Skip to main content

Advertisement

Log in

The Effect of Metabolic and Bariatric Surgery on DNA Methylation Patterns

  • Lipid and Metabolic Effects of Gastrointestinal Surgery (R. Cohen, Section Editor)
  • Published:
Current Atherosclerosis Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Metabolic and bariatric surgery (MBS) is considered to be the most effective treatment for obesity. Not only due to the significant weight reduction but also because of the many health benefits associated with it. In the last 5 years, several studies have suggested that epigenetic modifications could be involved in the mechanisms underlying the response to bariatric surgery. In this review, we will compile the different studies (2012–2017) concerning the effect of this surgical procedure on DNA methylation patterns (the most studied epigenetic marker) and its association with metabolic improvement. This is an emerging area, and currently, there are not many studies in the literature. The aim is to show what has been done so far and what the future direction in this emerging area might be.

Recent Findings

Recent findings have shown how metabolic and bariatric surgery modifies the DNA methylation profile of the specific genes associated with the pathophysiology of the disease. The studies were performed in morbidly obese subjects, mainly in women, with the aim of reducing weight and improving the obesity-associated comorbidities. DNA methylation has been measured both in specific tissue and in peripheral blood samples. In general, studies about site-specific DNA methylation have shown a change in the methylation profile after surgery, whereas the studies analyzing global DNA methylation are not so conclusive.

Summary

Summing up, metabolic and bariatric surgery can modify the DNA methylation profile of different genes and contributes to the metabolic health benefits that are often seen after metabolic and bariatric surgery. Although there are still many issues to be resolved, the capacity to revert the DNA methylation profile of specific sites opens a window for searching for target markers to treat obesity-related comorbidities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Bird A. Perceptions of epigenetics. Nature. 2007;447(7143):396–8.

    Article  CAS  PubMed  Google Scholar 

  2. • Van Dijk SJ, Molloy PL, Varinli H, Morrison JL, Muhlhausler BS, Members of EpiSCOPE M, et al. Epigenetics and human obesity. Int J Obes. 2015;39(1):85–97. A deep review showing the last advances in this emerging area

    Article  Google Scholar 

  3. Jones PA. Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat Rev Genet. 2012;13(7):484–92.

  4. Illingworth RS, Bird AP. CpG islands—“a rough guide”. FEBS Lett. 2009;583(11):1713–20.

  5. Portela A, Esteller M. Epigenetic modifications and human disease. Nat Biotechnol. 2010;28(10):1057–68.

    Article  CAS  PubMed  Google Scholar 

  6. Tirado-Magallanes R, Rebbani K, Lim R, Pradhan S, Benoukraf T. Whole genome DNA methylation: beyond genes silencing. Oncotarget. 2017;8(3):5629–37.

    PubMed  Google Scholar 

  7. Cortessis VK, Thomas DC, Levine AJ, Breton CV, Mack TM, Siegmund KD, et al. Environmental epigenetics: prospects for studying epigenetic mediation of exposure-response relationships. Hum Genet. 2012;131(10):1565–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Tsai AG, Wadden TA. In the clinic: obesity. Ann Intern Med. 2013;159(5):ITC3–1–ITC3–15. quiz ITC3–16

  9. Yu J, Zhou X, Li L, Li S, Tan J, Li Y, et al. The long-term effects of bariatric surgery for type 2 diabetes: systematic review and meta-analysis of randomized and non-randomized evidence. Obes Surg. 2015;25(1):143–58.

    Article  PubMed  Google Scholar 

  10. Moreno-Castellanos N, Guzmán-Ruiz R, Cano DA, Madrazo-Atutxa A, Peinado JR, Pereira-Cunill JL, García-Luna PP, Morales-Conde S, Socas-Macias M, Vázquez-Martínez R, Leal-Cerro A, Malagón MM. The Effects of Bariatric Surgery-Induced Weight Loss on Adipose Tissue in Morbidly Obese Women Depends on the Initial Metabolic Status. Obes Surg. 2016;26(8):1757-67.

  11. • Vidal J, Corcelles R, Jiménez A, Flores L, Lacy AM. Metabolic and bariatric surgery for obesity. Gastroenterology. 2017;152(7):1780–90. A recent review with the updates on metabolic and bariatric surgery.

    Article  PubMed  Google Scholar 

  12. Garrido-Sanchez L, Murri M, Rivas-Becerra J, Ocaña-Wilhelmi L, Cohen RV, Garcia-Fuentes E, et al. Bypass of the duodenum improves insulin resistance much more rapidly than sleeve gastrectomy. Surg Obes Relat Dis. 2012;8(2):145–50.

    Article  CAS  PubMed  Google Scholar 

  13. Buchwald H, Estok R, Fahrbach K, Banel D, Jensen MD, Pories WJ, et al. Weight and type 2 diabetes after bariatric surgery: systematic review and meta-analysis. Am J Med. 2009;122(3):248–56. e5

    Article  PubMed  Google Scholar 

  14. Falkén Y, Hellström PM, Holst JJ, Näslund E. Changes in glucose homeostasis after Roux-en-Y gastric bypass surgery for obesity at day three, two months, and one year after surgery: role of gut peptides. J Clin Endocrinol Metab. 2011;96(7):2227–35.

    Article  PubMed  Google Scholar 

  15. •• Frikke-Schmidt H, O’Rourke RW, Lumeng CN, Sandoval DA, Seeley RJ. Does bariatric surgery improve adipose tissue function? Obes Rev. 2016;17(9):795–809. An excellent reviw about the mechanism involved in the response to bariatric surgery and future directions.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hagman DK, Larson I, Kuzma JN, Cromer G, Makar K, Rubinow KB, et al. The short-term and long-term effects of bariatric/metabolic surgery on subcutaneous adipose tissue inflammation in humans. Metabolism. 2017;70:12–22.

    Article  CAS  PubMed  Google Scholar 

  17. Quarta C, Schneider R, Tschöp MH. Epigenetic ON/OFF switches for obesity. Cell. 2016;164(3):341–2.

    Article  CAS  PubMed  Google Scholar 

  18. •• Van Dijk SJ, Tellam RL, Morrison JL, Muhlhausler BS, Molloy PL. Recent developments on the role of epigenetics in obesity and metabolic disease. Clin Epigenetics. 2015;7(1):66. An interesting review with the progress and challenges of epigenetics and obesity.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Rönn T, Ling C. DNA methylation as a diagnostic and therapeutic target in the battle against type 2 diabetes. Epigenomics. 2015;7(3):451–60.

    Article  PubMed  Google Scholar 

  20. Barres R, Kirchner H, Rasmussen M, Yan J, Kantor FR, Krook A, et al. Weight loss after gastric bypass surgery in human obesity remodels promoter methylation. Cell Rep. 2013;3(4):1020–7.

    Article  CAS  PubMed  Google Scholar 

  21. Nicoletti CF, Nonino CB, de Oliveira BA, Pinhel MA, Mansego ML, Milagro FI, Zulet MA, Martinez JA. DNA Methylation and Hydroxymethylation Levels in Relation to Two Weight Loss Strategies: Energy-Restricted Diet or Bariatric Surgery. Obes Surg. 2016;26(3):603–11.

  22. Benton MC, Johnstone A, Eccles D, Harmon B, Hayes MT, Lea RA, et al. An analysis of DNA methylation in human adipose tissue reveals differential modification of obesity genes before and after gastric bypass and weight loss. Genome Biol. 2015;16:8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kirchner H, Nylen C, Laber S, Barrès R, Yan J, Krook A, et al. Altered promoter methylation of PDK4, IL1 B, IL6, and TNF after Roux-en Y gastric bypass. Surg Obes Relat Dis. 2014;10(4):671–8.

    Article  PubMed  Google Scholar 

  24. Dahlman I, Sinha I, Gao H, Brodin D, Thorell A, Rydén M, et al. The fat cell epigenetic signature in post-obese women is characterized by global hypomethylation and differential DNA methylation of adipogenesis genes. Int J Obes (Lond). 2015;39(6):910–9.

  25. Morcillo S, Martín-Núñez GM, García-Serrano S, Gutierrez-Repiso C, Rodriguez-Pacheco F, Valdes S, et al. Changes in SCD gene DNA methylation after bariatric surgery in morbidly obese patients are associated with free fatty acids. Sci Rep. 2017;7:46292.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Nilsson EK, Ernst B, Voisin S, Almén MS, Benedict C, Mwinyi J, et al. Roux-en Y gastric bypass surgery induces genome-wide promoter-specific changes in DNA methylation in whole blood of obese patients. PLoS One. 2015;10(2):e0115186.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Ahrens M, Ammerpohl O, von Schönfels W, Kolarova J, Bens S, Itzel T, Teufel A, Herrmann A, Brosch M, Hinrichsen H, Erhart W, Egberts J, Sipos B, Schreiber S, Häsler R, Stickel F, Becker T, Krawczak M, Röcken C, Siebert R, Schafmayer C, Hampe J. DNA methylation analysis in nonalcoholic fatty liver disease suggests distinct disease-specific and remodeling signatures after bariatric surgery. Cell Metab. 2013;18(2):296-302

  28. Boström AE, Mwinyi J, Voisin S, Wu W, Schultes B, Zhang K, et al. Longitudinal genome-wide methylation study of Roux-en-Y gastric bypass patients reveals novel CpG sites associated with essential hypertension. BMC Med Genet. 2016;9(1):20.

    Google Scholar 

  29. Donkin I, Versteyhe S, Ingerslev LR, Qian K, Mechta M, Nordkap L, Mortensen B, Appel EV, Jørgensen N, Kristiansen VB, Hansen T, Workman CT, Zierath JR, Barrès R. Obesity and Bariatric Surgery Drive Epigenetic Variation of Spermatozoa in Humans. Cell Metab. 2016;23(2):369-78.

  30. Martín-Núñez GM, Cabrera-Mulero A, Alcaide-Torres J, García-Fuentes E, Tinahones FJ, Morcillo S. No effect of different bariatric surgery procedures on LINE-1 DNA methylation in diabetic and nondiabetic morbidly obese patients. Surg Obes Relat Dis. 2017;13(3):442–50.

    Article  PubMed  Google Scholar 

  31. Zhu ZZ, Hou L, Bollati V, Tarantini L, Marinelli B, Cantone L, et al. Predictors of global methylation levels in blood DNA of healthy subjects: a combined analysis. Int J Epidemiol. 2012;41(1):126–39.

    Article  PubMed  Google Scholar 

  32. Wu HC, Delgado-Cruzata L, Flom JD, Kappil M, Ferris JS, Liao Y, et al. Global methylation profles in DNA from different blood cell types. Epigenetics. 2011;6(1):76–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Deininger PL, Moran JV, Batzer MA, Kazazian HHJ. Mobile elements and mammalian genome evolution. Curr Opin Genet Dev. 2003;13(6):651–8.

    Article  CAS  PubMed  Google Scholar 

  34. Lange NE, Sordillo J, Tarantini L, Bollati V, Sparrow D, Vokonas P, et al. Alu and LINE-1 methylation and lung function in the normative ageing study. BMJ Open. 2012;2(5):e001231.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Weisenberger DJ, Campan M, Long TI, Kim M, Woods C, Fiala E, et al. Analysis of repetitive element DNA methylation by MethyLight. Nucleic Acids Res. 2005;33(21):6823–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Barrès R, Osler ME, Yan J, Rune A, Fritz T, Caidahl K, et al. Non-CpG methylation of the PGC-1α promoter through DNMT3B controls mitochondrial density. Cell Metab. 2009;10(3):189–98.

    Article  PubMed  Google Scholar 

  37. Sala P, de Miranda Torrinhas RSM, Fonseca DC, Ravacci GR, Waitzberg DL, Giannella-Neto D. Tissue-specific methylation profile in obese patients with type 2 diabetes before and after Roux-en-Y gastric bypass. Diabetol Metab Syndr. 2017;9(1):15.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Delgado-Cruzata L, Zhang W, McDonald JA, Tsai WY, Valdovinos C, Falci L, et al. Dietary modifications, weight loss, and changes in metabolic markers affect global DNA methylation in Hispanic, African American, and Afro-Caribbean breast cancer survivors. J Nutr. 2015;145(4):783–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Martín-Núñez GM, Cabrera-Mulero R, Rubio-Martín E, Rojo-Martínez G, Olveira G, Valdés S, et al. Methylation levels of the SCD1 gene promoter and LINE-1 repeat region are associated with weight change: an intervention study. Mol Nutr Food Res. 2014;58(7):1528–36.

    Article  PubMed  Google Scholar 

  40. Talens RP, Boomsma DI, Tobi EW, Kremer D, Jukema JW, Willemsen G, et al. Variation, patterns, and temporal stability of DNA methylation: considerations for epigenetic epidemiology. FASEB J. 2010;24(9):3135–44.

    Article  CAS  PubMed  Google Scholar 

  41. Wu H-C, Wang Q, Delgado-Cruzata L, Santella RM, Terry MB. Genomic methylation changes over time in peripheral blood mononuclear cell DNA: differences by assay type and baseline values. Cancer Epidemiol Biomark Prev. 2012;21(8):1314–8.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sonsoles Morcillo.

Ethics declarations

Conflict of Interest

Sonsoles Morcillo, Manuel Macías-González, and Francisco J. Tinahones declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

All reported studies/experiments with human or animal subjects performed by the authors have been previously published and complied with all applicable ethical standards (including the Helsinki Declaration and its amendments, institutional/national research committee standards, and international/national/institutional guidelines).

Additional information

This article is part of the Topical Collection on Lipid and Metabolic Effects of Gastrointestinal Surgery

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morcillo, S., Macías-González, M. & Tinahones, F.J. The Effect of Metabolic and Bariatric Surgery on DNA Methylation Patterns. Curr Atheroscler Rep 19, 40 (2017). https://doi.org/10.1007/s11883-017-0676-8

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11883-017-0676-8

Keywords

Navigation