Skip to main content

Advertisement

Log in

Preserving Cardiovascular Health in Young Children: Beginning Healthier by Starting Earlier

  • Nutrition (P. Kris-Etherton, Section Editor)
  • Published:
Current Atherosclerosis Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

The goals of this paper are to review current literature regarding maternal-fetal-pediatric diet and nutritional factors related to preserving cardiovascular health in the very young child and the emerging data implicating nutritional influences on neurodevelopmental factors. Questions related to maternal diet and influences of human milk on child’s growth, neurodevelopment, and risk of developing obesity were addressed.

Recent Findings

The majority of US women in their reproductive years have overweight or obese status thereby increasing the risk of developing obesity in their children. Efforts to restrict gestational weight gain, perpetuate breast-feeding, and introduce heart-healthy complementary feeding after 6 months of age are now more commonly recommended and offer practical translational approaches to prevent pediatric obesity and encourage neurodevelopment intended to support cognitive and executive function.

Summary

There is growing literature on the role of maternal-fetal-pediatric nutrition on cardiometabolic and neurodevelopmental health in children. Potential influences of maternal diet quality and obesity on not only birth outcomes but subsequent risk factor development in the child are increasingly apparent. Further investigation of these factors has become a major research focus in developing future diet recommendations to better inform underlying potential mechanisms and identify opportunities for primary prevention starting in utero.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance•• Of major importance

  1. U.S. Department of Health and Human Services, N.H., Lung and blood institute, Expert Panel on Integrated Guidelines for Cardiovascular Health and Risk Reduction in Children and Adolescents Summary Report 2012, National Institutes of Health.

  2. • Steinberger J, Daniels SR, Hagberg N, Isasi CR, Kelly AS, Lloyd-Jones D, et al. Cardiovascular health promotion in children: challenges and opportunities for 2020 and beyond: a scientific statement from the American Heart Association. Circulation. 2016;134(12):e236–55. A scientific statement from the American Heart Association summarizing the importance of primary prevention of cardiometabolic disease starting in childhood.

    Article  PubMed  PubMed Central  Google Scholar 

  3. McGuire S. Scientific report of the 2015 dietary guidelines advisory committee. Washington, DC: US Departments of agriculture and health and human services, 2015. Adv Nutr. 2016;7(1):202–4.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Barker DJ. The developmental origins of chronic adult disease. Acta Paediatr Suppl. 2004;93(446):26–33.

    PubMed  CAS  Google Scholar 

  5. Oken E, Rifas-Shiman SL, Field AE, Frazier AL, Gillman MW. Maternal gestational weight gain and offspring weight in adolescence. Obstet Gynecol. 2008;112(5):999–1006.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Oken E, Taveras EM, Kleinman KP, Rich-Edwards JW, Gillman MW. Gestational weight gain and child adiposity at age 3 years. Am J Obstet Gynecol. 2007;196(4):322.e1–8.

    Article  Google Scholar 

  7. Gaillard R, Welten M, Oddy WH, Beilin LJ, Mori TA, Jaddoe VWV, et al. Associations of maternal prepregnancy body mass index and gestational weight gain with cardio-metabolic risk factors in adolescent offspring: a prospective cohort study. BJOG. 2016;123(2):207–16.

    Article  PubMed  CAS  Google Scholar 

  8. Breastfeeding and the use of human milk. Pediatrics, 2012. 129(3): p. e827–e841.

  9. Raiten DJ, Raghavan R, Porter A, Obbagy JE, Spahn JM. Executive summary: evaluating the evidence base to support the inclusion of infants and children from birth to 24 mo of age in the dietary guidelines for Americans—“the B-24 project”. Am J Clin Nutr. 2014;99(3):663s–91s.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  10. Brown CL, Halvorson EE, Cohen GM, Lazorick S, Skelton JA. Addressing childhood obesity: opportunities for prevention. Pediatr Clin N Am. 2015;62(5):1241–61.

    Article  Google Scholar 

  11. U.S. Department of Agriculture, A.R.S., Beltsville Human Nutrition Research Center, Food Surveys Research Group and U.S. Department of Health and Human Services, Centers for Disease Control and Prevention, National Center for Health Statistics, What We Eat in America, NHANES. 2012–2014: (Beltsville, MD) (Hyattsville, MD).

  12. Liu R, Hong J, Xu X, Feng Q, Zhang D, Gu Y, et al. Gut microbiome and serum metabolome alterations in obesity and after weight-loss intervention. Nat Med. 2017;23(7):859–68.

    Article  PubMed  CAS  Google Scholar 

  13. Elliott P, et al. Urinary metabolic signatures of human adiposity. Sci Transl Med. 2015;7(285):285ra62.

    Article  PubMed  CAS  Google Scholar 

  14. Lloyd-Jones DM, Hong Y, Labarthe D, Mozaffarian D, Appel LJ, van Horn L, et al. Defining and setting national goals for cardiovascular health promotion and disease reduction: the American Heart Association’s strategic impact goal through 2020 and beyond. Circulation. 2010;121(4):586–613.

    Article  PubMed  Google Scholar 

  15. Van Horn L, et al. A summary of results of the Dietary Intervention Study in Children (DISC): lessons learned. Prog Cardiovasc Nurs. 2003;18(1):28–41.

    Article  PubMed  Google Scholar 

  16. Nader PR, Sellers DE, Johnson CC, Perry CL, Stone EJ, Cook KC, et al. The effect of adult participation in a school-based family intervention to improve children’s diet and physical activity: the child and adolescent trial for cardiovascular health. Prev Med. 1996;25(4):455–64.

    Article  PubMed  CAS  Google Scholar 

  17. Niinikoski H, Pahkala K, Ala-Korpela M, Viikari J, Ronnemaa T, Lagstrom H, et al. Effect of repeated dietary counseling on serum lipoproteins from infancy to adulthood. Pediatrics. 2012;129(3):e704–13.

    Article  PubMed  Google Scholar 

  18. Jaakkola JM, Pahkala K, Rönnemaa T, Viikari J, Niinikoski H, Jokinen E, et al. Longitudinal child-oriented dietary intervention: association with parental diet and cardio-metabolic risk factors. The Special Turku Coronary Risk Factor Intervention Project. Eur J Prev Cardiol. 2017;24(16):1779–87.

    Article  PubMed  Google Scholar 

  19. Faith MS, van Horn L, Appel LJ, Burke LE, Carson JAS, Franch HA, et al. Evaluating parents and adult caregivers as “agents of change” for treating obese children: evidence for parent behavior change strategies and research gaps: a scientific statement from the American Heart Association. Circulation. 2012;125(9):1186–207.

    Article  PubMed  Google Scholar 

  20. Clifton RG, Evans M, Cahill AG, Franks PW, Gallagher D, Phelan S, et al. Design of lifestyle intervention trials to prevent excessive gestational weight gain in women with overweight or obesity. Obesity (Silver Spring). 2016;24(2):305–13.

    Article  Google Scholar 

  21. Painter RC, et al. Early onset of coronary artery disease after prenatal exposure to the Dutch famine. Am J Clin Nutr. 2006;84(2):322–7. quiz 466–7

    Article  PubMed  CAS  Google Scholar 

  22. •• Godfrey KM, et al. Influence of maternal obesity on the long-term health of offspring. Lancet Diabetes Endocrinol. 2017;5(1):53–64. A very thorough, modern review of maternal obesity and associations with health outcomes in children.

    Article  PubMed  Google Scholar 

  23. Trier C, Dahl M, Stjernholm T, Nielsen TRH, Bøjsøe C, Fonvig CE, et al. Effects of a family-based childhood obesity treatment program on parental weight status. PLoS One. 2016;11(8):e0161921.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  24. Gaillard R, Steegers EAP, Duijts L, Felix JF, Hofman A, Franco OH, et al. Childhood cardiometabolic outcomes of maternal obesity during pregnancy: the Generation R Study. Hypertension. 2014;63(4):683–91.

    Article  PubMed  CAS  Google Scholar 

  25. Gaillard R, Steegers EAP, Franco OH, Hofman A, Jaddoe VWV. Maternal weight gain in different periods of pregnancy and childhood cardio-metabolic outcomes. The Generation R Study. Int J Obes. 2015;39(4):677–85.

    Article  CAS  Google Scholar 

  26. Eriksson JG, Sandboge S, Salonen MK, Kajantie E, Osmond C. Long-term consequences of maternal overweight in pregnancy on offspring later health: findings from the Helsinki Birth Cohort Study. Ann Med. 2014;46(6):434–8.

    Article  PubMed  Google Scholar 

  27. Institute of M. and I.O.M.P.W.G. National Research Council Committee to Reexamine, The National Academies Collection: Reports funded by National Institutes of Health, in Weight Gain During Pregnancy: Reexamining the Guidelines, K.M. Rasmussen and A.L. Yaktine, Editors. 2009, National Academies Press (US) National Academy of Sciences.: Washington (DC).

  28. International Weight Management in Pregnancy Collaborative, G. Effect of diet and physical activity based interventions in pregnancy on gestational weight gain and pregnancy outcomes: meta-analysis of individual participant data from randomised trials. BMJ. 2017;358:j3119.

    Article  Google Scholar 

  29. Catalano P, deMouzon SH. Maternal obesity and metabolic risk to the offspring: why lifestyle interventions may have not achieved the desired outcomes. Int J Obes. 2015;39(4):642–9.

    Article  CAS  Google Scholar 

  30. Chatzi L, Rifas-Shiman SL, Georgiou V, Joung KE, Koinaki S, Chalkiadaki G, et al. Adherence to the Mediterranean diet during pregnancy and offspring adiposity and cardiometabolic traits in childhood. Pediatr Obes. 2017;12(Suppl 1):47–56.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Shapiro AL, et al. Maternal diet quality in pregnancy and neonatal adiposity: the healthy start study. Int J Obes. 2016;40(7):1056–62.

    Article  CAS  Google Scholar 

  32. Starling AP, Sauder KA, Kaar JL, Shapiro ALB, Siega-Riz AM, Dabelea D. Maternal dietary patterns during pregnancy are associated with newborn body composition. J Nutr. 2017;147(7):1334–9.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  33. Lauritzen L, Brambilla P, Mazzocchi A, Harsløf L, Ciappolino V, Agostoni C. DHA effects in brain development and function. Nutrients. 2016;8(1)

  34. Bryant J, Hanson M, Peebles C, Davies L, Inskip H, Robinson S, et al. Higher oily fish consumption in late pregnancy is associated with reduced aortic stiffness in the child at age 9 years. Circ Res. 2015;116(7):1202–5.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  35. Stratakis N, Roumeliotaki T, Oken E, Barros H, Basterrechea M, Charles MA, et al. Fish intake in pregnancy and child growth: a pooled analysis of 15 European and US birth cohorts. JAMA Pediatr. 2016;170(4):381–90.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Fish: what pregnant women and parents should know: draft updated advice by FDA and EPA. 2014 December 15, 2017]; Available from: http://www.fda.gov/Food/FoodborneIllnessContaminants/Metals/ucm393070.htm.

  37. Gillman MW, Rifas-Shiman SL, Fernandez-Barres S, Kleinman K, Taveras EM, Oken E. Beverage intake during pregnancy and childhood adiposity. Pediatrics. 2017;140(2):e20170031.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Azad MB, Sharma AK, de Souza RJ, Dolinsky VW, Becker AB, Mandhane PJ, et al. Association between artificially sweetened beverage consumption during pregnancy and infant body mass index. JAMA Pediatr. 2016;170(7):662–70.

    Article  PubMed  Google Scholar 

  39. Branum AM, Kirmeyer SE, Gregory EC, Prepregnancy body mass index by mtaernal characteristics and state: Data from the birth certificate, 2014, in National vital statistics reports. 2016, National Center for Health Statistics: Hyattsville.

  40. Shin D, Lee K, Song W. Pre-pregnancy weight status is associated with diet quality and nutritional biomarkers during pregnancy. Nutrients. 2016;8(3):162.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  41. Oken E, Kleinman KP, Berland WE, Simon SR, Rich-Edwards JW, Gillman MW. Decline in fish consumption among pregnant women after a national mercury advisory. Obstet Gynecol. 2003;102(2):346–51.

    PubMed  PubMed Central  Google Scholar 

  42. Agriculture, U.S.D.o.H.a.H.S.a.U.S.D.o., 2015–2020 Dietary Guidelines for Americans. 2015. 8th Edition.

  43. Lessen R, Kavanagh K. Position of the academy of nutrition and dietetics: promoting and supporting breastfeeding. J Acad Nutr Diet. 2015;115(3):444–9.

    Article  PubMed  Google Scholar 

  44. Health., O.o.t.S.G.C.f.D.C.a.P.O.o.W.s., The surgeon general’s call to action to support breastfeeding. 2011, Office of the Surgeon General. Rockville.

  45. Centers for Disease Control and Prevention, Breastfeeding Report Card 2016.

  46. Dagher RK, McGovern PM, Schold JD, Randall XJ. Determinants of breastfeeding initiation and cessation among employed mothers: a prospective cohort study. BMC Pregnancy Childbirth. 2016;16(1):194.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Forster DA, Johns HM, McLachlan HL, Moorhead AM, McEgan KM, Amir LH. Feeding infants directly at the breast during the postpartum hospital stay is associated with increased breastfeeding at 6 months postpartum: a prospective cohort study. BMJ Open. 2015;5(5):e007512.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Mirkovic KR, Perrine CG, Scanlon KS, Grummer-Strawn LM. Maternity leave duration and full-time/part-time work status are associated with US mothers’ ability to meet breastfeeding intentions. J Hum Lact. 2014;30(4):416–9.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Mirkovic KR, Perrine CG, Scanlon KS, Grummer-Strawn LM. In the United States, a mother’s plans for infant feeding are associated with her plans for employment. J Hum Lact. 2014;30(3):292–7.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Ruiz L, Espinosa-Martos I, García-Carral C, Manzano S, McGuire MK, Meehan CL, et al. What’s normal? Immune profiling of human milk from healthy women living in different geographical and socioeconomic settings. Front Immunol. 2017;8:696.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Thompson AL. Developmental origins of obesity: early feeding environments, infant growth, and the intestinal microbiome. Am J Hum Biol. 2012;24(3):350–60.

    Article  PubMed  Google Scholar 

  52. Kulinich A, Liu L. Human milk oligosaccharides: the role in the fine-tuning of innate immune responses. Carbohydr Res. 2016;432:62–70.

    Article  PubMed  CAS  Google Scholar 

  53. Mameli, C., S. Mazzantini, and G.V. Zuccotti, Nutrition in the first 1000 days: the origin of childhood obesity. Int J Environ Res Public Health, 2016. 13(9).

  54. Patro-Golab B, et al. Protein concentration in milk formula, growth, and later risk of obesity: a systematic review. J Nutr. 2016;146(3):551–64.

    Article  PubMed  CAS  Google Scholar 

  55. Wood CT, Skinner AC, Yin HS, Rothman RL, Sanders LM, Delamater AM, et al. Bottle size and weight gain in formula-fed infants. Pediatrics. 2016;138(1):e20154538.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Wood CT, Skinner AC, Yin HS, Rothman RL, Sanders LM, Delamater A, et al. Association between bottle size and formula intake in 2-month-old infants. Acad Pediatr. 2016;16(3):254–9.

    Article  PubMed  Google Scholar 

  57. Horta BL, Loret de Mola C, Victora CG. Long-term consequences of breastfeeding on cholesterol, obesity, systolic blood pressure and type 2 diabetes: a systematic review and meta-analysis. Acta Paediatr. 2015;104(467):30–7.

    Article  PubMed  CAS  Google Scholar 

  58. James DC, Lessen R. Position of the American Dietetic Association: promoting and supporting breastfeeding. J Am Diet Assoc. 2009;109(11):1926–42.

    Article  PubMed  Google Scholar 

  59. de Beer M, Vrijkotte TGM, Fall CHD, van Eijsden M, Osmond C, Gemke RJBJ. Associations of infant feeding and timing of weight gain and linear growth during early life with childhood blood pressure: findings from a prospective population based cohort study. PLoS One. 2016;11(11):e0166281.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  60. Rzehak P, Oddy WH, Mearin ML, Grote V, Mori TA, Szajewska H, et al. Infant feeding and growth trajectory patterns in childhood and body composition in young adulthood. Am J Clin Nutr. 2017;106(2):568–80.

    Article  PubMed  CAS  Google Scholar 

  61. Gibbs BG, Forste R. Socioeconomic status, infant feeding practices and early childhood obesity. Pediatr Obes. 2014;9(2):135–46.

    Article  PubMed  CAS  Google Scholar 

  62. Ramirez-Silva I, Rivera JA, Trejo-Valdivia B, Martorell R, Stein AD, Romieu I, et al. Breastfeeding status at age 3 months is associated with adiposity and cardiometabolic markers at age 4 years in Mexican children. J Nutr. 2015;145(6):1295–302.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  63. Martin RM, Patel R, Kramer MS, Vilchuck K, Bogdanovich N, Sergeichick N, et al. Effects of promoting longer-term and exclusive breastfeeding on cardiometabolic risk factors at age 11.5 years: a cluster-randomized, controlled trial. Circulation. 2014;129(3):321–9.

    Article  PubMed  CAS  Google Scholar 

  64. Pirila S, et al. Breast-fed infants and their later cardiovascular health: a prospective study from birth to age 32 years. Br J Nutr. 2014;111(6):1069–76.

    Article  PubMed  CAS  Google Scholar 

  65. Musilova S, Rada V, Vlkova E, Bunesova V. Beneficial effects of human milk oligosaccharides on gut microbiota. Benef Microbes. 2014;5(3):273–83.

    Article  PubMed  CAS  Google Scholar 

  66. Kleinman RE. American academy of pediatrics recommendations for complementary feeding. Pediatrics. 2000;106(5):1274.

    Article  PubMed  CAS  Google Scholar 

  67. Daniels L, Mallan KM, Fildes A, Wilson J. The timing of solid introduction in an ‘obesogenic’ environment: a narrative review of the evidence and methodological issues. Aust N Z J Public Health. 2015;39(4):366–73.

    Article  PubMed  Google Scholar 

  68. Birch LL, Doub AE. Learning to eat: birth to age 2 y. Am J Clin Nutr. 2014;99(3):723s–8s.

    Article  PubMed  CAS  Google Scholar 

  69. Daniels LA, Mallan KM, Battistutta D, Nicholson JM, Meedeniya JE, Bayer JK, et al. Child eating behavior outcomes of an early feeding intervention to reduce risk indicators for child obesity: the NOURISH RCT. Obesity (Silver Spring). 2014;22(5):E104–11.

    Article  Google Scholar 

  70. Magarey A, Mauch C, Mallan K, Perry R, Elovaris R, Meedeniya J, et al. Child dietary and eating behavior outcomes up to 3.5 years after an early feeding intervention: the NOURISH RCT. Obesity (Silver Spring). 2016;24(7):1537–45.

    Article  Google Scholar 

  71. Agriculture, U.S.D.o, Infant nutrition and feeding: a guide for use in the WIC and CSF programs. 2009, Special supplemental nutrition program for Women, Infants, and Children (WIC), Food and Nutrition Service: Washington.

  72. Cogswell ME, Gunn JP, Yuan K, Park S, Merritt R. Sodium and sugar in complementary infant and toddler foods sold in the United States. Pediatrics. 2015;135(3):416–23.

    Article  PubMed  Google Scholar 

  73. Park S, Pan L, Sherry B, Li R. The association of sugar-sweetened beverage intake during infancy with sugar-sweetened beverage intake at 6 years of age. Pediatrics. 2014;134(Suppl 1):S56–62.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Rose CM, Birch LL, Savage JS. Dietary patterns in infancy are associated with child diet and weight outcomes at 6 years. Int J Obes. 2017;41(5):783–8.

    Article  CAS  Google Scholar 

  75. Ogata BN, Hayes D. Position of the academy of nutrition and dietetics: nutrition guidance for healthy children ages 2 to 11 years. J Acad Nutr Diet. 2014;114(8):1257–76.

    Article  PubMed  Google Scholar 

  76. Ogden CL, Carroll MD, Lawman HG, Fryar CD, Kruszon-Moran D, Kit BK, et al. Trends in obesity prevalence among children and adolescents in the United States, 1988–1994 through 2013–2014. JAMA. 2016;315(21):2292–9.

    Article  PubMed  CAS  Google Scholar 

  77. U.S. Department of Health and Human Services and O.o.D.P.a.H. Promotion. Healthy People 2020 Objectives (Internet). [cited 2017 December 15, 2017]; Available from https://www.healthypeople.gov/2020/topics-objectives/topic/nutrition-and-weight-status/objectives.

  78. National Academies of Sciences, E. and Medicine. Obesity in the Early Childhood Years: State of the Science and Implementation of Promising Solutions: Workshop Summary, ed. S. Olson. 2016, Washington: The National Academies Press. 114.

  79. Skouteris H, Hill B, McCabe M, Swinburn B, Busija L. A parent-based intervention to promote healthy eating and active behaviours in pre-school children: evaluation of the MEND 2-4 randomized controlled trial. Pediatr Obes. 2016;11(1):4–10.

    Article  PubMed  CAS  Google Scholar 

  80. Natale RA, Lopez-Mitnik G, Uhlhorn SB, Asfour L, Messiah SE. Effect of a child care center-based obesity prevention program on body mass index and nutrition practices among preschool-aged children. Health Promot Pract. 2014;15(5):695–705.

    Article  PubMed  Google Scholar 

  81. Nystrom CD, et al. Mobile-based intervention intended to stop obesity in preschool-aged children: the MINISTOP randomized controlled trial. Am J Clin Nutr. 2017;105(6):1327–35.

    PubMed  Google Scholar 

  82. Shloim N, et al. Parenting styles, feeding styles, feeding practices, and weight status in 4–12 year-old children: a systematic review of the literature. Front Psychol. 2015;6:1849.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Ferguson JF, Allayee H, Gerszten RE, Ideraabdullah F, Kris-Etherton PM, Ordovás JM, et al. Nutrigenomics, the microbiome, and gene-environment interactions: new directions in cardiovascular disease research, prevention, and treatment: a scientific statement from the American Heart Association. Circ Cardiovasc Genet. 2016;9(3):291–313.

    Article  PubMed  CAS  Google Scholar 

  84. Cheng S, Shah SH, Corwin EJ, Fiehn O, Fitzgerald RL, Gerszten RE, et al. Potential impact and study considerations of metabolomics in cardiovascular health and disease: a scientific statement from the American Heart Association. Circ Cardiovasc Genet. 2017;10(2):e000032.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Lynch CJ, Adams SH. Branched-chain amino acids in metabolic signalling and insulin resistance. Nat Rev Endocrinol. 2014;10(12):723–36.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  86. McCormack SE, Shaham O, McCarthy MA, Deik AA, Wang TJ, Gerszten RE, et al. Circulating branched-chain amino acid concentrations are associated with obesity and future insulin resistance in children and adolescents. Pediatr Obes. 2013;8(1):52–61.

    Article  PubMed  CAS  Google Scholar 

  87. Turnbaugh PJ. Microbes and diet-induced obesity: fast, cheap, and out of control. Cell Host Microbe. 2017;21(3):278–81.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  88. Tang WHW, Hazen SL. The gut microbiome and its role in cardiovascular diseases. Circulation. 2017;135(11):1008–10.

    Article  PubMed  Google Scholar 

  89. •• Fito, M., et al., Advances in integrating traditional and omic biomarkers when analyzing the eof the Mediterranean diet intervention in cardiovascular prevention. Int J Mol Sci, 2016. 17(9). An innovative approach towards studying underlying biomarkers and mechanims specific to the Mediterranean-type diet and its effects on subsequent cardiovascular risk development in children.

  90. Heijmans BT, Tobi EW, Stein AD, Putter H, Blauw GJ, Susser ES, et al. Persistent epigenetic differences associated with prenatal exposure to famine in humans. Proc Natl Acad Sci U S A. 2008;105(44):17046–9.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Zeevi D, Korem T, Zmora N, Israeli D, Rothschild D, Weinberger A, et al. Personalized nutrition by prediction of glycemic responses. Cell. 2015;163(5):1079–94.

    Article  PubMed  CAS  Google Scholar 

  92. Stoeckel LE, et al. Psychological and neural contributions to appetite self-regulation. Obesity (Silver Spring). 2017;25(Suppl 1):S17–s25.

    Article  Google Scholar 

  93. FDA, A quantitative assessment of the net effects on fetal neurodevelopment from eating commercial fish (as measured by IQ and also by early age verbal development in children). , F.a.D. Administration, Editor. 2014: Silver Spring, Maryland.

  94. Rijlaarsdam J, Cecil CAM, Walton E, Mesirow MSC, Relton CL, Gaunt TR, et al. Prenatal unhealthy diet, insulin-like growth factor 2 gene (IGF2) methylation, and attention deficit hyperactivity disorder symptoms in youth with early-onset conduct problems. J Child Psychol Psychiatry. 2017;58(1):19–27.

    Article  PubMed  Google Scholar 

  95. Belfort MB, Rifas-Shiman SL, Kleinman KP, Guthrie LB, Bellinger DC, Taveras EM, et al. Infant feeding and childhood cognition at ages 3 and 7 years: effects of breastfeeding duration and exclusivity. JAMA Pediatr. 2013;167(9):836–44.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Leventakou V, Roumeliotaki T, Sarri K, Koutra K, Kampouri M, Kyriklaki A, et al. Dietary patterns in early childhood and child cognitive and psychomotor development: the Rhea mother-child cohort study in Crete. Br J Nutr. 2016;115(8):1431–7.

    Article  PubMed  CAS  Google Scholar 

  97. Nyaradi A, Foster JK, Hickling S, Li J, Ambrosini GL, Jacques A, et al. Prospective associations between dietary patterns and cognitive performance during adolescence. J Child Psychol Psychiatry. 2014;55(9):1017–24.

    Article  PubMed  Google Scholar 

  98. Ríos-Hernández A, Alda JA, Farran-Codina A, Ferreira-García E, Izquierdo-Pulido M. The Mediterranean diet and ADHD in children and adolescents. Pediatrics. 2017;139(2):e20162027.

    Article  PubMed  Google Scholar 

  99. Tandon PS, Tovar A, Jayasuriya AT, Welker E, Schober DJ, Copeland K, et al. The relationship between physical activity and diet and young children’s cognitive development: a systematic review. Prev Med Rep. 2016;3:379–90.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Levitan RD, et al. Gender differences in the association between stop-signal reaction times, body mass indices and/or spontaneous food intake in pre-school children: an early model of compromised inhibitory control and obesity. Int J Obes. 2015;39(4):614–9.

    Article  CAS  Google Scholar 

  101. Verbeken S, Braet C, Goossens L, van der Oord S. Executive function training with game elements for obese children: a novel treatment to enhance self-regulatory abilities for weight-control. Behav Res Ther. 2013;51(6):290–9.

    Article  PubMed  Google Scholar 

  102. Pratt CA, Boyington J, Esposito L, Pemberton VL, Bonds D, Kelley M, et al. Childhood Obesity Prevention and Treatment Research (COPTR): interventions addressing multiple influences in childhood and adolescent obesity. Contemp Clin Trials. 2013;36(2):406–13.

    Article  PubMed  PubMed Central  Google Scholar 

  103. National Academies of Sciences, E. and Medicine, Nutrition across the lifespan for healthy aging: proceedings of a workshop, ed. L. Pray. 2017, Washington, DC: The National Academies Press. 168.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linda Van Horn.

Ethics declarations

Conflict of Interest

Linda Van Horn, Eileen Vincent, and Amanda M. Perak declare no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Nutrition

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Van Horn, L., Vincent, E. & Perak, A.M. Preserving Cardiovascular Health in Young Children: Beginning Healthier by Starting Earlier. Curr Atheroscler Rep 20, 26 (2018). https://doi.org/10.1007/s11883-018-0729-7

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11883-018-0729-7

Keywords

Navigation