Advertisement

Pleiotropic Anti-atherosclerotic Effects of PCSK9 Inhibitors From Molecular Biology to Clinical Translation

  • Angelos D. Karagiannis
  • Martin Liu
  • Peter P. Toth
  • Shijia Zhao
  • Devendra K. Agrawal
  • Peter Libby
  • Yiannis S. Chatzizisis
Vascular Biology (J. Hamilton, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Vascular Biology

Abstract

Purpose of Review

Clinical trials with PCSK9 inhibitors have shown a robust decrease in plasma LDL levels and a significant reduction in the incidence of cardiovascular atherosclerotic events. However, the role of PCSK9 in atherosclerosis is not well investigated and it remains unclear whether PCSK9 inhibition has direct, LDL-independent, anti-atherosclerotic effects. This review outlines the molecular pathways and targets of PCSK9 in atherosclerosis and summarizes the experimental and clinical data supporting the anti-atherosclerotic (pleiotropic) actions of PCSK9 inhibitors.

Recent Findings

PCSK9 is expressed by various cell types that are involved in atherosclerosis (e.g., endothelial cell, smooth muscle cell, and macrophage) and is detected inside human atherosclerotic plaque. Preclinical studies have shown that inhibition of PCSK9 can attenuate atherogenesis and plaque inflammation.

Summary

Besides increasing plasma LDL, PCSK9 appears to promote the initiation and progression of atherosclerosis. Inhibition of PCSK9 may confer atheroprotection that extends beyond its lipid-lowering effects.

Keywords

Proprotein convertase subtilisin/kexin 9 Atherosclerosis PCSK9 inhibitors Pleiotropic effects Anti-atherosclerotic effects Evolocumab Alirocumab Inclisiran 

Notes

Compliance with Ethical Standards

Conflict of Interest

Angelos D. Karagiannis, Martin Liu, Shijia Zhao, Devendra K. Agrawal, and Yiannis S. Chatzizisis declare no conflicts of interest. Peter P. Toth declares personal fees from Regeneron, personal fees from Amgen, and personal fees from Sanofi, outside the submitted work. Peter Libby declares unpaid consultation to Amgen, Esperion Therapeutics, and Sanofi-Regeneron, outside the submitted work.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Abifadel M, Varret M, Rabes JP, Allard D, Ouguerram K, Devillers M, et al. Mutations in PCSK9 cause autosomal dominant hypercholesterolemia. Nat Genet. 2003;34(2):154–6.CrossRefPubMedGoogle Scholar
  2. 2.
    Seidah NG, Benjannet S, Wickham L, Marcinkiewicz J, Jasmin SB, Stifani S, et al. The secretory proprotein convertase neural apoptosis-regulated convertase 1 (NARC-1): liver regeneration and neuronal differentiation. Proc Natl Acad Sci U S A. 2003;100(3):928–33.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Maxwell KN, Soccio RE, Duncan EM, Sehayek E, Breslow JL. Novel putative SREBP and LXR target genes identified by microarray analysis in liver of cholesterol-fed mice. J Lipid Res. 2003;44(11):2109–19.CrossRefPubMedGoogle Scholar
  4. 4.
    Soutar AK, Naoumova RP. Mechanisms of disease: genetic causes of familial hypercholesterolemia. Nat Clin Pract Cardiovasc Med. 2007;4(4):214–25.CrossRefPubMedGoogle Scholar
  5. 5.
    Garg A, Simha V. Update on dyslipidemia. J Clin Endocrinol Metab. 2007;92(5):1581–9.CrossRefPubMedGoogle Scholar
  6. 6.
    Seidah NG, Awan Z, Chretien M, Mbikay M. PCSK9: a key modulator of cardiovascular health. Circ Res. 2014;114(6):1022–36.CrossRefPubMedGoogle Scholar
  7. 7.
    U.S. Food and Drug Administration. FDA approves Repatha to treat certain patients with high cholesterol. http://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm460082.htm. 2015. Accessed August 27, 2015.
  8. 8.
    U.S. Food and Drug Administration. FDA approves Praluent to treat certain patients with high cholesterol. http://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm455883.htm. 2015. Accessed July 24, 2015.
  9. 9.
    Shapiro MD, Fazio S. PCSK9 and atherosclerosis - lipids and beyond. J Atheroscler Thromb. 2017;24(5):462–72.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Nicholls SJ, Puri R, Anderson T, Ballantyne CM, Cho L, Kastelein JJ, et al. Effect of evolocumab on progression of coronary disease in statin-treated patients: the GLAGOV randomized clinical trial. JAMA. 2016;316(22):2373–84.CrossRefPubMedGoogle Scholar
  11. 11.
    •• Sabatine MS, Giugliano RP, Keech AC, Honarpour N, Wiviott SD, Murphy SA, et al. Evolocumab and clinical outcomes in patients with cardiovascular disease. N Engl J Med. 2017;376:1713–22. First study to show that a PCSK9 inhibitor improves cardiovascular outcomes. CrossRefPubMedGoogle Scholar
  12. 12.
    Norata GD, Tavori H, Pirillo A, Fazio S, Catapano AL. Biology of proprotein convertase subtilisin kexin 9: beyond low-density lipoprotein cholesterol lowering. Cardiovasc Res. 2016;112(1):429–42.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Jeong HJ, Lee HS, Kim KS, Kim YK, Yoon D, Park SW. Sterol-dependent regulation of proprotein convertase subtilisin/kexin type 9 expression by sterol-regulatory element binding protein-2. J Lipid Res. 2008;49(2):399–409.CrossRefPubMedGoogle Scholar
  14. 14.
    Li H, Dong B, Park SW, Lee HS, Chen W, Liu J. Hepatocyte nuclear factor 1alpha plays a critical role in PCSK9 gene transcription and regulation by the natural hypocholesterolemic compound berberine. J Biol Chem. 2009;284(42):28885–95.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Feingold KR, Moser AH, Shigenaga JK, Patzek SM, Grunfeld C. Inflammation stimulates the expression of PCSK9. Biochem Biophys Res Commun. 2008;374(2):341–4.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    •• Ding Z, Liu S, Wang X, Deng X, Fan Y, Shahanawaz J, et al. Cross-talk between LOX-1 and PCSK9 in vascular tissues. Cardiovasc Res. 2015;107(4):556–67. This study showed that PCSK9 is an important player in the atherosclerotic process that interacts with other major pro-atherosclerotic molecules. CrossRefPubMedGoogle Scholar
  17. 17.
    Walley KR, Thain KR, Russell JA, Reilly MP, Meyer NJ, Ferguson JF, et al. PCSK9 is a critical regulator of the innate immune response and septic shock outcome. Sci Transl Med. 2014;6(258):258ra143.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Tang Z, Jiang L, Peng J, Ren Z, Wei D, Wu C, et al. PCSK9 siRNA suppresses the inflammatory response induced by oxLDL through inhibition of NF-kappaB activation in THP-1-derived macrophages. Int J Mol Med. 2012;30(4):931–8.CrossRefPubMedGoogle Scholar
  19. 19.
    •• Ding Z, Liu S, Wang X, Deng X, Fan Y, Sun C, et al. Hemodynamic shear stress via ROS modulates PCSK9 expression in human vascular endothelial and smooth muscle cells and along the mouse aorta. Antioxid Redox Signal. 2015;22(9):760–71. First study to correlate low shear stress and PCSK9 expression in vascular endothelial and smotth muscle cells. CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Kourimate S, Le May C, Langhi C, Jarnoux AL, Ouguerram K, Zair Y, et al. Dual mechanisms for the fibrate-mediated repression of proprotein convertase subtilisin/kexin type 9. J Biol Chem. 2008;283(15):9666–73.CrossRefPubMedGoogle Scholar
  21. 21.
    Poirier S, Mayer G, Poupon V, McPherson PS, Desjardins R, Ly K, et al. Dissection of the endogenous cellular pathways of PCSK9-induced low density lipoprotein receptor degradation: evidence for an intracellular route. J Biol Chem. 2009;284(42):28856–64.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Sun H, Samarghandi A, Zhang N, Yao Z, Xiong M, Teng BB. Proprotein convertase subtilisin/kexin type 9 interacts with apolipoprotein B and prevents its intracellular degradation, irrespective of the low-density lipoprotein receptor. Arterioscler Thromb Vasc Biol. 2012;32(7):1585–95.CrossRefPubMedGoogle Scholar
  23. 23.
    •• Ferri N, Tibolla G, Pirillo A, Cipollone F, Mezzetti A, Pacia S, et al. Proprotein convertase subtilisin kexin type 9 (PCSK9) secreted by cultured smooth muscle cells reduces macrophages LDLR levels. Atherosclerosis. 2012;220(2):381–6. First study to show that PCSK9 is detected in human atherosclerotic plaques and that locally-produced PCSK9 exerts paracrine action on cells implicated in atherosclerosis. CrossRefPubMedGoogle Scholar
  24. 24.
    Roubtsova A, Munkonda MN, Awan Z, Marcinkiewicz J, Chamberland A, Lazure C, et al. Circulating proprotein convertase subtilisin/kexin 9 (PCSK9) regulates VLDLR protein and triglyceride accumulation in visceral adipose tissue. Arterioscler Thromb Vasc Biol. 2011;31(4):785–91.CrossRefPubMedGoogle Scholar
  25. 25.
    Poirier S, Mamarbachi M, Chen WT, Lee AS, Mayer G. GRP94 regulates circulating cholesterol levels through blockade of PCSK9-induced LDLR degradation. Cell Rep. 2015;13(10):2064–71.CrossRefPubMedGoogle Scholar
  26. 26.
    Benjannet S, Rhainds D, Hamelin J, Nassoury N, Seidah NG. The proprotein convertase (PC) PCSK9 is inactivated by furin and/or PC5/6A: functional consequences of natural mutations and post-translational modifications. J Biol Chem. 2006;281(41):30561–72.CrossRefPubMedGoogle Scholar
  27. 27.
    Mayer G, Poirier S, Seidah NG. Annexin A2 is a C-terminal PCSK9-binding protein that regulates endogenous low density lipoprotein receptor levels. J Biol Chem. 2008;283(46):31791–801.CrossRefPubMedGoogle Scholar
  28. 28.
    Seidah NG, Poirier S, Denis M, Parker R, Miao B, Mapelli C, et al. Annexin A2 is a natural extrahepatic inhibitor of the PCSK9-induced LDL receptor degradation. PLoS One. 2012;7(7):e41865.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Kosenko T, Golder M, Leblond G, Weng W, Lagace TA. Low density lipoprotein binds to proprotein convertase subtilisin/kexin type-9 (PCSK9) in human plasma and inhibits PCSK9-mediated low density lipoprotein receptor degradation. J Biol Chem. 2013;288(12):8279–88.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Poirier S, Mayer G, Benjannet S, Bergeron E, Marcinkiewicz J, Nassoury N, et al. The proprotein convertase PCSK9 induces the degradation of low density lipoprotein receptor (LDLR) and its closest family members VLDLR and ApoER2. J Biol Chem. 2008;283(4):2363–72.CrossRefPubMedGoogle Scholar
  31. 31.
    Canuel M, Sun X, Asselin MC, Paramithiotis E, Prat A, Seidah NG. Proprotein convertase subtilisin/kexin type 9 (PCSK9) can mediate degradation of the low density lipoprotein receptor-related protein 1 (LRP-1). PLoS One. 2013;8(5):e64145.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Giunzioni I, Tavori H, Covarrubias R, Major AS, Ding L, Zhang Y, et al. Local effects of human PCSK9 on the atherosclerotic lesion. J Pathol. 2016;238(1):52–62.CrossRefPubMedGoogle Scholar
  33. 33.
    Demers A, Samami S, Lauzier B, Des Rosiers C, Ngo Sock ET, Ong H, et al. PCSK9 induces CD36 degradation and affects long-chain fatty acid uptake and triglyceride metabolism in adipocytes and in mouse liver. Arterioscler Thromb Vasc Biol. 2015;35(12):2517–25.CrossRefPubMedGoogle Scholar
  34. 34.
    Le May C, Kourimate S, Langhi C, Chetiveaux M, Jarry A, Comera C, et al. Proprotein convertase subtilisin kexin type 9 null mice are protected from postprandial triglyceridemia. Arterioscler Thromb Vasc Biol. 2009;29(5):684–90.CrossRefPubMedGoogle Scholar
  35. 35.
    Sabatine MS, Giugliano RP, Wiviott SD, Raal FJ, Blom DJ, Robinson J, et al. Efficacy and safety of evolocumab in reducing lipids and cardiovascular events. N Engl J Med. 2015;372(16):1500–9.CrossRefPubMedGoogle Scholar
  36. 36.
    Robinson JG, Farnier M, Krempf M, Bergeron J, Luc G, Averna M, et al. Efficacy and safety of alirocumab in reducing lipids and cardiovascular events. N Engl J Med. 2015;372(16):1489–99.CrossRefPubMedGoogle Scholar
  37. 37.
    Ridker PM, Revkin J, Amarenco P, Brunell R, Curto M, Civeira F, et al. Cardiovascular efficacy and safety of bococizumab in high-risk patients. N Engl J Med. 2017;376(16):1527–39.CrossRefPubMedGoogle Scholar
  38. 38.
    Kastelein JJ, Nissen SE, Rader DJ, Hovingh GK, Wang MD, Shen T, et al. Safety and efficacy of LY3015014, a monoclonal antibody to proprotein convertase subtilisin/kexin type 9 (PCSK9): a randomized, placebo-controlled phase 2 study. Eur Heart J. 2016;37(17):1360–9.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Baruch A, Mosesova S, Davis JD, Budha N, Vilimovskij A, Kahn R, et al. Effects of RG7652, a monoclonal antibody against PCSK9, on LDL-C, LDL-C subfractions, and inflammatory biomarkers in patients at high risk of or with established coronary heart disease (from the phase 2 EQUATOR study). Am J Cardiol. 2017;119(10):1576–83.CrossRefPubMedGoogle Scholar
  40. 40.
    Ray KK, Landmesser U, Leiter LA, Kallend D, Dufour R, Karakas M, et al. Inclisiran in patients at high cardiovascular risk with elevated LDL cholesterol. N Engl J Med. 2017;376(15):1430–40.CrossRefPubMedGoogle Scholar
  41. 41.
    Landlinger C, Pouwer MG, Juno C, van der Hoorn JWA, Pieterman EJ, Jukema JW, et al. The AT04A vaccine against proprotein convertase subtilisin/kexin type 9 reduces total cholesterol, vascular inflammation, and atherosclerosis in APOE*3Leiden.CETP mice. Eur Heart J. 2017;38(32):2499–507.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Crossey E, Amar MJ, Sampson M, Peabody J, Schiller JT, Chackerian B, et al. A cholesterol-lowering VLP vaccine that targets PCSK9. Vaccine. 2015;33(43):5747–55.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Mitchell T, Chao G, Sitkoff D, Lo F, Monshizadegan H, Meyers D, et al. Pharmacologic profile of the Adnectin BMS-962476, a small protein biologic alternative to PCSK9 antibodies for low-density lipoprotein lowering. J Pharmacol Exp Ther. 2014;350(2):412–24.CrossRefPubMedGoogle Scholar
  44. 44.
    McNutt MC, Kwon HJ, Chen C, Chen JR, Horton JD, Lagace TA. Antagonism of secreted PCSK9 increases low density lipoprotein receptor expression in HepG2 cells. J Biol Chem. 2009;284(16):10561–70.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Ly K, Saavedra YG, Canuel M, Routhier S, Desjardins R, Hamelin J, et al. Annexin A2 reduces PCSK9 protein levels via a translational mechanism and interacts with the M1 and M2 domains of PCSK9. J Biol Chem. 2014;289(25):17732–46.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Miyosawa K, Watanabe Y, Murakami K, Murakami T, Shibata H, Iwashita M, et al. New CETP inhibitor K-312 reduces PCSK9 expression: a potential effect on LDL cholesterol metabolism. Am J Physiol Endocrinol Metab. 2015;309(2):E177–90.CrossRefPubMedGoogle Scholar
  47. 47.
    Petersen DN, Hawkins J, Ruangsiriluk W, Stevens KA, Maguire BA, O'Connell TN, et al. A small-molecule anti-secretagogue of PCSK9 targets the 80S ribosome to inhibit PCSK9 protein translation. Cell Chem Biol. 2016;23(11):1362–71.CrossRefPubMedGoogle Scholar
  48. 48.
    European Medicines Agency. Repatha–evolocumab. http://www.ema.europa.eu/ema/index.jsp?curl=/pages/medicines/human/medicines/003766/human_med_001890.jsp&mid=WC0b01ac058001d124.2015. Marketing Authorisation since 07/17/2015.
  49. 49.
    European Medicines Agency. Praluent - Alirocumab. http://www.ema.europa.eu/ema/index.jsp?curl=pages/medicines/human/medicines/003882/human_med_001915.jsp&mid=WC0b01ac058001d124 2015 Marketing Authorization since 09/23/2015.
  50. 50.
    Dias CS, Shaywitz AJ, Wasserman SM, Smith BP, Gao B, Stolman DS, et al. Effects of AMG 145 on low-density lipoprotein cholesterol levels: results from 2 randomized, double-blind, placebo-controlled, ascending-dose phase 1 studies in healthy volunteers and hypercholesterolemic subjects on statins. J Am Coll Cardiol. 2012;60(19):1888–98.CrossRefPubMedGoogle Scholar
  51. 51.
    Stein EA, Gipe D, Bergeron J, Gaudet D, Weiss R, Dufour R, et al. Effect of a monoclonal antibody to PCSK9, REGN727/SAR236553, to reduce low-density lipoprotein cholesterol in patients with heterozygous familial hypercholesterolaemia on stable statin dose with or without ezetimibe therapy: a phase 2 randomised controlled trial. Lancet. 2012;380(9836):29–36.CrossRefPubMedGoogle Scholar
  52. 52.
    Giugliano RP, Sabatine MS. Are PCSK9 inhibitors the next breakthrough in the cardiovascular field? J Am Coll Cardiol. 2015;65(24):2638–51.CrossRefPubMedGoogle Scholar
  53. 53.
    Dadu RT, Ballantyne CM. Lipid lowering with PCSK9 inhibitors. Nat Rev Cardiol. 2014;11(10):563–75.CrossRefPubMedGoogle Scholar
  54. 54.
    Repatha® U.S. Prescribing Information. Amgen. 2017.Google Scholar
  55. 55.
    Schroeder KM, Beyer TP, Hansen RJ, Han B, Pickard RT, Wroblewski VJ, et al. Proteolytic cleavage of antigen extends the durability of an anti-PCSK9 monoclonal antibody. J Lipid Res. 2015;56(11):2124–32.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Frank-Kamenetsky M, Grefhorst A, Anderson NN, Racie TS, Bramlage B, Akinc A, et al. Therapeutic RNAi targeting PCSK9 acutely lowers plasma cholesterol in rodents and LDL cholesterol in nonhuman primates. Proc Natl Acad Sci U S A. 2008;105(33):11915–20.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Fitzgerald K, White S, Borodovsky A, Bettencourt BR, Strahs A, Clausen V, et al. A highly durable RNAi therapeutic inhibitor of PCSK9. N Engl J Med. 2017;376(1):41–51.CrossRefPubMedGoogle Scholar
  58. 58.
    Galabova G, Brunner S, Winsauer G, Juno C, Wanko B, Mairhofer A, et al. Peptide-based anti-PCSK9 vaccines - an approach for long-term LDLc management. PLoS One. 2014;9(12):e114469.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Chackerian B, Remaley A. Vaccine strategies for lowering LDL by immunization against proprotein convertase subtilisin/kexin type 9. Curr Opin Lipidol. 2016;27(4):345–50.CrossRefPubMedGoogle Scholar
  60. 60.
    Zhang Y, Eigenbrot C, Zhou L, Shia S, Li W, Quan C, et al. Identification of a small peptide that inhibits PCSK9 protein binding to the low density lipoprotein receptor. J Biol Chem. 2014;289(2):942–55.CrossRefPubMedGoogle Scholar
  61. 61.
    Schroeder CI, Swedberg JE, Withka JM, Rosengren KJ, Akcan M, Clayton DJ, et al. Design and synthesis of truncated EGF-A peptides that restore LDL-R recycling in the presence of PCSK9 in vitro. Chem Biol. 2014;21(2):284–94.CrossRefPubMedGoogle Scholar
  62. 62.
    Elshourbagy NA, Meyers HV, Mousa SA, Abdel-Meguid SS. Abstract 10306: identification and characterization of orally bioavailable small molecule protease proprotein convertase subtilisin-like kexin type 9 inhibitors. Circulation. 2015;132(Suppl 3):A10306-A.Google Scholar
  63. 63.
    US National Library of Medicine. ClinicalTrials.gov [online], https://clinicaltrials.gov/ct2/show/NCT02729025 , (ANITSCHKOW trial).
  64. 64.
    US National Library of Medicine. ClinicalTrials.gov [online], https://clinicaltrials.gov/ct2/show/NCT02941016 , (Vascular Inflammation and Cholesterol Lowering Therapy).
  65. 65.
    US National Library of Medicine. ClinicalTrials.gov [online], https://clinicaltrials.gov/ct2/show/NCT03258281 , (Effects of Evolocumab on Platelet Reactivity in Patients With Diabetes Mellitus After Elective Percutaneous Coronary Intervention).
  66. 66.
    Schwartz GG, Bessac L, Berdan LG, Bhatt DL, Bittner V, Diaz R, et al. Effect of alirocumab, a monoclonal antibody to PCSK9, on long-term cardiovascular outcomes following acute coronary syndromes: rationale and design of the ODYSSEY outcomes trial. Am Heart J. 2014;168(5):682–9.CrossRefPubMedGoogle Scholar
  67. 67.
    US National Library of Medicine. ClinicalTrials.gov [online], https://clinicaltrials.gov/ct2/show/NCT02984982 (ODYSSEY J-IVUS trial).
  68. 68.
    US National Library of Medicine. ClinicalTrials.gov [online], https://clinicaltrials.gov/ct2/show/NCT02992301, (Assessment of Atherosclerotic Plaque Characteristics Change by DCE-MRI With Alirocumab).
  69. 69.
    US National Library of Medicine. ClinicalTrials.gov [online], https://clinicaltrials.gov/ct2/show/NCT02959047 , (A Trial of Alirocumab and Plaque Regression in Peripheral Arterial Disease).
  70. 70.
    US National Library of Medicine. ClinicalTrials.gov [online], https://clinicaltrials.gov/ct2/show/NCT03067844 (PACMAN-AMI trial).
  71. 71.
    Navarese EP, Kolodziejczak M, Schulze V, Gurbel PA, Tantry U, Lin Y, et al. Effects of Proprotein convertase Subtilisin/Kexin type 9 antibodies in adults with hypercholesterolemia: a systematic review and meta-analysis. Ann Intern Med. 2015;163(1):40–51.CrossRefPubMedGoogle Scholar
  72. 72.
    Lipinski MJ, Benedetto U, Escarcega RO, Biondi-Zoccai G, Lhermusier T, Baker NC, et al. The impact of proprotein convertase subtilisin-kexin type 9 serine protease inhibitors on lipid levels and outcomes in patients with primary hypercholesterolaemia: a network meta-analysis. Eur Heart J. 2016;37(6):536–45.CrossRefPubMedGoogle Scholar
  73. 73.
    Collaboration CTTC. Efficacy and safety of more intensive lowering of LDL cholesterol: a meta-analysis of data from 170 000 participants in 26 randomised trials. Lancet. 2010;376(9753):1670–81.CrossRefGoogle Scholar
  74. 74.
    Cohen J, Pertsemlidis A, Kotowski IK, Graham R, Garcia CK, Hobbs HH. Low LDL cholesterol in individuals of African descent resulting from frequent nonsense mutations in PCSK9. Nat Genet. 2005;37(2):161–5.CrossRefPubMedGoogle Scholar
  75. 75.
    Cohen J, Boerwinkle E, Mosley T, Hobbs HH. Sequence variations in PCSK9, low LDL, and protection against coronary heart disease. N Engl J Med. 2006;354:1264–72.CrossRefPubMedGoogle Scholar
  76. 76.
    Zhao Z, Tuakli-Wosornu Y, Lagace TA, Kinch L, Grishin NV, Horton JD, et al. Molecular characterization of loss-of-function mutations in PCSK9 and identification of a compound heterozygote. Am J Hum Genet. 2006;79(3):514–23.CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Postmus I, Trompet S, de Craen AJ, Buckley BM, Ford I, Stott DJ, et al. PCSK9 SNP rs11591147 is associated with low cholesterol levels but not with cognitive performance or noncardiovascular clinical events in an elderly population. J Lipid Res. 2013;54(2):561–6.CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Benn M, Nordestgaard BG, Grande P, Schnohr P, Tybjaerg-Hansen A. PCSK9 R46L, low-density lipoprotein cholesterol levels, and risk of ischemic heart disease: 3 independent studies and meta-analyses. J Am Coll Cardiol. 2010;55(25):2833–42.CrossRefPubMedGoogle Scholar
  79. 79.
    Ference BA, Robinson JG, Brook RD, Catapano AL, Chapman MJ, Neff DR, et al. Variation in PCSK9 and HMGCR and risk of cardiovascular disease and diabetes. N Engl J Med. 2016;375(22):2144–53.CrossRefPubMedGoogle Scholar
  80. 80.
    Tang ZH, Peng J, Ren Z, Yang J, Li TT, Li TH, et al. New role of PCSK9 in atherosclerotic inflammation promotion involving the TLR4/NF-kappaB pathway. Atherosclerosis. 2017;262:113–22.CrossRefPubMedGoogle Scholar
  81. 81.
    Kuhnast S, van der Hoorn JW, Pieterman EJ, van den Hoek AM, Sasiela WJ, Gusarova V, et al. Alirocumab inhibits atherosclerosis, improves the plaque morphology, and enhances the effects of a statin. J Lipid Res. 2014;55(10):2103–12.CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    • Adorni MP, Cipollari E, Favari E, Zanotti I, Zimetti F, Corsini A, et al. Inhibitory effect of PCSK9 on Abca1 protein expression and cholesterol efflux in macrophages. Atherosclerosis. 2017;256:1–6. This study showed that PCSK9 inhibition promotes cholesterol efflux from macrophages. CrossRefPubMedGoogle Scholar
  83. 83.
    Zhou X, He W, Huang Z, Gotto AM Jr, Hajjar DP, Genetic HJ. Deletion of low density lipoprotein receptor impairs sterol-induced mouse macrophage ABCA1 expression. A new SREBP1-dependent mechanism. J Biol Chem. 2008;283(4):2129–38.CrossRefPubMedGoogle Scholar
  84. 84.
    • Ferri N, Marchiano S, Tibolla G, Baetta R, Dhyani A, Ruscica M, et al. PCSK9 knock-out mice are protected from neointimal formation in response to perivascular carotid collar placement. Atherosclerosis. 2016;253:214–24. This study showed that PCSK9 inhibition hinders the SMC phenotypic switch. CrossRefPubMedGoogle Scholar
  85. 85.
    Boucher P, Gotthardt M, Li W, Anderson R, Herz J. LRP: role in Vascular Wall integrity and protection from atherosclerosis. Science. 2003;300:329–32.CrossRefPubMedGoogle Scholar
  86. 86.
    Tacken PJ, Delsing DJ, Gijbels MJ, Quax PH, Havekes LM, Hofker MH, et al. VLDL receptor deficiency enhances intimal thickening after vascular injury but does not affect atherosclerotic lesion area. Atherosclerosis. 2002;162(1):103–10.CrossRefPubMedGoogle Scholar
  87. 87.
    Wu CY, Tang ZH, Jiang L, Li XF, Jiang ZS, Liu LS. PCSK9 siRNA inhibits HUVEC apoptosis induced by ox-LDL via Bcl/Bax-caspase9-caspase3 pathway. Mol Cell Biochem. 2012;359(1–2):347–58.CrossRefPubMedGoogle Scholar
  88. 88.
    • Ding Z, Liu S, Wang X, Mathur P, Dai Y, Theus S, et al. Cross-talk between PCSK9 and damaged mtDNA in vascular smooth muscle cells: role in apoptosis. Antioxid Redox Signal. 2016;25(18):997–1008. This study showed the interplay between PCSK9, mtROS, apoptosis and autophagy in vascular SMCs. CrossRefPubMedGoogle Scholar
  89. 89.
    Liu LS, Xie M, Jiang ZS, Wang Z. Effects of pcsk9 siRNA on THP-1 derived macrophages apoptosis induced by oxLDL. Prog Biochem Biophys. 2009;36:323–30.CrossRefGoogle Scholar
  90. 90.
    Wang Y, Hu Z, Liu Z, Chen R, Peng H, Guo J, et al. MTOR inhibition attenuates DNA damage and apoptosis through autophagy-mediated suppression of CREB1. Autophagy. 2013;9(12):2069–86.CrossRefPubMedGoogle Scholar
  91. 91.
    Yancey PG, Blakemore J, Ding L, Fan D, Overton CD, Zhang Y, et al. Macrophage LRP-1 controls plaque cellularity by regulating efferocytosis and Akt activation. Arterioscler Thromb Vasc Biol. 2010;30(4):787–95.CrossRefPubMedPubMedCentralGoogle Scholar
  92. 92.
    Barale C, Bonomo K, Noto F, Traversa M, Cavalot F, Iozzia M, et al. Effects of PCSK9 inhibitors on platelet function in adults with hypercholesterolemia. Atherosclerosis. 2017;263(Supplement C):e30–e1.CrossRefGoogle Scholar
  93. 93.
    Gurbel PA, Navarese EP, Tantry US. Exploration of PCSK9 as a cardiovascular risk factor: is there a link to the platelet? J Am Coll Cardiol. 2017;70(12):1463–6.CrossRefPubMedGoogle Scholar
  94. 94.
    Chatzizisis YS, Coskun AU, Jonas M, Edelman ER, Feldman CL, Stone PH. Role of endothelial shear stress in the natural history of coronary atherosclerosis and vascular remodeling: molecular, cellular, and vascular behavior. J Am Coll Cardiol. 2007;49(25):2379–93.CrossRefPubMedGoogle Scholar
  95. 95.
    Liu Y, Chen BP, Lu M, Zhu Y, Stemerman MB, Chien S, et al. Shear stress activation of SREBP1 in endothelial cells is mediated by integrins. Arterioscler Thromb Vasc Biol. 2002;22(1):76–81.CrossRefPubMedGoogle Scholar
  96. 96.
    Parthasarathy S, Raghavamenon A, Garelnabi MO, Santanam N. Oxidized low-density lipoprotein. Methods Mol Biol. 2010;610:403–17.CrossRefPubMedPubMedCentralGoogle Scholar
  97. 97.
    Tavori H, Giunzioni I, Predazzi IM, Plubell D, Shivinsky A, Miles J, et al. Human PCSK9 promotes hepatic lipogenesis and atherosclerosis development via apoE- and LDLR-mediated mechanisms. Cardiovasc Res. 2016;110(2):268–78.CrossRefPubMedPubMedCentralGoogle Scholar
  98. 98.
    Kzhyshkowska J, Neyen C, Gordon S. Role of macrophage scavenger receptors in atherosclerosis. Immunobiology. 2012;217(5):492–502.CrossRefPubMedGoogle Scholar
  99. 99.
    Voloshyna I, Reiss AB. The ABC transporters in lipid flux and atherosclerosis. Prog Lipid Res. 2011;50(3):213–24.CrossRefPubMedGoogle Scholar
  100. 100.
    Febbraio M, Guy E, Silverstein RL. Stem cell transplantation reveals that absence of macrophage CD36 is protective against atherosclerosis. Arterioscler Thromb Vasc Biol. 2004;24(12):2333–8.CrossRefPubMedGoogle Scholar
  101. 101.
    Bennett MR, Sinha S, Owens GK. Vascular smooth muscle cells in atherosclerosis. Circ Res. 2016;118(4):692–702.CrossRefPubMedPubMedCentralGoogle Scholar
  102. 102.
    Li J, Liang X, Wang Y, Xu Z, Li G. Investigation of highly expressed PCSK9 in atherosclerotic plaques and ox-LDL-induced endothelial cell apoptosis. Mol Med Rep. 2017;16(2):1817–25.CrossRefPubMedPubMedCentralGoogle Scholar
  103. 103.
    Shao BZ, Han BZ, Zeng YX, Su DF, Liu C. The roles of macrophage autophagy in atherosclerosis. Acta Pharmacol Sin. 2016;37(2):150–6.CrossRefPubMedPubMedCentralGoogle Scholar
  104. 104.
    Tabas I. Macrophage death and defective inflammation resolution in atherosclerosis. Nat Rev Immunol. 2010;10(1):36–46.CrossRefPubMedGoogle Scholar
  105. 105.
    Navarese EP, Kolodziejczak M, Winter MP, Alimohammadi A, Lang IM, Buffon A, et al. Association of PCSK9 with platelet reactivity in patients with acute coronary syndrome treated with prasugrel or ticagrelor: the PCSK9-REACT study. Int J Cardiol. 2017;227:644–9.CrossRefPubMedGoogle Scholar
  106. 106.
    Raal FJ, Giugliano RP, Sabatine MS, Koren MJ, Langslet G, Bays H, et al. Reduction in lipoprotein(a) with PCSK9 monoclonal antibody evolocumab (AMG 145): a pooled analysis of more than 1,300 patients in 4 phase II trials. J Am Coll Cardiol. 2014;63(13):1278–88.CrossRefPubMedGoogle Scholar
  107. 107.
    Raal FJ, Giugliano RP, Sabatine MS, Koren MJ, Blom D, Seidah NG, et al. PCSK9 inhibition-mediated reduction in Lp(a) with evolocumab: an analysis of 10 clinical trials and the LDL receptor’s role. J Lipid Res. 2016;57:1086–96.CrossRefPubMedPubMedCentralGoogle Scholar
  108. 108.
    Bonaca MP, Nault P, Giugliano RP, Keech AC, Pineda AL, Kanevsky E, et al. Low-density lipoprotein cholesterol lowering with Evolocumab and outcomes in patients with peripheral artery disease: insights from the FOURIER trial (further cardiovascular outcomes research with PCSK9 inhibition in subjects with elevated risk). Circulation. 2017;Google Scholar
  109. 109.
    Schluter KD, Wolf A, Weber M, Schreckenberg R, Oxidized SR. Low-density lipoprotein (oxLDL) affects load-free cell shortening of cardiomyocytes in a proprotein convertase subtilisin/kexin 9 (PCSK9)-dependent way. Basic Res Cardiol. 2017;112(6):63.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Angelos D. Karagiannis
    • 1
  • Martin Liu
    • 1
  • Peter P. Toth
    • 2
  • Shijia Zhao
    • 1
  • Devendra K. Agrawal
    • 3
  • Peter Libby
    • 4
  • Yiannis S. Chatzizisis
    • 1
  1. 1.Cardiovascular Biology and Biomechanics Laboratory, Cardiovascular DivisionUniversity of Nebraska Medical CenterOmahaUSA
  2. 2.CGH Medical Center, Sterling, IL, and Ciccarone Center for the Prevention of Heart DiseaseJohns Hopkins University School of MedicineBaltimoreUSA
  3. 3.Department of Clinical and Translational ScienceCreighton University School of MedicineOmahaUSA
  4. 4.Cardiovascular Division, Brigham and Women’s HospitalHarvard Medical SchoolBostonUSA

Personalised recommendations