderly subjects with normal or impaired glucose tolerance. Blood Coagulation & Fibrinolysis: an international journal in haemostasis and thrombosis. 2004;15(8):629–35.

    Google Scholar 

  116. 116.

    Berlin I, Vorspan F, Warot D, Maneglier B, Spreux-Varoquaux O. Effect of glucose on tobacco craving. Is it mediated by tryptophan and serotonin? Psychopharmacology. 2005;178(1):27–34.

    CAS  PubMed  Google Scholar 

  117. 117.

    Parent MB, Krebs-Kraft DL, Ryan JP, Wilson JS, Harenski C, Hamann S. Glucose administration enhances fMRI brain activation and connectivity related to episodic memory encoding for neutral and emotional stimuli. Neuropsychologia. 2011;49(5):1052–66.

    PubMed  Google Scholar 

  118. 118.

    Brandt KR, Gibson EL, Rackie JM. Differential facilitative effects of glucose administration on Stroop task conditions. Behav Neurosci. 2013;127(6):932–5.

    PubMed  Google Scholar 

  119. 119.

    Ginieis R, Franz EA, Oey I, Peng M. The “sweet” effect: comparative assessments of dietary sugars on cognitive performance. Physiol Behav. 2018;184:242–7.

    CAS  PubMed  Google Scholar 

  120. 120.

    Walk AM, Raine LB, Kramer AF, Cohen NJ, Khan NA, Hillman CH. Differential effects of carbohydrates on behavioral and neuroelectric indices of selective attention in preadolescent children. Front Hum Neurosci. 2017;11:614.

    PubMed  PubMed Central  Google Scholar 

  121. 121.

    Flint RW Jr, Turek C. Glucose effects on a continuous performance test of attention in adults. Behav Brain Res. 2003;142(1-2):217–28.

    CAS  PubMed  Google Scholar 

  122. 122.

    Messier C, Desrochers A, Gagnon M. Effect of glucose, glucose regulation, and word imagery value on human memory. Behav Neurosci. 1999;113(3):431–8.

    CAS  PubMed  Google Scholar 

  123. 123.

    •• Nichol AD, Holle MJ, An R. Glycemic impact of non-nutritive sweeteners: a systematic review and meta-analysis of randomized controlled trials. Eur J Clin Nutr. 2018;72(6):796–804 This recent meta-analysis of clinical trials provides evidence that non-nutritive sweeteners do not affect glucose concentrations.

    CAS  PubMed  Google Scholar 

  124. 124.

    • Thomson P, Santibanez R, Aguirre C, Galgani JE, Garrido D. Short-term impact of sucralose consumption on the metabolic response and gut microbiome of healthy adults. Br J Nutr. 2019;1-23 This recent publication provides evidence that 7-day intake of sucralose may not affect glucose, insulin, and gut microbiome in healthy subjects.

  125. 125.

    Higgins KA, Considine RV, Mattes RD. Aspartame consumption for 12 weeks does not affect glycemia, appetite, or body weight of healthy, lean adults in a randomized controlled trial. J Nutr. 2018;148(4):650–7.

    PubMed  Google Scholar 

  126. 126.

    Lertrit A, Srimachai S, Saetung S, et al. Effects of sucralose on insulin and glucagon-like peptide-1 secretion in healthy subjects: a randomized, double-blind, placebo-controlled trial. Nutr (Burbank, Los Angeles County, Calif). 2018;55-56:125–30.

    CAS  Google Scholar 

  127. 127.

    Young RL, Kreuch D, Mobegi FM, et al: Low-calorie sweeteners disrupt the gut microbiome in healthy subjects in association with impaired glycaemic control. EASD abstract 241 2018.

  128. 128.

    Grotz VL, Pi-Sunyer X, Porte D Jr, Roberts A, Richard Trout J. A 12-week randomized clinical trial investigating the potential for sucralose to affect glucose homeostasis. Regul Toxicol Pharmacol: RTP. 2017;88:22–33.

    CAS  PubMed  Google Scholar 

  129. 129.

    Miller PE, Perez V. Low-calorie sweeteners and body weight and composition: a meta-analysis of randomized controlled trials and prospective cohort studies. Am J Clin Nutr. 2014;100(3):765–77.

    CAS  PubMed  PubMed Central  Google Scholar 

  130. 130.

    de Ruyter JC, Olthof MR, Seidell JC, Katan MB. A trial of sugar-free or sugar-sweetened beverages and body weight in children. N Engl J Med. 2012;367(15):1397–406.

    PubMed  Google Scholar 

  131. 131.

    Ebbeling CB, Feldman HA, Chomitz VR, et al. A randomized trial of sugar-sweetened beverages and adolescent body weight. N Engl J Med. 2012;367(15):1407–16.

    CAS  PubMed  PubMed Central  Google Scholar 

  132. 132.

    Njike VY, Faridi Z, Shuval K, et al. Effects of sugar-sweetened and sugar-free cocoa on endothelial function in overweight adults. Int J Cardiol. 2011;149(1):83–8.

    PubMed  Google Scholar 

  133. 133.

    Maersk M, Belza A, Stodkilde-Jorgensen H, et al. Sucrose-sweetened beverages increase fat storage in the liver, muscle, and visceral fat depot: a 6-mo randomized intervention study. Am J Clin Nutr. 2012;95(2):283–9.

    CAS  PubMed  Google Scholar 

  134. 134.

    Tate DF, Turner-McGrievy G, Lyons E, et al. Replacing caloric beverages with water or diet beverages for weight loss in adults: main results of the Choose Healthy Options Consciously Everyday (CHOICE) randomized clinical trial. Am J Clin Nutr. 2012;95(3):555–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  135. 135.

    Tordoff MG, Alleva AM. Effect of drinking soda sweetened with aspartame or high-fructose corn syrup on food intake and body weight. Am J Clin Nutr. 1990;51(6):963–9.

    CAS  PubMed  Google Scholar 

  136. 136.

    Kanders BS, Lavin PT, Kowalchuk MB, Greenberg I, Blackburn GL. An evaluation of the effect of aspartame on weight loss. Appetite. 1988;11(Suppl 1):73–84.

    PubMed  Google Scholar 

  137. 137.

    Knopp RH, Brandt K, Arky RA. Effects of aspartame in young persons during weight reduction. J Toxicol Environ Health. 1976;2(2):417–28.

    CAS  PubMed  Google Scholar 

  138. 138.

    Blackburn GL, Kanders BS, Lavin PT, Keller SD, Whatley J. The effect of aspartame as part of a multidisciplinary weight-control program on short- and long-term control of body weight. Am J Clin Nutr. 1997;65(2):409–18.

    CAS  PubMed  Google Scholar 

  139. 139.

    Gatenby SJ, Aaron JI, Jack VA, Mela DJ. Extended use of foods modified in fat and sugar content: nutritional implications in a free-living female population. Am J Clin Nutr. 1997;65(6):1867–73.

    CAS  PubMed  Google Scholar 

  140. 140.

    Raben A, Vasilaras TH, Moller AC, Astrup A. Sucrose compared with artificial sweeteners: different effects on ad libitum food intake and body weight after 10 wk of supplementation in overweight subjects. Am J Clin Nutr. 2002;76(4):721–9.

    CAS  PubMed  Google Scholar 

  141. 141.

    Reid M, Hammersley R, Duffy M. Effects of sucrose drinks on macronutrient intake, body weight, and mood state in overweight women over 4 weeks. Appetite. 2010;55(1):130–6.

    CAS  PubMed  Google Scholar 

  142. 142.

    Parker DR, Gonzalez S, Derby CA, Gans KM, Lasater TM, Carleton RA. Dietary factors in relation to weight change among men and women from two southeastern New England communities. Int J Obe Relat Metab Dis J Int Assoc Stud Obes. 1997;21(2):103–9.

    CAS  Google Scholar 

  143. 143.

    Newby PK, Peterson KE, Berkey CS, Leppert J, Willett WC, Colditz GA. Beverage consumption is not associated with changes in weight and body mass index among low-income preschool children in North Dakota. J Am Diet Assoc. 2004;104(7):1086–94.

    CAS  PubMed  Google Scholar 

  144. 144.

    Laska MN, Murray DM, Lytle LA, Harnack LJ. Longitudinal associations between key dietary behaviors and weight gain over time: transitions through the adolescent years. Obesity (Silver Spring, Md). 2012;20(1):118–25.

    Google Scholar 

  145. 145.

    Johnson L, Mander AP, Jones LR, Emmett PM, Jebb SA. Is sugar-sweetened beverage consumption associated with increased fatness in children? Nutrition (Burbank, Los Angeles County, Calif). 2007;23(7-8):557–63.

    CAS  Google Scholar 

  146. 146.

    Colditz GA, Willett WC, Stampfer MJ, London SJ, Segal MR, Speizer FE. Patterns of weight change and their relation to diet in a cohort of healthy women. Am J Clin Nutr. 1990;51(6):1100–5.

    CAS  PubMed  Google Scholar 

  147. 147.

    Berkey CS, Rockett HR, Field AE, Gillman MW, Colditz GA. Sugar-added beverages and adolescent weight change. Obes Res. 2004;12(5):778–88.

    PubMed  Google Scholar 

  148. 148.

    Peters JC, Beck J, Cardel M, et al. The effects of water and non-nutritive sweetened beverages on weight loss and weight maintenance: a randomized clinical trial. Obesity (Silver Spring, Md). 2016;24(2):297–304.

    Google Scholar 

  149. 149.

    Madjd A, Taylor MA, Delavari A, Malekzadeh R, Macdonald IA, Farshchi HR. Effects on weight loss in adults of replacing diet beverages with water during a hypoenergetic diet: a randomized, 24-wk clinical trial. Am J Clin Nutr. 2015;102(6):1305–12.

    CAS  PubMed  Google Scholar 

  150. 150.

    Field AE, Sonneville KR, Falbe J, et al. Association of sports drinks with weight gain among adolescents and young adults. Obesity (Silver Spring, Md). 2014;22(10):2238–43.

    Google Scholar 

  151. 151.

    Gearon E, Peeters A, Ng W, Hodge A, Backholer K. Diet and physical activity as possible mediators of the association between educational attainment and body mass index gain among Australian adults. International Journal of Public Health. 2018;63(7):883–93.

    PubMed  Google Scholar 

  152. 152.

    Smith JD, Hou T, Hu FB, et al. A comparison of different methods for evaluating diet, physical activity, and long-term weight gain in 3 prospective cohort studies. J Nutr. 2015;145(11):2527–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  153. 153.

    Lana A, Lopez-Garcia E, Rodriguez-Artalejo F. Consumption of soft drinks and health-related quality of life in the adult population. Eur J Clin Nutr. 2015;69(11):1226–32.

    CAS  PubMed  Google Scholar 

  154. 154.

    Renault KM, Carlsen EM, Norgaard K, et al. Intake of sweets, snacks and soft drinks predicts weight gain in obese pregnant women: detailed analysis of the results of a randomised controlled trial. PLoS One. 2015;10(7):e0133041.

    PubMed  PubMed Central  Google Scholar 

  155. 155.

    Barrio-Lopez MT, Martinez-Gonzalez MA, Fernandez-Montero A, Beunza JJ, Zazpe I, Bes-Rastrollo M. Prospective study of changes in sugar-sweetened beverage consumption and the incidence of the metabolic syndrome and its components: the SUN cohort. Br J Nutr. 2013;110(9):1722–31.

    CAS  PubMed  Google Scholar 

  156. 156.

    Bernstein AM, de Koning L, Flint AJ, Rexrode KM, Willett WC. Soda consumption and the risk of stroke in men and women. Am J Clin Nutr. 2012;95(5):1190–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  157. 157.

    Bes-Rastrollo M, Sanchez-Villegas A, Gomez-Gracia E, Martinez JA, Pajares RM, Martinez-Gonzalez MA. Predictors of weight gain in a Mediterranean cohort: the Seguimiento Universidad de Navarra Study 1. Am J Clin Nutr. 2006;83(2):362–70 quiz 394-365.

    CAS  PubMed  Google Scholar 

  158. 158.

    Solak Y, Karagoz A, Atalay H. Sugar-sweetened soda consumption, hyperuricemia, and kidney disease. Kidney Int. 2010;78(7):708 author reply 708-709.

    PubMed  Google Scholar 

  159. 159.

    Chen L, Hu FB, Yeung E, Willett W, Zhang C. Prospective study of pre-gravid sugar-sweetened beverage consumption and the risk of gestational diabetes mellitus. Diabetes Care. 2009;32(12):2236–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  160. 160.

    Cohen L, Curhan G, Forman J. Association of sweetened beverage intake with incident hypertension. J Gen Intern Med. 2012;27(9):1127–34.

    PubMed  PubMed Central  Google Scholar 

  161. 161.

    de Koning L, Malik VS, Kellogg MD, Rimm EB, Willett WC, Hu FB. Sweetened beverage consumption, incident coronary heart disease, and biomarkers of risk in men. Circulation. 2012;125(14):1735–41 s1731.

    PubMed  PubMed Central  Google Scholar 

  162. 162.

    Fung TT, Malik V, Rexrode KM, Manson JE, Willett WC, Hu FB. Sweetened beverage consumption and risk of coronary heart disease in women. Am J Clin Nutr. 2009;89(4):1037–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  163. 163.

    Haines J, Neumark-Sztainer D, Wall M, Story M. Personal, behavioral, and environmental risk and protective factors for adolescent overweight. Obesity (Silver Spring, Md). 2007;15(11):2748–60.

    Google Scholar 

  164. 164.

    Ley RE, Backhed F, Turnbaugh P, Lozupone CA, Knight RD, Gordon JI. Obesity alters gut microbial ecology. Proc Natl Acad Sci U S A. 2005;102(31):11070–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  165. 165.

    Nettleton JE, Reimer RA, Shearer J. Reshaping the gut microbiota: impact of low calorie sweeteners and the link to insulin resistance? Physiol Behav. 2016;164(Pt B):488–93.

    CAS  PubMed  Google Scholar 

  166. 166.

    Guarner F, Malagelada JR. Gut flora in health and disease. Lancet (London, England). 2003;361(9356):512–9.

    Google Scholar 

  167. 167.

    Schwiertz A, Taras D, Schafer K, et al. Microbiota and SCFA in lean and overweight healthy subjects. Obesity (Silver Spring, Md). 2010;18(1):190–5.

    Google Scholar 

  168. 168.

    Wang QP, Browman D, Herzog H, Neely GG. Non-nutritive sweeteners possess a bacteriostatic effect and alter gut microbiota in mice. PLoS One. 2018;13(7):e0199080.

    PubMed  PubMed Central  Google Scholar 

  169. 169.

    Council Spokesperson, Berna Magnuson, Reviews nature study on low-calorie sweeteners []

  170. 170.

    Anderson RL, Kirkland JJ. The effect of sodium saccharin in the diet on caecal microflora. Food Cosmetics Toxicol. 1980;18(4):353–5.

    CAS  Google Scholar 

  171. 171.

    Naim M, Zechman JM, Brand JG, Kare MR, Sandovsky V. Effects of sodium saccharin on the activity of trypsin, chymotrypsin, and amylase and upon bacteria in small intestinal contents of rats. Proc Soc Exp Biol Med Soc Exp Biol Med (New York, NY). 1985;178(3):392–401.

    CAS  Google Scholar 

  172. 172.

    Bian X, Tu P, Chi L, Gao B, Ru H, Lu K. Saccharin induced liver inflammation in mice by altering the gut microbiota and its metabolic functions. Food Chem Toxicol Int J publ for the Br Indus Biol Res Assoc. 2017;107(Pt B):530–9.

    CAS  Google Scholar 

  173. 173.

    Labrecque MT, Malone D, Caldwell KE, Allan AM. Impact of ethanol and saccharin on fecal microbiome in pregnant and non-pregnant mice. J Pregnancy Child Health. 2015;2(5).

  174. 174.

    Bajaj JS, Hylemon PB, Ridlon JM, et al. Colonic mucosal microbiome differs from stool microbiome in cirrhosis and hepatic encephalopathy and is linked to cognition and inflammation. Am J Physiol Gastrointest Liver Physiol. 2012;303(6):G675–85.

    CAS  PubMed  PubMed Central  Google Scholar 

  175. 175.

    Chamulitrat W, Jordan SJ, Mason RP, et al. Targets of nitric oxide in a mouse model of liver inflammation by Corynebacterium parvum. Arch Biochem Biophys. 1995;316(1):30–7.

    CAS  PubMed  Google Scholar 

  176. 176.

    Daly K, Darby AC, Hall N, Nau A, Bravo D, Shirazi-Beechey SP. Dietary supplementation with lactose or artificial sweetener enhances swine gut Lactobacillus population abundance. Br J Nutr. 2014;111(Suppl 1):S30–5.

    CAS  PubMed  Google Scholar 

  177. 177.

    Daly K, Darby AC, Hall N, et al. Bacterial sensing underlies artificial sweetener-induced growth of gut Lactobacillus. Environ Microbiol. 2016;18(7):2159–71.

    CAS  PubMed  Google Scholar 

  178. 178.

    Abou-Donia MB, El-Masry EM, Abdel-Rahman AA, McLendon RE, Schiffman SS. Splenda alters gut microflora and increases intestinal P-glycoprotein and cytochrome P-450 in male rats. J Toxicol Environ Health Part A. 2008;71(21):1415–29.

    CAS  PubMed  Google Scholar 

  179. 179.

    Uebanso T, Ohnishi A, Kitayama R, et al. Effects of low-dose non-caloric sweetener consumption on gut microbiota in mice. Nutrients. 2017;9(6).

    Google Scholar 

  180. 180.

    Bian X, Chi L, Gao B, Tu P, Ru H, Lu K. Gut microbiome response to sucralose and its potential role in inducing liver inflammation in mice. Front Physiol. 2017;8:487.

    PubMed  PubMed Central  Google Scholar 

  181. 181.

    Brusick D, Borzelleca JF, Gallo M, et al. Expert panel report on a study of Splenda in male rats. Reg Toxicol Pharmacol: RTP. 2009;55(1):6–12.

    CAS  Google Scholar 

  182. 182.

    Palmnas MS, Cowan TE, Bomhof MR, et al. Low-dose aspartame consumption differentially affects gut microbiota-host metabolic interactions in the diet-induced obese rat. PLoS One. 2014;9(10):e109841.

    PubMed  PubMed Central  Google Scholar 

  183. 183.

    De Vadder F, Kovatcheva-Datchary P, Goncalves D, et al. Microbiota-generated metabolites promote metabolic benefits via gut-brain neural circuits. Cell. 2014;156(1-2):84–96.

    PubMed  Google Scholar 

  184. 184.

    Bian X, Chi L, Gao B, Tu P, Ru H, Lu K. The artificial sweetener acesulfame potassium affects the gut microbiome and body weight gain in CD-1 mice. PLoS One. 2017;12(6):e0178426.

    PubMed  PubMed Central  Google Scholar 

  185. 185.

    Pfeffer M, Ziesenitz SC, Siebert G. Acesulfame K, cyclamate and saccharin inhibit the anaerobic fermentation of glucose by intestinal bacteria. Z Ernahrungswiss. 1985;24(4):231–5.

    CAS  PubMed  Google Scholar 

  186. 186.

    Goldin BR. Intestinal microflora: metabolism of drugs and carcinogens. Ann Med. 1990;22(1):43–8.

    CAS  PubMed  Google Scholar 

  187. 187.

    Schiffman SS, Nagle HT. Revisited: assessing the in vivo data on low/no-calorie sweeteners and the gut microbiota. Food Chem Toxicol: Int J Publ Br Indust Biol Res Assoc. 2019;110692.

    PubMed  Google Scholar 

  188. 188.

    Frankenfeld CL, Sikaroodi M, Lamb E, Shoemaker S, Gillevet PM. High-intensity sweetener consumption and gut microbiome content and predicted gene function in a cross-sectional study of adults in the United States. Ann Epidemiol. 2015;25(10):736–742.e734.

    PubMed  Google Scholar 

  189. 189.

    Gardana C, Simonetti P, Canzi E, Zanchi R, Pietta P. Metabolism of stevioside and rebaudioside A from Stevia rebaudiana extracts by human microflora. J Agric Food Chem. 2003;51(22):6618–22.

    CAS  PubMed  Google Scholar 

  190. 190.

    Meyers B, Brewer MS. Sweet taste in man: a review. J Food Sci. 2008;73(6):R81–90.

    CAS  PubMed  Google Scholar 

  191. 191.

    Temussi P. The sweet taste receptor: a single receptor with multiple sites and modes of interaction. Adv Food Nutr Res. 2007;53:199–239.

    CAS  PubMed  Google Scholar 

  192. 192.

    Sanematsu K, Yoshida R, Shigemura N, Ninomiya Y. Structure, function, and signaling of taste G-protein-coupled receptors. Curr Pharm Biotechnol. 2014;15(10):951–61.

    CAS  PubMed  Google Scholar 

  193. 193.

    Nelson G, Hoon MA, Chandrashekar J, Zhang Y, Ryba NJ, Zuker CS. Mammalian sweet taste receptors. Cell. 2001;106(3):381–90.

    CAS  PubMed  Google Scholar 

  194. 194.

    Thompson MD, Cole DE, Jose PA, Chidiac P. G protein-coupled receptor accessory proteins and signaling: pharmacogenomic insights. Methods Mol Biol(Clifton, NJ). 2014;1175:121–52.

    Google Scholar 

  195. 195.

    Liu D, Liman ER. Intracellular Ca2+ and the phospholipid PIP2 regulate the taste transduction ion channel TRPM5. Proc Natl Acad Sci U S A. 2003;100(25):15160–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  196. 196.

    Yarmolinsky DA, Zuker CS, Ryba NJ. Common sense about taste: from mammals to insects. Cell. 2009;139(2):234–44.

    CAS  PubMed  PubMed Central  Google Scholar 

  197. 197.

    •• Philippaert K, Pironet A, Mesuere M, et al. Steviol glycosides enhance pancreatic beta-cell function and taste sensation by potentiation of TRPM5 channel activity. Nat Commun. 2017;8:14733 This recent publication suggests that stevioside may potentiate TRPM5 channel activity for glucose control.

    CAS  PubMed  PubMed Central  Google Scholar 

  198. 198.

    Jeppesen PB, Gregersen S, Poulsen CR, Hermansen K. Stevioside acts directly on pancreatic beta cells to secrete insulin: actions independent of cyclic adenosine monophosphate and adenosine triphosphate-sensitive K+-channel activity. Metabolism. 2000;49(2):208–14.

    CAS  PubMed  Google Scholar 

  199. 199.

    Colsoul B, Schraenen A, Lemaire K, et al. Loss of high-frequency glucose-induced Ca2+ oscillations in pancreatic islets correlates with impaired glucose tolerance in Trpm5-/- mice. Proc Natl Acad Sci U S A. 2010;107(11):5208–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  200. 200.

    Colsoul B, Jacobs G, Philippaert K, et al. Insulin downregulates the expression of the Ca2+-activated nonselective cation channel TRPM5 in pancreatic islets from leptin-deficient mouse models. Arch Eur J Physiol. 2014;466(3):611–21.

    CAS  Google Scholar 

  201. 201.

    Nakagawa Y, Nagasawa M, Yamada S, et al. Sweet taste receptor expressed in pancreatic beta-cells activates the calcium and cyclic AMP signaling systems and stimulates insulin secretion. PLoS One. 2009;4(4):e5106.

    PubMed  PubMed Central  Google Scholar 

  202. 202.

    Nakagawa Y, Nagasawa M, Mogami H, Lohse M, Ninomiya Y, Kojima I. Multimodal function of the sweet taste receptor expressed in pancreatic beta-cells: generation of diverse patterns of intracellular signals by sweet agonists. Endocr J. 2013;60(10):1191–206.

    CAS  PubMed  Google Scholar 

  203. 203.

    Steinert RE, Gerspach AC, Gutmann H, Asarian L, Drewe J, Beglinger C. The functional involvement of gut-expressed sweet taste receptors in glucose-stimulated secretion of glucagon-like peptide-1 (GLP-1) and peptide YY (PYY). Clin Nutr (Edinburgh, Scotland). 2011;30(4):524–32.

    CAS  Google Scholar 

  204. 204.

    Finger TE, Kinnamon SC. Taste isn’t just for taste buds anymore. F1000 Biology Reports. 2011;3:20.

    PubMed  PubMed Central  Google Scholar 

  205. 205.

    Welcome MO, Mastorakis NE. Emerging concepts in brain glucose metabolic functions: from glucose sensing to how the sweet taste of glucose regulates its own metabolism in astrocytes and neurons. NeuroMolecular Med. 2018;20(3):281–300.

    CAS  PubMed  Google Scholar 

  206. 206.

    Young RL, Sutherland K, Pezos N, et al. Expression of taste molecules in the upper gastrointestinal tract in humans with and without type 2 diabetes. Gut. 2009;58(3):337–46.

    CAS  PubMed  Google Scholar 

  207. 207.

    Rasoamanana R, Darcel N, Fromentin G, Tome D. Nutrient sensing and signalling by the gut. Proc Nutr Soc. 2012;71(4):446–55.

    CAS  PubMed  Google Scholar 

  208. 208.

    Gribble FM, Reimann F. Signalling in the gut endocrine axis. Physiol Behav. 2017;176:183–8.

    CAS  PubMed  Google Scholar 

  209. 209.

    Chen L, Tuo B, Dong H. Regulation of intestinal glucose absorption by ion channels and transporters. Nutrients. 2016;8(1).

    PubMed Central  Google Scholar 

  210. 210.

    Roder PV, Geillinger KE, Zietek TS, Thorens B, Koepsell H, Daniel H. The role of SGLT1 and GLUT2 in intestinal glucose transport and sensing. PLoS One. 2014;9(2):e89977.

    PubMed  PubMed Central  Google Scholar 

  211. 211.

    Wright EM, Loo DD, Hirayama BA. Biology of human sodium glucose transporters. Physiol Rev. 2011;91(2):733–94.

    CAS  PubMed  Google Scholar 

  212. 212.

    Margolskee RF, Dyer J, Kokrashvili Z, et al. T1R3 and gustducin in gut sense sugars to regulate expression of Na+-glucose cotransporter 1. Proc Natl Acad Sci U S A. 2007;104(38):15075–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  213. 213.

    Moran AW, Al-Rammahi MA, Arora DK, et al. Expression of Na+/glucose co-transporter 1 (SGLT1) is enhanced by supplementation of the diet of weaning piglets with artificial sweeteners. Br J Nutr. 2010;104(5):637–46.

    CAS  PubMed  Google Scholar 

  214. 214.

    Jang HJ, Kokrashvili Z, Theodorakis MJ, et al. Gut-expressed gustducin and taste receptors regulate secretion of glucagon-like peptide-1. Proc Natl Acad Sci U S A. 2007;104(38):15069–74.

    CAS  PubMed  PubMed Central  Google Scholar 

  215. 215.

    Parker HE, Habib AM, Rogers GJ, Gribble FM, Reimann F. Nutrient-dependent secretion of glucose-dependent insulinotropic polypeptide from primary murine K cells. Diabetologia. 2009;52(2):289–98.

    CAS  PubMed  Google Scholar 

  216. 216.

    Reimann F, Habib AM, Tolhurst G, Parker HE, Rogers GJ, Gribble FM. Glucose sensing in L cells: a primary cell study. Cell Metab. 2008;8(6):532–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  217. 217.

    Fujita Y, Wideman RD, Speck M, et al. Incretin release from gut is acutely enhanced by sugar but not by sweeteners in vivo. Am J Phys Endocrinol Metab. 2009;296(3):E473–9.

    CAS  Google Scholar 

  218. 218.

    Swithers SE, Laboy AF, Clark K, Cooper S, Davidson TL. Experience with the high-intensity sweetener saccharin impairs glucose homeostasis and GLP-1 release in rats. Behav Brain Res. 2012;233(1):1–14.

    CAS  PubMed  PubMed Central  Google Scholar 

  219. 219.

    Geraedts MC, Troost FJ, Saris WH. Addition of sucralose enhances the release of satiety hormones in combination with pea protein. Mol Nutr Food Res. 2012;56(3):417–24.

    CAS  PubMed  Google Scholar 

  220. 220.

    •• .Johnson RK, Lichtenstein AH, Anderson CAM, et al: Low-calorie sweetened beverages and cardiometabolic health: a science advisory from the American Heart Association. Circulation 2018, 138(9):e126-e140. This publication provides the recent viewpoints of the science advisory from the American Heart Association with regard to artificially sweetened beverages and cardiometabolic health.

  221. 221.

    Additional information about high-intensity sweeteners permitted for use in food in the United States [] (accessed 21 April 2019)

  222. 222.

    Sugars and sweeteners [] (accessed 21 April 2019).

  223. 223.

    Sugars and sweeteners [] (accessed 21 April 2019).

Download references

Author information




All authors conceived of the manuscript structure and contributed to the writing and editing of the manuscript.

Corresponding author

Correspondence to Peter M. Clifton.

Ethics declarations

Conflict of Interest

Yoona Kim, Jennifer B. Keogh, and Peter M. Clifton declare they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Topical Collection on Nutrition

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kim, Y., Keogh, J.B. & Clifton, P.M. Non-nutritive Sweeteners and Glycaemic Control. Curr Atheroscler Rep 21, 49 (2019).

Download citation


  • Non-nutritive sweeteners
  • Glucose
  • T2DM