Functional Nitric Oxide Nutrition to Combat Cardiovascular Disease

Abstract

Purpose of review

To reveal the mechanisms of nitric oxide (NO) production in humans and how lifestyle, drug therapy, and hygienic practices can decrease NO production. Furthermore, to show how functional nitric oxide nutrition can overcome these limitations to restore endogenous NO production and combat cardiovascular disease.

Recent findings

Research over the past decade has revealed that inorganic nitrate and nitrite found naturally in green leafy vegetables and other vegetables such as beets can provide the human body with a source of bioactive nitric oxide. NO is one of the most important molecules produced within the cardiovascular system that maintains normal blood pressure and prevents inflammation, immune dysfunction, and oxidative stress, hallmarks of cardiovascular disease. This pathway is dependent upon the amount of inorganic nitrate and nitrite in the foods we eat, the presence of oral nitrate-reducing bacteria, and sufficient stomach acid production.

Summary

The concept of food being medicine and medicine being food has lost its place in the practice and implementation of modern medicine over the past century. Certain dietary patterns and specific foods are known to confer very significant protective effects for many human diseases, including cardiovascular disease, the number one killer of men and women in the developed world. However, identification of single or multiple bioactive molecules that are responsible for these effects has escaped scientists and nutritionists for many years. This review will highlight the biochemical, physiological, and epidemiological basis for functional nitric oxide nutrition that can be safely and effectively utilized in patients.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.

    Tuso P, Stoll SR, Li WW. A plant-based diet, atherogenesis, and coronary artery disease prevention. Perm J. 2015;19(1):62–7.

    PubMed  PubMed Central  Article  Google Scholar 

  2. 2.

    Cooper KH, Pollock ML, Martin RP, White SR, Linnerud AC, Jackson A. Physical fitness levels vs selected coronary risk factors. A cross-sectional study. JAMA. 1976;236(2):166–9.

    CAS  PubMed  Article  Google Scholar 

  3. 3.

    Blair SN, Kohl HW 3rd, Paffenbarger RS Jr, Clark DG, Cooper KH, Gibbons LW. Physical fitness and all-cause mortality. A prospective study of healthy men and women. JAMA. 1989;262(17):2395–401.

    CAS  PubMed  Article  Google Scholar 

  4. 4.

    Rassaf T, Lauer T, Heiss C, Balzer J, Mangold S, Leyendecker T, et al. Nitric oxide synthase-derived plasma nitrite predicts exercise capacity. Br J Sports Med. 2007;41(10):669–73. discussion 673

    PubMed  PubMed Central  Article  Google Scholar 

  5. 5.

    Green DJ, OʼDriscoll G, Blanksby BA, Taylor RR. Control of skeletal muscle blood flow during dynamic exercise: contribution of endothelium-derived nitric oxide. Sports Med. 1996;21(2):119–46.

    CAS  PubMed  Article  Google Scholar 

  6. 6.

    •• Bryan NS, Ivy JL. Inorganic nitrite and nitrate: evidence to support consideration as dietary nutrients. Nutr Res. 2015;35(8):643–54.

    CAS  PubMed  Article  Google Scholar 

  7. 7.

    Wang YR, Alexander GC, Stafford RS. Outpatient hypertension treatment, treatment intensification, and control in Western Europe and the United States. Arch Intern Med. 2007;167(2):141–7.

    PubMed  Article  Google Scholar 

  8. 8.

    Cutler JA, Sorlie PD, Wolz M, Thom T, Fields LE, Roccella EJ. Trends in hypertension prevalence, awareness, treatment, and control rates in United States adults between 1988-1994 and 1999-2004. Hypertension. 2008;52(5):818–27.

    CAS  PubMed  Article  Google Scholar 

  9. 9.

    Wright JT Jr, et al. A randomized trial of intensive versus standard blood-pressure control. N Engl J Med. 2015;373(22):2103–16.

    CAS  PubMed  Article  Google Scholar 

  10. 10.

    Arnold WP, Mittal CK, Katsuki S, Murad F. Nitric oxide activates guanylate cyclase and increases guanosine 3′:5′-cyclic monophosphate levels in various tissue preparations. Proc Natl Acad Sci U S A. 1977;74(8):3203–7.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  11. 11.

    Bryan NS, Bian K, Murad F. Discovery of the nitric oxide signaling pathway and targets for drug development. Front Biosci. 2009;14:1–18.

    CAS  Article  Google Scholar 

  12. 12.

    Kelm M. Nitric oxide metabolism and breakdown. Biochim Biophys Acta. 1999;1411:273–89.

    CAS  PubMed  Article  Google Scholar 

  13. 13.

    Stamler JS, Simon DI, Osborne JA, Mullins ME, Jaraki O, Michel T, et al. S-nitrosylation of proteins with nitric oxide: synthesis and characterization of biologically active compounds. Proc Natl Acad Sci U S A. 1992;89:444–8.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  14. 14.

    Boolell M, Allen MJ, Ballard SA, Gepi-Attee S, Muirhead GJ, Naylor AM, et al. Sildenafil: an orally active type 5 cyclic GMP-specific phosphodiesterase inhibitor for the treatment of penile erectile dysfunction. Int J Impot Res. 1996;8(2):47–52.

    CAS  PubMed  Google Scholar 

  15. 15.

    Weimann J, Ullrich R, Hromi J, Fujino Y, Clark MWH, Bloch KD, et al. Sildenafil is a pulmonary vasodilator in awake lambs with acute pulmonary hypertension. Anesthesiology. 2000;92(6):1702–12.

    CAS  PubMed  Article  Google Scholar 

  16. 16.

    McMahon CN, Smith CJ, Shabsigh R. Treating erectile dysfunction when PDE5 inhibitors fail. BMJ. 2006;332(7541):589–92.

    PubMed  PubMed Central  Article  Google Scholar 

  17. 17.

    Vita JA, Treasure CB, Nabel EG, McLenachan JM, Fish RD, Yeung AC, et al. Coronary vasomotor response to acetylcholine relates to risk factors for coronary artery disease. Circulation. 1990;81(2):491–7.

    CAS  PubMed  Article  Google Scholar 

  18. 18.

    Lakatta EG, Yin FC. Myocardial aging: functional alterations and related cellular mechanisms. Am J Phys. 1982;242(6):H927–41.

    CAS  Google Scholar 

  19. 19.

    Kannel WB, Gordon T, Schwartz MJ. Systolic versus diastolic blood pressure and risk of coronary heart disease. The Framingham study. Am J Cardiol. 1971;27(4):335–46.

    CAS  PubMed  Article  Google Scholar 

  20. 20.

    Ross R. Atherosclerosis—an inflammatory disease. N Engl J Med. 1999;340(2):115–26.

    CAS  PubMed  Article  Google Scholar 

  21. 21.

    Soltis EE. Effect of age on blood pressure and membrane-dependent vascular responses in the rat. Circ Res. 1987;61(6):889–97.

    CAS  PubMed  Article  Google Scholar 

  22. 22.

    van der Loo B, Labugger R, Skepper JN, Bachschmid M, Kilo J, Powell JM, et al. Enhanced peroxynitrite formation is associated with vascular aging. J Exp Med. 2000;192(12):1731–44.

    PubMed  PubMed Central  Article  Google Scholar 

  23. 23.

    Pie JE, Baek SY, Kim HP, Ryu SD, Chung WG, Cha YN, et al. Age-related decline of inducible nitric oxide synthase gene expression in primary cultured rat hepatocytes. Mol Cells. 2002;13(3):399–406.

    CAS  PubMed  Google Scholar 

  24. 24.

    Zhou XJ, Vaziri ND, Zhang J, Wang HW, Wang XQ. Association of renal injury with nitric oxide deficiency in aged SHR: prevention by hypertension control with AT1 blockade. Kidney Int. 2002;62(3):914–21.

    CAS  PubMed  Article  Google Scholar 

  25. 25.

    Berkowitz DE, White R, Li D, Minhas KM, Cernetich A, Kim S, et al. Arginase reciprocally regulates nitric oxide synthase activity and contributes to endothelial dysfunction in aging blood vessels. Circulation. 2003;108(16):2000–6.

    CAS  PubMed  Article  Google Scholar 

  26. 26.

    Taddei S, Virdis A, Ghiadoni L, Salvetti G, Bernini G, Magagna A, et al. Age-related reduction of NO availability and oxidative stress in humans. Hypertension. 2001;38(2):274–9.

    CAS  PubMed  Article  Google Scholar 

  27. 27.

    Egashira K, Inou T, Hirooka Y, Kai H, Sugimachi M, Suzuki S, et al. Effects of age on endothelium-dependent vasodilation of resistance coronary artery by acetylcholine in humans. Circulation. 1993;88(1):77–81.

    CAS  PubMed  Article  Google Scholar 

  28. 28.

    Gerhard M, Roddy MA, Creager SJ, Creager MA. Aging progressively impairs endothelium-dependent vasodilation in forearm resistance vessels of humans. Hypertension. 1996;27(4):849–53.

    CAS  PubMed  Article  Google Scholar 

  29. 29.

    Hibbs JB Jr, Taintor RR, Vavrin Z. Macrophage cytotoxicity: role for L-arginine deiminase and imino nitrogen oxidation to nitrite. Science. 1987;235(4787):473–6.

    CAS  PubMed  Article  Google Scholar 

  30. 30.

    Landmesser U, Dikalov S, Price SR, McCann L, Fukai T, Holland SM, et al. Oxidation of tetrahydrobiopterin leads to uncoupling of endothelial cell nitric oxide synthase in hypertension. J Clin Invest. 2003;111(8):1201–9.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  31. 31.

    Lortie MJ, Ishizuka S, Schwartz D, Blantz RC. Bioactive products of arginine in sepsis: tissue and plasma composition after LPS and iNOS blockade. Am J Phys Cell Physiol. 2000;278(6):C1191–9.

    CAS  Article  Google Scholar 

  32. 32.

    Aisaka K, Gross SS, Griffith OW, Levi R. L-arginine availability determines the duration of acetylcholine-induced systemic vasodilation in vivo. Biochem Biophys Res Commun. 1989;163(2):710–7.

    CAS  PubMed  Article  Google Scholar 

  33. 33.

    Erez A, Nagamani SCS, Shchelochkov OA, Premkumar MH, Campeau PM, Chen Y, et al. Requirement of argininosuccinate lyase for systemic nitric oxide production. Nat Med. 2011;17(12):1619–26.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  34. 34.

    Hecker M, Mitchell JA, Harris HJ, Katsura M, Thiemermann C, Vane JR. Endothelial cells metabolize NG-monomethyl-L-arginine to L-citrulline and subsequently to L-arginine. Biochem Biophys Res Commun. 1990;167(3):1037–43.

    CAS  PubMed  Article  Google Scholar 

  35. 35.

    Schulman SP, Becker LC, Kass DA, Champion HC, Terrin ML, Forman S, et al. L-arginine therapy in acute myocardial infarction: the vascular interaction with age in myocardial infarction (VINTAGE MI) randomized clinical trial. JAMA. 2006;295(1):58–64.

    CAS  PubMed  Article  Google Scholar 

  36. 36.

    Wilson AM, Harada R, Nair N, Balasubramanian N, Cooke JP. L-arginine supplementation in peripheral arterial disease: no benefit and possible harm. Circulation. 2007;116(2):188–95.

    CAS  PubMed  Article  Google Scholar 

  37. 37.

    Moir JWB, editor. Nitrogen cycling in bacteria: molecular analysis. Norfolk: Caister Acedemic Press; 2011.

    Google Scholar 

  38. 38.

    Bryan NS, Loscalzo J. Nitrite and nitrate in human health and disease. In: Bendich A, editor. Nutrition and health. New York: Humana Press; 2011.

    Google Scholar 

  39. 39.

    Lundberg JO, Weitzberg E, Cole JA, Benjamin N. Nitrate, bacteria and human health. Nat Rev Microbiol. 2004;2(7):593–602.

    CAS  PubMed  Article  Google Scholar 

  40. 40.

    Cosby K, Partovi KS, Crawford JH, Patel RP, Reiter CD, Martyr S, et al. Nitrite reduction to nitric oxide by deoxyhemoglobin vasodilates the human circulation. Nat Med. 2003;9:1498–505.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  41. 41.

    Feelisch M, Fernandez BO, Bryan NS, Garcia-Saura MF, Bauer S, Whitlock DR, et al. Tissue processing of nitrite in hypoxia: an intricate interplay of nitric oxide-generating and -scavenging systems. J Biol Chem. 2008;283(49):33927–34.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  42. 42.

    Kleinbongard P, Dejam A, Lauer T, Rassaf T, Schindler A, Picker O, et al. Plasma nitrite reflects constitutive nitric oxide synthase activity in mammals. Free Radic Biol Med. 2003;35(7):790–6.

    CAS  PubMed  Article  Google Scholar 

  43. 43.

    • Nunez de Gonzalez MT, et al. A survey of nitrate and nitrite concentrations in conventional and organic-labeled raw vegetables at retail. J Food Sci. 2015;80(5):C942–9.

    CAS  PubMed  Article  Google Scholar 

  44. 44.

    Bryan NS, Van Grinsven H. The role of nitrate in human health. In: Sparks DL, editor. Advances in agronomy. New York: Elsevier; 2013. p. 153–76.

    Google Scholar 

  45. 45.

    Mensinga TT, Speijers GJ, Meulenbelt J. Health implications of exposure to environmental nitrogenous compounds. Toxicol Rev. 2003;22(1):41–51.

    CAS  PubMed  Article  Google Scholar 

  46. 46.

    Gangolli SD, van den Brandt P, Feron VJ, Janzowsky C, Koeman JH, Speijers GJ, et al. Nitrate, nitrite and N-nitroso compounds. Eur J Pharmacol. 1994;292(1):1–38.

    CAS  PubMed  Google Scholar 

  47. 47.

    Lundberg JO, Feelisch M, Björne H, Jansson EÅ, Weitzberg E. Cardioprotective effects of vegetables: is nitrate the answer? Nitric Oxide. 2006;15(4):359–62.

    CAS  PubMed  Article  Google Scholar 

  48. 48.

    Hord NG, Tang Y, Bryan NS. Food sources of nitrates and nitrites: the physiologic context for potential health benefits. Am J Clin Nutr. 2009;90(1):1–10.

    CAS  PubMed  Article  Google Scholar 

  49. 49.

    Sobko T, Marcus C, Govoni M, Kamiya S. Dietary nitrate in Japanese traditional foods lowers diastolic blood pressure in healthy volunteers. Nitric Oxide. 2010;22(2):136–40.

    CAS  PubMed  Article  Google Scholar 

  50. 50.

    Nadtochiy SM, Redman EK. Mediterranean diet and cardioprotection: the role of nitrite, polyunsaturated fatty acids, and polyphenols. Nutrition. 2011;27(7–8):733–44.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  51. 51.

    Doel JJ, Benjamin N, Hector MP, Rogers M, Allaker RP. Evaluation of bacterial nitrate reduction in the human oral cavity. Eur J Oral Sci. 2005;113(1):14–9.

    CAS  PubMed  Article  Google Scholar 

  52. 52.

    Li H, Duncan C, Townend J, Killham K, Smith LM, Johnston P, et al. Nitrate-reducing bacteria on rat tongues. Appl Environ Microbiol. 1997;63(3):924–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. 53.

    Hyde ER, Andrade F, Vaksman Z, Parthasarathy K, Jiang H, Parthasarathy DK, et al. Metagenomic analysis of nitrate-reducing bacteria in the oral cavity: implications for nitric oxide homeostasis. PLoS One. 2014;9(3):e88645.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  54. 54.

    Qin L, Liu X, Sun Q, Fan Z, Xia D, Ding G, et al. Sialin (SLC17A5) functions as a nitrate transporter in the plasma membrane. Proc Natl Acad Sci U S A. 2012;109(33):13434–9.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  55. 55.

    Walker R. The metabolism of dietary nitrites and nitrates. Biochem Soc Trans. 1996;24(3):780–5.

    CAS  PubMed  Article  Google Scholar 

  56. 56.

    Spiegelhalder B, Eisenbrand G, Preussmann R. Influence of dietary nitrate on nitrite content of human saliva: possible relevance to in vivo formation of N-nitroso compounds. Food Cosmet Toxicol. 1976;14(6):545–8.

    CAS  PubMed  Article  Google Scholar 

  57. 57.

    McKnight GM, Smith LM, Drummond RS, Duncan CW, Golden M, Benjamin N. Chemical synthesis of nitric oxide in the stomach from dietary nitrate in humans. Gut. 1997;40(2):211–4.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  58. 58.

    Green LC, Ruiz de Luzuriaga K, Wagner DA, Rand W, Istfan N, Young VR, et al. Nitrate biosynthesis in man. Proc Natl Acad Sci U S A. 1981;78(12):7764–8.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  59. 59.

    Wennmalm A, Benthin G, Edlund A, Jungersten L, Kieler-Jensen N, Lundin S, et al. Metabolism and excretion of nitric oxide in humans. An experimental and clinical study. Circ Res. 1993;73(6):1121–7.

    CAS  PubMed  Article  Google Scholar 

  60. 60.

    Rahma M, et al. Effects of furosemide on the tubular reabsorption of nitrates in anesthetized dogs. Eur J Pharmacol. 2001;428(1):113–9.

    CAS  PubMed  Article  Google Scholar 

  61. 61.

    Godfrey M, Majid DS. Renal handling of circulating nitrates in anesthetized dogs. Am J Phys. 1998;275(1 Pt 2):F68–73.

    CAS  Google Scholar 

  62. 62.

    Bailey SJ, Fulford J, Vanhatalo A, Winyard PG, Blackwell JR, DiMenna FJ, et al. Dietary nitrate supplementation enhances muscle contractile efficiency during knee-extensor exercise in humans. J Appl Physiol. 2010;109(1):135–48.

    CAS  PubMed  Article  Google Scholar 

  63. 63.

    Lansley KE, Winyard PG, Fulford J, Vanhatalo A, Bailey SJ, Blackwell JR, et al. Dietary nitrate supplementation reduces the O2 cost of walking and running: a placebo-controlled study. J Appl Physiol. 2011;110(3):591–600.

    CAS  PubMed  Article  Google Scholar 

  64. 64.

    Vanhatalo A, Bailey SJ, Blackwell JR, DiMenna FJ, Pavey TG, Wilkerson DP, et al. Acute and chronic effects of dietary nitrate supplementation on blood pressure and the physiological responses to moderate-intensity and incremental exercise. Am J Phys Regul Integr Comp Phys. 2010;299(4):R1121–31.

    CAS  Google Scholar 

  65. 65.

    Kelly J, Fulford J, Vanhatalo A, Blackwell JR, French O, Bailey SJ, et al. Effects of short-term dietary nitrate supplementation on blood pressure, O2 uptake kinetics, and muscle and cognitive function in older adults. Am J Phys Regul Integr Comp Phys. 2013;304(2):R73–83.

    CAS  Google Scholar 

  66. 66.

    Kenjale AA, Ham KL, Stabler T, Robbins JL, Johnson JL, VanBruggen M, et al. Dietary nitrate supplementation enhances exercise performance in peripheral arterial disease. J Appl Physiol (1985). 2011;110(6):1582–91.

    CAS  Article  Google Scholar 

  67. 67.

    Coles LT, Clifton PM. Effect of beetroot juice on lowering blood pressure in free-living, disease-free adults: a randomized, placebo-controlled trial. Nutr J. 2012;11:106.

    PubMed  PubMed Central  Article  Google Scholar 

  68. 68.

    Kapil V, Milsom AB, Okorie M, Maleki-Toyserkani S, Akram F, Rehman F, et al. Inorganic nitrate supplementation lowers blood pressure in humans: role for nitrite-derived NO. Hypertension. 2010;56(2):274–81.

    CAS  PubMed  Article  Google Scholar 

  69. 69.

    Larsen FJ, Ekblom B, Sahlin K, Lundberg JO, Weitzberg E. Effects of dietary nitrate on blood pressure in healthy volunteers. N Engl J Med. 2006;355(26):2792–3.

    CAS  PubMed  Article  Google Scholar 

  70. 70.

    Govoni M, Jansson EÅ, Weitzberg E, Lundberg JO. The increase in plasma nitrite after a dietary nitrate load is markedly attenuated by an antibacterial mouthwash. Nitric Oxide. 2008;19(4):333–7.

    CAS  PubMed  Article  Google Scholar 

  71. 71.

    Kapil V, Haydar SMA, Pearl V, Lundberg JO, Weitzberg E, Ahluwalia A. Physiological role for nitrate-reducing oral bacteria in blood pressure control. Free Radic Biol Med. 2013;55:93–100.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  72. 72.

    Petersson J, Carlström M, Schreiber O, Phillipson M, Christoffersson G, Jägare A, et al. Gastroprotective and blood pressure lowering effects of dietary nitrate are abolished by an antiseptic mouthwash. Free Radic Biol Med. 2009;46(8):1068–75.

    CAS  PubMed  Article  Google Scholar 

  73. 73.

    Webb AJ, Patel N, Loukogeorgakis S, Okorie M, Aboud Z, Misra S, et al. Acute blood pressure lowering, vasoprotective, and antiplatelet properties of dietary nitrate via bioconversion to nitrite. Hypertension. 2008;51(3):784–90.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  74. 74.

    Fleming-Dutra KE, Hersh AL, Shapiro DJ, Bartoces M, Enns EA, File TM Jr, et al. Prevalence of inappropriate antibiotic prescriptions among US ambulatory care visits, 2010-2011. JAMA. 2016;315(17):1864–73.

    CAS  PubMed  Article  Google Scholar 

  75. 75.

    Lundberg JO, Weitzberg E, Lundberg JM, Alving K. Intragastric nitric oxide production in humans: measurements in expelled air. Gut. 1994;35(11):1543–6.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  76. 76.

    Pinheiro LC, Montenegro MF, Amaral JH, Ferreira GC, Oliveira AM, Tanus-Santos JE. Increase in gastric pH reduces hypotensive effect of oral sodium nitrite in rats. Free Radic Biol Med. 2012;53(4):701–9.

    CAS  PubMed  Article  Google Scholar 

  77. 77.

    Amaral JH, Montenegro MF, Pinheiro LC, Ferreira GC, Barroso RP, Costa-Filho AJ, et al. TEMPOL enhances the antihypertensive effects of sodium nitrite by mechanisms facilitating nitrite-derived gastric nitric oxide formation. Free Radic Biol Med. 2013;65:446–55.

    CAS  PubMed  Article  Google Scholar 

  78. 78.

    Pinheiro LC, Amaral JH, Ferreira GC, Portella RL, Ceron CS, Montenegro MF, et al. Gastric S-nitrosothiol formation drives the antihypertensive effects of oral sodium nitrite and nitrate in a rat model of renovascular hypertension. Free Radic Biol Med. 2015;87:252–62.

    CAS  PubMed  Article  Google Scholar 

  79. 79.

    Porst H, Padma-Nathan H, Giuliano F, Anglin G, Varanese L, Rosen R. Efficacy of tadalafil for the treatment of erectile dysfunction at 24 and 36 hours after dosing: a randomized controlled trial. Urology. 2003;62(1):121–5; discussion 125-6.

    PubMed  Article  Google Scholar 

  80. 80.

    Perros F, Ranchoux B, Izikki M, Bentebbal S, Happé C, Antigny F, et al. Nebivolol for improving endothelial dysfunction, pulmonary vascular remodeling, and right heart function in pulmonary hypertension. J Am Coll Cardiol. 2015;65(7):668–80.

    CAS  PubMed  Article  Google Scholar 

  81. 81.

    Cooke JP, Ghebremariam YT. DDAH says NO to ADMA. Arterioscler Thromb Vasc Biol. 2011;31(7):1462–4.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  82. 82.

    Dayoub H, Achan V, Adimoolam S, Jacobi J, Stuehlinger MC, Wang BY, et al. Dimethylarginine dimethylaminohydrolase regulates nitric oxide synthesis: genetic and physiological evidence. Circulation. 2003;108(24):3042–7.

    CAS  PubMed  Article  Google Scholar 

  83. 83.

    Ghebremariam YT, LePendu P, Lee JC, Erlanson DA, Slaviero A, Shah NH, et al. Unexpected effect of proton pump inhibitors: elevation of the cardiovascular risk factor asymmetric dimethylarginine. Circulation. 2013;128(8):845–53.

    CAS  PubMed  Article  Google Scholar 

  84. 84.

    Bryan NS. Nitrite in nitric oxide biology: cause or consequence? A systems-based review. Free Radic Biol Med. 2006;41(5):691–701.

    CAS  PubMed  Article  Google Scholar 

  85. 85.

    Kevil CG, Kolluru GK, Pattillo CB, Giordano T. Inorganic nitrite therapy: historical perspective and future directions. Free Radic Biol Med. 2011;51(3):576–93.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  86. 86.

    Bryan NS, Fernandez BO, Bauer SM, Garcia-Saura MF, Milsom AB, Rassaf T, et al. Nitrite is a signaling molecule and regulator of gene expression in mammalian tissues. Nat Chem Biol. 2005;1(5):290–7.

    CAS  PubMed  Article  Google Scholar 

  87. 87.

    Lundberg JO, Weitzberg E, Gladwin MT. The nitrate-nitrite-nitric oxide pathway in physiology and therapeutics. Nat Rev Drug Discov. 2008;7(8):156–67.

    CAS  PubMed  Article  Google Scholar 

  88. 88.

    Hord NG, Ghannam JS, Garg HK, Berens PD, Bryan NS. Nitrate and nitrite content of human, formula, bovine, and soy milks: implications for dietary nitrite and nitrate recommendations. Breastfeed Med. 2011;6(6):393–9.

    PubMed  PubMed Central  Article  Google Scholar 

  89. 89.

    Nunez De Gonzalez MT, et al. Survey of residual nitrite and nitrate in conventional and organic/natural/uncured/indirectly cured meats available at retail in the United States. J Agric Food Chem. 2012;60(15):3981–90.

    CAS  PubMed  Article  Google Scholar 

  90. 90.

    Pennington J. Dietary exposure models for nitrates and nitrites. Food Control. 1998;9(6):385–95.

    Article  Google Scholar 

  91. 91.

    Luiking YC, Deutz NE. Isotopic investigation of nitric oxide metabolism in disease. Curr Opin Clin Nutr Metab Care. 2003;6(1):103–8.

    CAS  PubMed  Article  Google Scholar 

  92. 92.

    van Eijk HM, Luiking YC, Deutz NE. Methods using stable isotopes to measure nitric oxide (NO) synthesis in the L-arginine/NO pathway in health and disease. J Chromatogr B Anal Technol Biomed Life Sci. 2007;851(1–2):172–85.

    Article  CAS  Google Scholar 

  93. 93.

    Hunault CC, van Velzen AG, Sips AJAM, Schothorst RC, Meulenbelt J. Bioavailability of sodium nitrite from an aqueous solution in healthy adults. Toxicol Lett. 2009;190(1):48–53.

    CAS  PubMed  Article  Google Scholar 

  94. 94.

    Greenway FL, Predmore BL, Flanagan DR, Giordano T, Qiu Y, Brandon A, et al. Single-dose pharmacokinetics of different oral sodium nitrite formulations in diabetes patients. Diabetes Technol Ther. 2012;14(7):552–60.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  95. 95.

    DeVan AE, et al. Effects of sodium nitrite supplementation on vascular function and related small metabolite signatures in middle-aged and older adults. J Appl Physiol (1985). 2015;p jap 00879 2015.

  96. 96.

    Justice JN, Johnson LC, DeVan AE, Cruickshank-Quinn C, Reisdorph N, Bassett CJ, et al. Improved motor and cognitive performance with sodium nitrite supplementation is related to small metabolite signatures: a pilot trial in middle-aged and older adults. Aging (Albany NY). 2015;7(11):1004–21.

    CAS  Article  Google Scholar 

  97. 97.

    Oldfield EH, Loomba JJ, Monteith SJ, Crowley RW, Medel R, Gress DR, et al. Safety and pharmacokinetics of sodium nitrite in patients with subarachnoid hemorrhage: a phase IIA study. J Neurosurg. 2013;119(3):634–41.

    CAS  PubMed  Article  Google Scholar 

  98. 98.

    Tang Y, Garg H, Geng YJ, Bryan NS. Nitric oxide bioactivity of traditional Chinese medicines used for cardiovascular indications. Free Radic Biol Med. 2009;47(6):835–40.

    CAS  PubMed  Article  Google Scholar 

  99. 99.

    Zand J, Lanza F, Garg HK, Bryan NS. All-natural nitrite and nitrate containing dietary supplement promotes nitric oxide production and reduces triglycerides in humans. Nutr Res. 2011;31(4):262–9.

    CAS  PubMed  Article  Google Scholar 

  100. 100.

    Nagamani SC, et al. Nitric-oxide supplementation for treatment of long-term complications in argininosuccinic aciduria. Am J Hum Genet. 2012;90(5):836–46.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  101. 101.

    Houston M, Hays L. Acute effects of an oral nitric oxide supplement on blood pressure, endothelial function, and vascular compliance in hypertensive patients. J Clin Hypertens (Greenwich). 2014;16(7):524–9.

    CAS  Google Scholar 

  102. 102.

    Biswas OS, Gonzalez VR, Schwarz ER. Effects of an oral nitric oxide supplement on functional capacity and blood pressure in adults with prehypertension. J Cardiovasc Pharmacol Ther. 2014;

  103. 103.

    Lee J, Kim HT, Solares GJ, Kim K, Ding Z, Ivy JL. Caffeinated nitric oxide-releasing lozenge improves cycling time trial performance. Int J Sports Med. 2015;36(2):107–12.

    CAS  PubMed  Google Scholar 

  104. 104.

    Lee E. Effects of nitric oxide on carotid intima media thickness: a pilot study. Altern Ther Health Med. 2016;22(S2):32–4.

    CAS  PubMed  Google Scholar 

  105. 105.

    Bedi US, Singh M, Singh PP, Bhuriya R, Bahekar A, Molnar J, et al. Effects of statins on progression of carotid atherosclerosis as measured by carotid intimal—medial thickness: a meta-analysis of randomized controlled trials. J Cardiovasc Pharmacol Ther. 2010;15(3):268–73.

    CAS  PubMed  Article  Google Scholar 

  106. 106.

    Bock JM, et al. Inorganic nitrate supplementation attenuates peripheral chemoreflex sensitivity but does not improve cardiovagal baroreflex sensitivity in older adults. Am J Physiol Heart Circ Physiol. 2017;p ajpheart 00389.

  107. 107.

    Ohta N, Tsukahara H, Ohshima Y, Nishii M, Ogawa Y, Sekine K, et al. Nitric oxide metabolites and adrenomedullin in human breast milk. Early Hum Dev. 2004;78(1):61–5.

    CAS  PubMed  Article  Google Scholar 

  108. 108.

    Cekmen MB, Balat A, Balat O, Aksoy F, Yurekli M, Erbagci AB, et al. Decreased adrenomedullin and total nitrite levels in breast milk of preeclamptic women. Clin Biochem. 2004;37(2):146–8.

    CAS  PubMed  Article  Google Scholar 

  109. 109.

    Yazji I, Sodhi CP, Lee EK, Good M, Egan CE, Afrazi A, et al. Endothelial TLR4 activation impairs intestinal microcirculatory perfusion in necrotizing enterocolitis via eNOS-NO-nitrite signaling. Proc Natl Acad Sci U S A. 2013;110(23):9451–6.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  110. 110.

    Erzurum SC, Ghosh S, Janocha AJ, Xu W, Bauer S, Bryan NS, et al. Higher blood flow and circulating NO products offset high-altitude hypoxia among Tibetans. Proc Natl Acad Sci U S A. 2007;104(45):17593–8.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  111. 111.

    Levett DZ, et al. The role of nitrogen oxides in human adaptation to hypoxia. Sci Rep. 2011;1:109.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Nathan S. Bryan.

Ethics declarations

Conflict of Interest

NSBryan is the Founder and Shareholder of HumanN

NSBryan is a Shareholder and Advisor for SAJE Pharma

NSBryan receives royalties from patents from the University of Texas Health Science Center at Houston

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Nutrition

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bryan, N.S. Functional Nitric Oxide Nutrition to Combat Cardiovascular Disease. Curr Atheroscler Rep 20, 21 (2018). https://doi.org/10.1007/s11883-018-0723-0

Download citation

Keywords

  • Dietary nitrate
  • Nitrite
  • Microbiome
  • Stomach acid
  • Beets
  • Vegetarian