Skip to main content

Advertisement

Log in

Imaging to Assess Ischemic Heart Disease in Women

  • Women and Ischemic Heart Disease (E. Jackson, Section Editor)
  • Published:
Current Atherosclerosis Reports Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Purpose of Review

Ischemic heart disease is a leading cause of morbidity and mortality for women and men around the world. However, traditional cardiovascular risk factors do not fully capture cardiac risk in women. This review summarizes sex-based differences in the clinical presentation, pathophysiology, and risk assessment of ischemic heart disease. We also examine the use of anatomic and functional imaging modalities in the diagnosis of ischemic heart disease in women.

Recent Findings

Recent studies with women subjects have bolstered the predictive value of the coronary artery calcium (CAC) score in predicting atherosclerotic cardiovascular disease risk and major adverse cardiac events in a graded fashion. In addition, combined CAC scoring and coronary computed tomography (CCTA) has shown promise in excluding coronary artery disease (CAD). Using CCTA, data have suggested that increasing cardiovascular risk factors are associated with an increase in noncalcified coronary plaque in women compared with an increase in both calcified and noncalcified plaque in men with cardiac risk factors. Some data have suggested that women obtain greater prognostic benefit from CCTA than from other noninvasive tests. Fractional flow reserve obtained from a CCTA (FFRCT) is a new mathematical assessment of coronary blood flow that determines the presence of lesion-specific myocardial ischemia.

Summary

Prevention and identification of ischemic heart disease remains a foundation of cardiology and public health. In women, atypical symptoms and limitations in traditional risk factor assessment lead to challenges in the identification of ischemic heart disease. With improvements in technologies such as CAC scoring, CCTA, instantaneous flow reserve (iFR), optical coherence tomography (OCT), and FFRCT, there is great promise for identification of ischemic heart disease, and the future of prevention in women. Future studies with strong female representation should investigate the role of novel imaging techniques in women.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Mozaffarian D, et al. Heart disease and stroke Statistics—2016 update: a report from the American Heart Association. Circulation. 2016;133(4):e38–360. https://doi.org/10.1161/CIR.0000000000000350.

    Article  PubMed  Google Scholar 

  2. Institute of Medicine Committee on, E. and S. Legal Issues Relating to the Inclusion of Women in Clinical, in Women and Health Research: Ethical and Legal Issues of Including Women in Clinical Studies: Volume I, A.C. Mastroianni, R. Faden, and D. Federman, Editors. 1994, National Academies Press (US) Copyright 1994 by the National Academy of Sciences. All rights reserved.: Washington (DC).

  3. Broemeling LD. Bayesian methods for medical test accuracy. Diagnostics (Basel). 2011;1(1):1–35. https://doi.org/10.3390/diagnostics1010001.

    Article  Google Scholar 

  4. Henzlova MJ, Croft LB, Diamond JA. Effect of hormone replacement therapy on the electrocardiographic response to exercise. J Nucl Cardiol. 2002;9(4):385–7. https://doi.org/10.1067/mnc.2002.121636.

    Article  PubMed  Google Scholar 

  5. Jaffe MD. Effect of oestrogens on postexercise electrocardiogram. Br Heart J. 1976;38(12):1299–303. https://doi.org/10.1136/hrt.38.12.1299.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Marmor A, Zeira M, Zohar S. Effects of bilateral hystero-salpingo-oophorectomy on exercise-induced ST-segment abnormalities in young women. Am J Cardiol. 1993;71(12):1118–9. https://doi.org/10.1016/0002-9149(93)90586-2.

    Article  CAS  PubMed  Google Scholar 

  7. Morise AP, Dalal JN, Duval RD. Frequency of oral estrogen replacement therapy in women with normal and abnormal exercise electrocardiograms and normal coronary arteries by angiogram. Am J Cardiol. 1993;72(15):1197–9. https://doi.org/10.1016/0002-9149(93)90993-M.

    Article  CAS  PubMed  Google Scholar 

  8. Morise AP, Beto R. The specificity of exercise electrocardiography in women grouped by estrogen status. Int J Cardiol. 1997;60(1):55–65. https://doi.org/10.1016/S0167-5273(97)02953-7.

    Article  CAS  PubMed  Google Scholar 

  9. Rovang KS, Arouni AJ, Mohiuddin SM, Tejani A, Hilleman DE. Effect of estrogen on exercise electrocardiograms in healthy postmenopausal women. Am J Cardiol. 2000;86(4):477–9. https://doi.org/10.1016/S0002-9149(00)00974-7.

    Article  CAS  PubMed  Google Scholar 

  10. •• Pepine CJ, Ferdinand KC, Shaw LJ, Light-McGroary KA, Shah RU, Gulati M, et al. Emergence of nonobstructive coronary artery disease: a woman’s problem and the need for change in definition on angiography. J Am Coll Cardiol. 2015;66(17):1918–33. https://doi.org/10.1016/j.jacc.2015.08.876. An overview of the concept of nonobstructive CAD as a condition causing significant adverse effects in women’s ischemic heart disease.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Gulati M, Cooper-DeHoff RM, McClure C, Johnson BD, Shaw LJ, Handberg EM, et al. Adverse cardiovascular outcomes in women with nonobstructive coronary artery disease: a report from the Women’s Ischemia Syndrome Evaluation Study and the St James Women Take Heart Project. Arch Intern Med. 2009;169(9):843–50. https://doi.org/10.1001/archinternmed.2009.50.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Murthy VL, Naya M, Taqueti VR, Foster CR, Gaber M, Hainer J, et al. Effects of sex on coronary microvascular dysfunction and cardiac outcomes. Circulation. 2014;129(24):2518–27. https://doi.org/10.1161/CIRCULATIONAHA.113.008507.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Sharaf B, Wood T, Shaw L, Johnson BD, Kelsey S, Anderson RD, et al. Adverse outcomes among women presenting with signs and symptoms of ischemia and no obstructive coronary artery disease: findings from the National Heart, Lung, and Blood Institute-sponsored Women’s Ischemia Syndrome Evaluation (WISE) angiographic core laboratory. Am Heart J. 2013;166(1):134–41. https://doi.org/10.1016/j.ahj.2013.04.002.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Jespersen L, Hvelplund A, Abildstrom SZ, Pedersen F, Galatius S, Madsen JK, et al. Stable angina pectoris with no obstructive coronary artery disease is associated with increased risks of major adverse cardiovascular events. Eur Heart J. 2012;33(6):734–44. https://doi.org/10.1093/eurheartj/ehr331.

    Article  PubMed  Google Scholar 

  15. Schulman-Marcus J, ó Hartaigh B, Gransar H, Lin F, Valenti V, Cho I, et al. Sex-specific associations between coronary artery plaque extent and risk of major adverse cardiovascular events: the CONFIRM long-term registry. JACC Cardiovasc Imaging. 2016;9(4):364–72. https://doi.org/10.1016/j.jcmg.2016.02.010.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Patel MB, Bui LP, Kirkeeide RL, Gould KL. Imaging microvascular dysfunction and mechanisms for female-male differences in CAD. JACC Cardiovasc Imaging. 2016;9(4):465–82. https://doi.org/10.1016/j.jcmg.2016.02.003.

    Article  PubMed  Google Scholar 

  17. Taqueti VR, Hachamovitch R, Murthy VL, Naya M, Foster CR, Hainer J, et al. Global coronary flow reserve is associated with adverse cardiovascular events independently of luminal angiographic severity and modifies the effect of early revascularization. Circulation. 2015;131(1):19–27. https://doi.org/10.1161/CIRCULATIONAHA.114.011939.

    Article  PubMed  Google Scholar 

  18. Kobayashi Y, Fearon WF, Honda Y, Tanaka S, Pargaonkar V, Fitzgerald PJ, et al. Effect of sex differences on invasive measures of coronary microvascular dysfunction in patients with angina in the absence of obstructive coronary artery disease. JACC Cardiovasc Interv. 2015;8(11):1433–41. https://doi.org/10.1016/j.jcin.2015.03.045.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Shaw LJ, Bairey Merz CN, Pepine CJ, Reis SE, Bittner V, Kelsey SF, et al. Insights from the NHLBI-sponsored Women’s Ischemia Syndrome Evaluation (WISE) study: part I: gender differences in traditional and novel risk factors, symptom evaluation, and gender-optimized diagnostic strategies. J Am Coll Cardiol. 2006;47(3 Suppl):S4–s20. https://doi.org/10.1016/j.jacc.2005.01.072.

    Article  PubMed  Google Scholar 

  20. Fihn SD, Gardin JM, Abrams J, Berra K, Blankenship JC, Dallas AP, et al. 2012 ACCF/AHA/ACP/AATS/PCNA/SCAI/STS guideline for the diagnosis and management of patients with stable ischemic heart disease: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines, and the American College of Physicians, American Association for Thoracic Surgery, Preventive Cardiovascular Nurses Association, Society for Cardiovascular Angiography and Interventions, and Society of Thoracic Surgeons. J Am Coll Cardiol. 2012;60(24):e44–e164. https://doi.org/10.1016/j.jacc.2012.07.013.

    Article  PubMed  Google Scholar 

  21. Hemal K, Pagidipati NJ, Coles A, Dolor RJ, Mark DB, Pellikka PA, et al. Sex differences in demographics, risk factors, presentation, and noninvasive testing in stable outpatients with suspected coronary artery disease: insights from the PROMISE trial. JACC Cardiovasc Imaging. 2016;9(4):337–46. https://doi.org/10.1016/j.jcmg.2016.02.001.

    Article  PubMed  PubMed Central  Google Scholar 

  22. • Paul TK, Sivanesan K, Schulman-Marcus J. Sex differences in nonobstructive coronary artery disease: recent insights and substantial knowledge gaps. Trends Cardiovasc Med. 2017;27(3):173–9. https://doi.org/10.1016/j.tcm.2016.08.002. An extremely informative review regarding the recent research regarding greater attention to nonobstructive CAD and coronary physiology in men and women.

    Article  PubMed  Google Scholar 

  23. Michos ED, Nasir K, Braunstein JB, Rumberger JA, Budoff MJ, Post WS, et al. Framingham risk equation underestimates subclinical atherosclerosis risk in asymptomatic women. Atherosclerosis. 2006;184(1):201–6. https://doi.org/10.1016/j.atherosclerosis.2005.04.004.

    Article  CAS  PubMed  Google Scholar 

  24. Ridker PM, Buring JE, Rifai N, Cook NR. Development and validation of improved algorithms for the assessment of global cardiovascular risk in women: the Reynolds Risk Score. JAMA. 2007;297(6):611–9. https://doi.org/10.1001/jama.297.6.611.

    Article  CAS  PubMed  Google Scholar 

  25. Goff DC Jr, et al. 2013 ACC/AHA guideline on the assessment of cardiovascular risk: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol. 2014;63(25 Pt B):2935–59. https://doi.org/10.1016/j.jacc.2013.11.005.

    Article  PubMed  Google Scholar 

  26. Cook NR, Ridker PM. Further insight into the cardiovascular risk calculator: the roles of statins, revascularizations, and underascertainment in the Women’s Health Study. JAMA Intern Med. 2014;174(12):1964–71. https://doi.org/10.1001/jamainternmed.2014.5336.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Alluri K, Joshi PH, Henry TS, Blumenthal RS, Nasir K, Blaha MJ. Scoring of coronary artery calcium scans: history, assumptions, current limitations, and future directions. Atherosclerosis. 2015;239(1):109–17. https://doi.org/10.1016/j.atherosclerosis.2014.12.040.

    Article  CAS  PubMed  Google Scholar 

  28. Lakoski SG, Greenland P, Wong ND, Schreiner PJ, Herrington DM, Kronmal RA, et al. Coronary artery calcium scores and risk for cardiovascular events in women classified as “low risk” based on Framingham risk score: the multi-ethnic study of atherosclerosis (MESA). Arch Intern Med. 2007;167(22):2437–42. https://doi.org/10.1001/archinte.167.22.2437.

    Article  PubMed  Google Scholar 

  29. •• Kavousi M, Desai CS, Ayers C, Blumenthal RS, Budoff MJ, Mahabadi AA, et al. Prevalence and prognostic implications of coronary artery calcification in low-risk women: a meta-analysis. JAMA. 2016;316(20):2126–34. https://doi.org/10.1001/jama.2016.17020. A recent meta-analysis that assessed CAC scores in women with 10-year ASCVD risk of < 7.5% found a positive CAC score was associated with an increased risk of ASCVD.

    Article  CAS  PubMed  Google Scholar 

  30. Parma Z, Parma R, Brzoska J, Sosnowski M. Prognostic value of coronary artery calcium score in patients with symptoms suggestive of coronary artery disease. Results from the Silesian Calcium Score (SILICAS) study. Pol Arch Med Wewn. 2016;126(6):395–401. https://doi.org/10.20452/pamw.3443.

    PubMed  Google Scholar 

  31. Blaha MJ, Budoff MJ, Tota-Maharaj R, Dardari ZA, Wong ND, Kronmal RA, et al. Improving the CAC score by addition of regional measures of calcium distribution: multi-ethnic study of atherosclerosis. JACC Cardiovasc Imaging. 2016;9(12):1407–16. https://doi.org/10.1016/j.jcmg.2016.03.001.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Hulten EA, Carbonaro S, Petrillo SP, Mitchell JD, Villines TC. Prognostic value of cardiac computed tomography angiography: a systematic review and meta-analysis. J Am Coll Cardiol. 2011;57(10):1237–47. https://doi.org/10.1016/j.jacc.2010.10.011.

    Article  PubMed  Google Scholar 

  33. van der Zant FM, Wondergem M, Lazarenko SV, Geenen RWF, Umans VA, Cornel JH, et al. Ruling out coronary artery disease in women with atypical chest pain: results of calcium score combined with coronary computed tomography angiography and associated radiation exposure. J Women’s Health (Larchmt). 2015;24(7):550–6. https://doi.org/10.1089/jwh.2014.4929.

    Article  Google Scholar 

  34. Grunau GL, Ahmadi A, Rezazadeh S, Faraji R, Amid S, O’Connell T, et al. Assessment of sex differences in plaque morphology by coronary computed tomography angiography—are men and women the same? J Women’s Health (Larchmt). 2014;23(2):146–50. https://doi.org/10.1089/jwh.2013.4496.

    Article  Google Scholar 

  35. Otaki Y, Gransar H, Cheng VY, Dey D, Labounty T, Lin FY, et al. Gender differences in the prevalence, severity, and composition of coronary artery disease in the young: a study of 1635 individuals undergoing coronary CT angiography from the prospective, multinational confirm registry. Eur Heart J Cardiovasc Imaging. 2015;16(5):490–9. https://doi.org/10.1093/ehjci/jeu281.

    Article  PubMed  Google Scholar 

  36. Williams MC, Hunter A, Shah ASV, Assi V, Lewis S, Smith J, et al. Use of coronary computed tomographic angiography to guide management of patients with coronary disease. J Am Coll Cardiol. 2016;67(15):1759–68. https://doi.org/10.1016/j.jacc.2016.02.026.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Hoffmann U, Ferencik M, Udelson JE, Picard MH, Truong QA, Patel MR, et al. Prognostic value of noninvasive cardiovascular testing in patients with stable chest pain: insights from the PROMISE trial (Prospective Multicenter Imaging Study for Evaluation of Chest Pain). Circulation. 2017;135(24):2320–32. https://doi.org/10.1161/CIRCULATIONAHA.116.024360.

    Article  PubMed  Google Scholar 

  38. Mark DB, Federspiel JJ, Cowper PA, Anstrom KJ, Hoffmann U, Patel MR, et al. Economic outcomes with anatomical versus functional diagnostic testing for coronary artery disease. Ann Intern Med. 2016;165(2):94–102. https://doi.org/10.7326/M15-2639.

    Article  PubMed  PubMed Central  Google Scholar 

  39. • Pagidipati NJ, Hemal K, Coles A, Mark DB, Dolor RJ, Pellikka PA, et al. Sex differences in functional and CT angiography testing in patients with suspected coronary artery disease. J Am Coll Cardiol. 2016;67(22):2607–16. https://doi.org/10.1016/j.jacc.2016.03.523. A sex-specific analysis of data from the PROMISE trial examining the prognostic value of various cardiac noninvasive tests.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Williams MC, Newby DE. Reply: enhanced preventative therapy with coronary computed tomographic angiography: added value beyond simple risk calculators? AND Primum Non Nocere: old principle revisited. J Am Coll Cardiol. 2016;68(14):1604–5. https://doi.org/10.1016/j.jacc.2016.07.738.

    Article  PubMed  Google Scholar 

  41. Gerber TC, Carr JJ, Arai AE, Dixon RL, Ferrari VA, Gomes AS, et al. Ionizing radiation in cardiac imaging: a science advisory from the American Heart Association Committee on Cardiac Imaging of the Council on Clinical Cardiology and Committee on Cardiovascular Imaging and Intervention of the Council on Cardiovascular Radiology and Intervention. Circulation. 2009;119(7):1056–65. https://doi.org/10.1161/CIRCULATIONAHA.108.191650.

    Article  PubMed  Google Scholar 

  42. Kim KP, Einstein AJ, Berrington de Gonzalez A. Coronary artery calcification screening: estimated radiation dose and cancer risk. Arch Intern Med. 2009;169(13):1188–94. https://doi.org/10.1001/archinternmed.2009.162.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Pijls NH, Fearon WF, Tonino PA, Siebert U, Ikeno F, Bornschein B, et al. Fractional flow reserve versus angiography for guiding percutaneous coronary intervention in patients with multivessel coronary artery disease: 2-year follow-up of the FAME (Fractional Flow Reserve Versus Angiography for Multivessel Evaluation) study. J Am Coll Cardiol. 2010;56(3):177–84. https://doi.org/10.1016/j.jacc.2010.04.012.

    Article  PubMed  Google Scholar 

  44. De Bruyne B, Pijls NH, Kalesan B, Barbato E, Tonino PA, Piroth Z, et al. For the FAME 2 Trial Investigators. Fractional Flow Reserve–Guided PCI versus Medical Therapy in Stable Coronary Disease. N Engl J Med. 2012;367:991–1001. https://doi.org/10.1056/NEJMoa1205361.

  45. Crystal GJ, Klein LW. Fractional flow reserve: physiological basis, advantages and limitations, and potential gender differences. Curr Cardiol Rev. 2015;11(3):209–19. https://doi.org/10.2174/1573403X10666141020113318.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Li J, Rihal CS, Matsuo Y, Elrashidi MY, Flammer AJ, Lee MS, et al. Sex-related differences in fractional flow reserve-guided treatment. Circ Cardiovasc Interv. 2013;6(6):662–70. https://doi.org/10.1161/CIRCINTERVENTIONS.113.000762.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Kim HS, Tonino PA, de Bruyne B, Yong AS, Tremmel JA, Pijls NH, et al. The impact of sex differences on fractional flow reserve-guided percutaneous coronary intervention: a FAME (Fractional Flow Reserve Versus Angiography for Multivessel Evaluation) substudy. JACC Cardiovasc Interv. 2012;5(10):1037–42. https://doi.org/10.1016/j.jcin.2012.06.016.

    Article  PubMed  Google Scholar 

  48. Gotberg M, et al. Instantaneous wave-free ratio versus fractional flow reserve to guide PCI. N Engl J Med. 2017;376(19):1813–23. https://doi.org/10.1056/NEJMoa1616540.

    Article  PubMed  Google Scholar 

  49. Crea F, Camici PG, Bairey Merz CN. Coronary microvascular dysfunction: an update. Eur Heart J. 2014;35(17):1101–11. https://doi.org/10.1093/eurheartj/eht513.

    Article  PubMed  Google Scholar 

  50. Kang SJ, Ahn JM, Han S, Lee JY, Kim WJ, Park DW, et al. Sex differences in the visual-functional mismatch between coronary angiography or intravascular ultrasound versus fractional flow reserve. JACC Cardiovasc Interv. 2013;6(6):562–8. https://doi.org/10.1016/j.jcin.2013.02.016.

    Article  PubMed  Google Scholar 

  51. Zeglin-Sawczuk M, Jang IK, Kato K, Yonetsu T, Kim SJ, Choi SY, et al. Lipid rich plaque, female gender and proximal coronary stent edge dissections. J Thromb Thrombolysis. 2013;36(4):507–13. https://doi.org/10.1007/s11239-013-0882-3.

    Article  CAS  PubMed  Google Scholar 

  52. Bharadwaj AS, Vengrenyuk Y, Yoshimura T, Baber U, Hasan C, Narula J, et al. Multimodality intravascular imaging to evaluate sex differences in plaque morphology in stable CAD. JACC Cardiovasc Imaging. 2016;9(4):400–7. https://doi.org/10.1016/j.jcmg.2016.02.007.

    Article  PubMed  Google Scholar 

  53. Gibbons RJ, Balady GJ, Bricker JT, Chaitman BR, Fletcher GF, Froelicher VF, et al. ACC/AHA 2002 guideline update for exercise testing: summary article. A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee to Update the 1997 Exercise Testing Guidelines). J Am Coll Cardiol. 2002;40(8):1531–40. https://doi.org/10.1016/S0735-1097(02)02164-2.

    Article  PubMed  Google Scholar 

  54. Detrano R, Gianrossi R, Froelicher V. The diagnostic accuracy of the exercise electrocardiogram: a meta-analysis of 22 years of research. Prog Cardiovasc Dis. 1989;32(3):173–206. https://doi.org/10.1016/0033-0620(89)90025-X.

    Article  CAS  PubMed  Google Scholar 

  55. Okin PM, Kligfield P. Gender-specific criteria and performance of the exercise electrocardiogram. Circulation. 1995;92(5):1209–16. https://doi.org/10.1161/01.CIR.92.5.1209.

    Article  CAS  PubMed  Google Scholar 

  56. Wolk MJ, Bailey SR, Doherty JU, Douglas PS, Hendel RC, Kramer CM, et al. ACCF/AHA/ASE/ASNC/HFSA/HRS/SCAI/SCCT/SCMR/STS 2013 multimodality appropriate use criteria for the detection and risk assessment of stable ischemic heart disease: a report of the American College of Cardiology Foundation Appropriate Use Criteria Task Force, American Heart Association, American Society of Echocardiography, American Society of Nuclear Cardiology, Heart Failure Society of America, Heart Rhythm Society, Society for Cardiovascular Angiography and Interventions, Society of Cardiovascular Computed Tomography, Society for Cardiovascular Magnetic Resonance, and Society of Thoracic Surgeons. J Am Coll Cardiol. 2014;63(4):380–406. https://doi.org/10.1016/j.jacc.2013.11.009.

    Article  PubMed  Google Scholar 

  57. Mieres JH, Gulati M, Bairey Merz N, Berman DS, Gerber TC, Hayes SN, et al. Role of noninvasive testing in the clinical evaluation of women with suspected ischemic heart disease: a consensus statement from the American Heart Association. Circulation. 2014;130(4):350–79. https://doi.org/10.1161/CIR.0000000000000061.

    Article  PubMed  Google Scholar 

  58. Cheng VY, et al. Performance of the traditional age, sex, and angina typicality-based approach for estimating pretest probability of angiographically significant coronary artery disease in patients undergoing coronary computed tomographic angiography: results from the multinational coronary CT angiography evaluation for clinical outcomes: an international multicenter registry (CONFIRM). Circulation. 2011;124(22):2423–32. 1–8

    Article  PubMed  PubMed Central  Google Scholar 

  59. • Park SJ, Chung S, Chang SA, Choi JO, Choi JH, Lee SC, et al. Independent and incremental prognostic value of exercise stress echocardiography in low cardiovascular risk female patients with chest pain. Echocardiography. 2017;34(1):69–77. https://doi.org/10.1111/echo.13388. A recent study demonstrating that a positive exercise stress echocardiogram in symptomatic women with low cardiovascular risk was a significant predictor of MACE.

    Article  PubMed  Google Scholar 

  60. Klocke FJ, Baird MG, Lorell BH, Bateman TM, Messer JV, Berman DS, et al. ACC/AHA/ASNC guidelines for the clinical use of cardiac radionuclide imaging—executive summary: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (ACC/AHA/ASNC Committee to Revise the 1995 Guidelines for the Clinical Use of Cardiac Radionuclide Imaging). Circulation. 2003;108(11):1404–18. https://doi.org/10.1161/01.CIR.0000080946.42225.4D.

    Article  PubMed  Google Scholar 

  61. Cheitlin MD, Armstrong WF, Aurigemma GP, Beller GA, Bierman FZ, Davis JL, et al. ACC/AHA/ASE 2003 guideline update for the clinical application of echocardiography: summary article: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (ACC/AHA/ASE Committee to Update the 1997 Guidelines for the Clinical Application of Echocardiography). Circulation. 2003;108(9):1146–62. https://doi.org/10.1161/01.CIR.0000073597.57414.A9.

    Article  PubMed  Google Scholar 

  62. Jaarsma C, Leiner T, Bekkers SC, Crijns HJ, Wildberger JE, Nagel E, et al. Diagnostic performance of noninvasive myocardial perfusion imaging using single-photon emission computed tomography, cardiac magnetic resonance, and positron emission tomography imaging for the detection of obstructive coronary artery disease: a meta-analysis. J Am Coll Cardiol. 2012;59(19):1719–28. https://doi.org/10.1016/j.jacc.2011.12.040.

    Article  PubMed  Google Scholar 

  63. Hendel RC, Berman DS, di Carli MF, Heidenreich PA, Henkin RE, Pellikka PA, et al. ACCF/ASNC/ACR/AHA/ASE/SCCT/SCMR/SNM 2009 appropriate use criteria for cardiac radionuclide imaging: a report of the American College of Cardiology Foundation Appropriate Use Criteria Task Force, the American Society of Nuclear Cardiology, the American College of Radiology, the American Heart Association, the American Society of Echocardiography, the Society of Cardiovascular Computed Tomography, the Society for Cardiovascular Magnetic Resonance, and the Society of Nuclear Medicine. J Am Coll Cardiol. 2009;53(23):2201–29. https://doi.org/10.1016/j.jacc.2009.02.013.

    Article  PubMed  Google Scholar 

  64. Kini V, McCarthy FH, Dayoub E, Bradley SM, Masoudi FA, Ho PM, et al. Cardiac stress test trends among US patients younger than 65 years, 2005–2012. JAMA Cardiol. 2016;1(9):1038–42. https://doi.org/10.1001/jamacardio.2016.3153.

    Article  PubMed  Google Scholar 

  65. Dondi M, Pascual T, Paez D, Einstein AJ. Nuclear cardiology: are we using the right protocols and tracers the right way? Am J Cardiovasc Drugs. 2017;17(6):441–6. https://doi.org/10.1007/s40256-017-0230-7.

    Article  PubMed  Google Scholar 

  66. Cerqueira MD, Allman KC, Ficaro EP, Hansen CL, Nichols KJ, Thompson RC, et al. Recommendations for reducing radiation exposure in myocardial perfusion imaging. J Nucl Cardiol. 2010;17(4):709–18. https://doi.org/10.1007/s12350-010-9244-0.

    Article  PubMed  Google Scholar 

  67. Chae SC, Heo J, Iskandrian AS, Wasserleben V, Cave V. Identification of extensive coronary artery disease in women by exercise single-photon emission computed tomographic (SPECT) thallium imaging. J Am Coll Cardiol. 1993;21(6):1305–11. https://doi.org/10.1016/0735-1097(93)90301-G.

    Article  CAS  PubMed  Google Scholar 

  68. Bourque JM, Beller GA. Value of exercise ECG for risk stratification in suspected or known CAD in the era of advanced imaging technologies. JACC Cardiovasc Imaging. 2015;8(11):1309–21. https://doi.org/10.1016/j.jcmg.2015.09.006.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Iskandrian AS, Heo J, Nguyen T, Beer SG, Cave V, Ogilby JD, et al. Assessment of coronary artery disease using single-photon emission computed tomography with thallium-201 during adenosine-induced coronary hyperemia. Am J Cardiol. 1991;67(15):1190–4. https://doi.org/10.1016/0002-9149(91)90925-B.

    Article  CAS  PubMed  Google Scholar 

  70. Golzar Y, Olusanya A, Pe N, Dua SG, Golzar J, Gidea C, et al. The significance of automatically measured transient ischemic dilation in identifying severe and extensive coronary artery disease in regadenoson, single-isotope technetium-99m myocardial perfusion SPECT. J Nucl Cardiol. 2015;22(3):526–34. https://doi.org/10.1007/s12350-015-0087-6.

    Article  PubMed  Google Scholar 

  71. Bateman TM, et al. Diagnostic accuracy of rest/stress ECG-gated Rb-82 myocardial perfusion PET: comparison with ECG-gated Tc-99m sestamibi SPECT. J Nucl Cardiol. 2006;13(1):24–33. https://doi.org/10.1016/j.nuclcard.2005.12.004.

    Article  PubMed  Google Scholar 

  72. Lee BK, Lim HS, Fearon WF, Yong AS, Yamada R, Tanaka S, et al. Invasive evaluation of patients with angina in the absence of obstructive coronary artery disease. Circulation. 2015;131(12):1054–60. https://doi.org/10.1161/CIRCULATIONAHA.114.012636.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Doyle M, Weinberg N, Pohost GM, Bairey Merz CN, Shaw LJ, Sopko G, et al. Prognostic value of global MR myocardial perfusion imaging in women with suspected myocardial ischemia and no obstructive coronary disease: results from the NHLBI-sponsored WISE (Women’s Ischemia Syndrome Evaluation) study. JACC Cardiovasc Imaging. 2010;3(10):1030–6. https://doi.org/10.1016/j.jcmg.2010.07.008.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Min JK, Taylor CA, Achenbach S, Koo BK, Leipsic J, Nørgaard BL, et al. Noninvasive fractional flow reserve derived from coronary CT angiography: clinical data and scientific principles. JACC Cardiovasc Imaging. 2015;8(10):1209–22. https://doi.org/10.1016/j.jcmg.2015.08.006.

    Article  PubMed  Google Scholar 

  75. Taylor CA, Fonte TA, Min JK. Computational fluid dynamics applied to cardiac computed tomography for noninvasive quantification of fractional flow reserve: scientific basis. J Am Coll Cardiol. 2013;61(22):2233–41. https://doi.org/10.1016/j.jacc.2012.11.083.

    Article  PubMed  Google Scholar 

  76. Min JK, Koo BK, Erglis A, Doh JH, Daniels DV, Jegere S, et al. Usefulness of noninvasive fractional flow reserve computed from coronary computed tomographic angiograms for intermediate stenoses confirmed by quantitative coronary angiography. Am J Cardiol. 2012;110(7):971–6. https://doi.org/10.1016/j.amjcard.2012.05.033.

    Article  PubMed  Google Scholar 

  77. Grunau GL, Min JK, Leipsic J. Modeling of fractional flow reserve based on coronary CT angiography. Curr Cardiol Rep. 2013;15(1):336. https://doi.org/10.1007/s11886-012-0336-0.

    Article  PubMed  Google Scholar 

  78. Xu R, Li C, Qian J, Ge J. Computed tomography-derived fractional flow reserve in the detection of lesion-specific ischemia: an integrated analysis of 3 pivotal trials. Medicine (Baltimore). 2015;94(46):e1963. https://doi.org/10.1097/MD.0000000000001963.

    Article  Google Scholar 

  79. Min JK, Leipsic J, Pencina MJ, Berman DS, Koo BK, van Mieghem C, et al. Diagnostic accuracy of fractional flow reserve from anatomic CT angiography. JAMA. 2012;308(12):1237–45. https://doi.org/10.1001/2012.jama.11274.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Gaur S, Bezerra HG, Lassen JF, Christiansen EH, Tanaka K, Jensen JM, et al. Fractional flow reserve derived from coronary CT angiography: variation of repeated analyses. J Cardiovasc Comput Tomogr. 2014;8(4):307–14. https://doi.org/10.1016/j.jcct.2014.07.002.

    Article  PubMed  Google Scholar 

  81. Gaur S, Øvrehus KA, Dey D, Leipsic J, Bøtker HE, Jensen JM, et al. Coronary plaque quantification and fractional flow reserve by coronary computed tomography angiography identify ischaemia-causing lesions. Eur Heart J. 2016;37(15):1220–7. https://doi.org/10.1093/eurheartj/ehv690.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Abbara S, Arbab-Zadeh A, Callister TQ, Desai MY, Mamuya W, Thomson L, et al. SCCT guidelines for performance of coronary computed tomographic angiography: a report of the Society of Cardiovascular Computed Tomography Guidelines Committee. J Cardiovasc Comput Tomogr. 2009;3(3):190–204. https://doi.org/10.1016/j.jcct.2009.03.004.

    Article  PubMed  Google Scholar 

  83. Koo BK, Erglis A, Doh JH, Daniels DV, Jegere S, Kim HS, et al. Diagnosis of ischemia-causing coronary stenoses by noninvasive fractional flow reserve computed from coronary computed tomographic angiograms. Results from the prospective multicenter DISCOVER-FLOW (Diagnosis of Ischemia-Causing Stenoses Obtained Via Noninvasive Fractional Flow Reserve) study. J Am Coll Cardiol. 2011;58(19):1989–97. https://doi.org/10.1016/j.jacc.2011.06.066.

    Article  PubMed  Google Scholar 

  84. Nakazato R, et al. Noninvasive fractional flow reserve derived from computed tomography angiography for coronary lesions of intermediate stenosis severity: results from the DeFACTO study. Circ Cardiovasc Imaging, 2013;6(6):881–9.

    Article  PubMed  Google Scholar 

  85. Nørgaard BL, Leipsic J, Gaur S, Seneviratne S, Ko BS, Ito H, et al. On behalf of the NXT Trial Study Group. Diagnostic Performance of Noninvasive Fractional Flow Reserve Derived From Coronary Computed Tomography Angiography in Suspected Coronary Artery Disease. The NXT Trial (Analysis of Coronary Blood Flow Using CT Angiography: Next Steps). J Am Coll Cardiol 2014;63:1145–55. https://doi.org/10.1016/j.jacc.2013.11.043.

  86. Applegate RJ, Sacrinty MT, Kutcher MA, Baki TT, Gandhi SK, Kahl FR, et al. Vascular complications in women after catheterization and percutaneous coronary intervention 1998-2005. J Invasive Cardiol. 2007;19(9):369–74.

    PubMed  Google Scholar 

  87. Heer T, Hochadel M, Schmidt K, Mehilli J, Zahn R, Kuck KH, et al. Sex differences in percutaneous coronary intervention—insights from the Coronary Angiography and PCI Registry of the German Society of Cardiology. J Am Heart Assoc. 2017;6(3):e004972. https://doi.org/10.1161/JAHA.116.004972.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erica C. Jones.

Ethics declarations

Conflict of Interest

Kaartiga Sivanesan, Subhi Al’Alref, Jessica M. Peña, and Fay Lin declare no conflict of interest.

Erica Jones is employed by the Dalio Institute of Cardiovascular Imaging at NewYork Presbyterian Hospital. Dr. James Min, the Director of the Dalio ICI, is the PI of the CONFIRM trial, which is referenced in our review. James K. Min reports and has ownership in MDDX, serves on the scientific advisory board of Arineta, and has a research agreement with GE healthcare.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Women and Ischemic Heart Disease

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sivanesan, K., Al’Aref, S.J., Min, J.K. et al. Imaging to Assess Ischemic Heart Disease in Women. Curr Atheroscler Rep 20, 16 (2018). https://doi.org/10.1007/s11883-018-0714-1

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11883-018-0714-1

Keywords

Navigation