Skip to main content
Log in

The Different Facets of Dyslipidemia and Hypertension in Atherosclerosis

  • Lipid and Metabolic Effects of Gastrointestinal Surgery (R. Cohen, Section Editor)
  • Published:
Current Atherosclerosis Reports Aims and scope Submit manuscript

Abstract

Atherosclerosis is the narrowing of arteries due to the accumulation of macrophages overloaded with lipids resulting in foam cell formation, and these events occur preferentially at the branching points of arteries which are particularly susceptible to hyperlipidemic stress-induced inflammation and oxidative stress. The different stages of atherogenesis rely on oxidative stress, endothelial dysfunction, and inflammation, and hypertension or dyslipidemia can independently trigger these stages. Dyslipidemia and hypertension are pathological conditions that damage the endothelium, triggering cell proliferation, vascular remodeling, apoptosis, and increased cellular permeability with increased adhesion molecules that bind monocytes and T lymphocytes to create a vicious cocktail of pathophysiological factors. Correspondingly, the factors are redirected by chemo-attractants and pro-inflammatory cytokines into the intima of the vasculature, where monocytes differentiate into macrophages taking up oxidized LDL uncontrollably to form foam cells and atherosclerotic lesions. Moreover, endothelial damage also causes loss of vasomotor activity, disproportionate vascular contractility, and elevation of blood pressure in dyslipidemic patients, while in hypertensive patients, further elevation of blood pressure occurs, creating a self-perpetuating vicious cycle that aggravates the development and progression of atherosclerotic lesions. This review offers an in-depth analysis of atherosclerosis and the related interplay between dyslipidemia/hypertension and critically appraises the current diagnosis, etiology, and therapeutic options.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Selvin E, Coresh J, Shahar E, Zhang L, Steffes M, Sharrett AR. Glycaemia (haemoglobin A1c) and incident ischaemic stroke: the Atherosclerosis Risk in Communities (ARIC) Study. The Lancet Neurology. 2005;4(12):821–6.

    Article  CAS  PubMed  Google Scholar 

  2. Libby P. Inflammation in atherosclerosis. Nature. 2002;420(6917):868–74.

    Article  CAS  PubMed  Google Scholar 

  3. Zarins CK, Giddens DP, Bharadvaj BK, Sottiurai VS, Mabon RF, Glagov S. Carotid bifurcation atherosclerosis. Quantitative correlation of plaque localization with flow velocity profiles and wall shear stress. Circ Res. 1983;53(4):502–14.

    Article  CAS  PubMed  Google Scholar 

  4. Liu C, Guo Q, Lu M, Li Y. An experimental study on amelioration of dyslipidemia-induced atherosclesis by Clematichinenoside through regulating Peroxisome proliferator-activated receptor-alpha mediated apolipoprotein A-I, A-II and C-III. Eur J Pharmacol. 2015;761:362–74.

    Article  CAS  PubMed  Google Scholar 

  5. Ambale Venkatesh B, Volpe GJ, Donekal S, et al. Association of longitudinal changes in left ventricular structure and function with myocardial fibrosis: the Multi-Ethnic Study of Atherosclerosis study. Hypertension. 2014;64(3):508–15.

    Article  CAS  PubMed  Google Scholar 

  6. Cochain C, Zernecke A. Macrophages and immune cells in atherosclerosis: recent advances and novel concepts. Basic Res Cardiol. 2015;110(4):34.

    Article  PubMed  Google Scholar 

  7. Atabek ME, Akyurek N, Eklioglu BS, Alp H. Impaired systolic blood dipping and nocturnal hypertension: an independent predictor of carotid intima-media thickness in type 1 diabetic patients. J Diabetes Complicat. 2014;28(1):51–5.

    Article  PubMed  Google Scholar 

  8. Pan WH, Bai CH, Chen JR, Chiu HC. Associations between carotid atherosclerosis and high factor VIII activity, dyslipidemia, and hypertension. Stroke. 1997;28(1):88–94.

    Article  CAS  PubMed  Google Scholar 

  9. Reina SA, Llabre MM, Allison MA, et al. HDL cholesterol and stroke risk: the multi-ethnic study of atherosclerosis. Atherosclerosis. 2015;243(1):314–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. •• Rozanski A, Gransar H, Shaw L, et al. Comparison of the atherosclerotic burden among asymptomatic patients vs matched volunteers. J Nucl Cardiol. 2011;18(2):291–8. This paper underscores problems associated with diagnosis of atherosclerosis, especially in asymptomatic patients. By using coronary artery calcium (CAC) scanning, the authors showed that asymptomatic patients referred for cardiac stress testing manifested some degree of atherosclerosis.

  11. Duman S. Rational approaches to the treatment of hypertension: diet. Kidney Int Suppl. 2013;3(4):343–5.

    Article  CAS  Google Scholar 

  12. Kim HY, Choi JH. How to utilize coronary computed tomography angiography in the treatment of coronary artery disease. J Cardiovasc Ultrason. 2015;23(4):204–8.

    Article  Google Scholar 

  13. Niccoli G, Cin D, Scalone G, et al. Lipoprotein (a) is related to coronary atherosclerotic burden and a vulnerable plaque phenotype in angiographically obstructive coronary artery disease. Atherosclerosis. 2016;246:214–20.

    Article  CAS  PubMed  Google Scholar 

  14. Chung DW, Chen J, Ling M, et al. High density lipoprotein modulates thrombosis by preventing von Willebrand factor self-association and subsequent platelet adhesion. Blood. 2016 127:637–45.

  15. Kolski B, Tsimikas S. Emerging therapeutic agents to lower lipoprotein (a) levels. Curr Opin Lipidol. 2012;23(6):560–8.

    Article  CAS  PubMed  Google Scholar 

  16. Guerra R, Yu Z, Marcovina S, Peshock R, Cohen JC, Hobbs HH. Lipoprotein(a) and apolipoprotein(a) isoforms: no association with coronary artery calcification in the Dallas Heart Study. Circulation. 2005;111(12):1471–9.

    Article  CAS  PubMed  Google Scholar 

  17. Boerwinkle E, Leffert CC, Lin J, Lackner C, Chiesa G, Hobbs HH. Apolipoprotein(a) gene accounts for greater than 90% of the variation in plasma lipoprotein(a) concentrations. J Clin Invest. 1992;90(1):52–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Clarke R, Peden JF, Hopewell JC, et al. Genetic variants associated with Lp(a) lipoprotein level and coronary disease. N Engl J Med. 2009;361(26):2518–28.

    Article  CAS  PubMed  Google Scholar 

  19. Arsenault BJ, Boekholdt SM, Dube MP, et al. Lipoprotein(a) levels, genotype, and incident aortic valve stenosis: a prospective Mendelian randomization study and replication in a case–control cohort. Circ Cardiovasc Genet. 2014;7(3):304–10.

    Article  CAS  PubMed  Google Scholar 

  20. Utermann G. Genetic architecture and evolution of the lipoprotein(a) trait. Curr Opin Lipidol. 1999;10(2):133–41.

    Article  CAS  PubMed  Google Scholar 

  21. • Sorokin A, Kotani K. Lipoprotein(a) and arterial stiffness parameters. Pulse. 2015;3(2):148–52. The authors reported a positive association between lipoprotein(a) and arterial stiffness following the measurement of ‘pulse wave velocity’ and ‘cardio-ankle vascular index’, and suggested that lipoprotein(a) could be used a non-invasive bio-marker of atherosclerosis.

  22. Sponder M, Fritzer-Szekeres M, Marculescu R, Litschauer B, Strametz-Juranek J. A new coronary artery disease grading system correlates with numerous routine parameters that were associated with atherosclerosis: a grading system for coronary artery disease severity. Vasc Health Risk Manag. 2014;10:641–7.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Libby P, Theroux P. Pathophysiology of coronary artery disease. Circulation. 2005;111(25):3481–8.

    Article  PubMed  Google Scholar 

  24. Moore RD, Jackson JC, Venkatesh SL, Quarfordt SD, Baxter BW. Revisiting the NIH Stroke Scale as a screening tool for proximal vessel occlusion: can advanced imaging be targeted in acute stroke? J NeuroIntervent Surg. 2016. doi:10.1136/neurintsurg-2015-012088.

  25. Schainfeld RM. Management of peripheral arterial disease and intermittent claudication. The Journal of the American Board of Family Practice/American Board of Family Practice. 2001;14(6):443–50.

    CAS  Google Scholar 

  26. Espinola-Klein C, Rupprecht HJ, Blankenberg S, et al. Impact of infectious burden on extent and long-term prognosis of atherosclerosis. Circulation. 2002;105(1):15–21.

    Article  PubMed  Google Scholar 

  27. Luczak M, Formanowicz D, Marczak L, et al. Deeper insight into chronic kidney disease-related atherosclerosis: comparative proteomic studies of blood plasma using 2DE and mass spectrometry. J Transl Med. 2015;13:20.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Schroeder B, Francis G, Leipsic J, Heilbron B, John Mancini GB, Taylor CM. Early atherosclerosis detection in asymptomatic patients: a comparison of carotid ultrasound, coronary artery calcium score, and coronary computed tomography angiography. Can J Cardiol. 2013;29(12):1687–94.

    Article  PubMed  Google Scholar 

  29. Verjans JW, Jaffer FA. Biological imaging of atherosclerosis: moving beyond anatomy. J Cardiovasc Transl Res. 2013;6(5):681–94.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Finn AV, Nakano M, Narula J, Kolodgie FD, Virmani R. Concept of vulnerable/unstable plaque. Arterioscler Thromb Vasc Biol. 2010;30(7):1282–92.

    Article  CAS  PubMed  Google Scholar 

  31. Jaffer FA, Vinegoni C, John MC, et al. Real-time catheter molecular sensing of inflammation in proteolytically active atherosclerosis. Circulation. 2008;118(18):1802–9.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Gaemperli O, Saraste A, Knuuti J. Cardiac hybrid imaging. Eur Heart J Cardiovasc Imaging. 2012;13(1):51–60.

    Article  PubMed  Google Scholar 

  33. Tarkin JM, Joshi FR, Rudd JH. PET imaging of inflammation in atherosclerosis. Nat Rev Cardiol. 2014;11(8):443–57.

    Article  CAS  PubMed  Google Scholar 

  34. Pignoli P, Tremoli E, Poli A, Oreste P, Paoletti R. Intimal plus medial thickness of the arterial wall: a direct measurement with ultrasound imaging. Circulation. 1986;74(6):1399–406.

    Article  CAS  PubMed  Google Scholar 

  35. Nissen SE, Yock P. Intravascular ultrasound: novel pathophysiological insights and current clinical applications. Circulation. 2001;103(4):604–16.

    Article  CAS  PubMed  Google Scholar 

  36. Safar ME. Arterial aging—hemodynamic changes and therapeutic options. Nat Rev Cardiol. 2010;7(8):442–9.

    Article  PubMed  Google Scholar 

  37. Agbor-Etang BB, Setaro JF. Management of hypertension in patients with ischemic heart disease. Curr Cardiol Rep. 2015;17(12):119.

    Article  PubMed  Google Scholar 

  38. Silva PM, Cardoso SM, Ferreira AM. Persistent lipid abnormalities in patients with hypertension and dyslipidemia treated with statins: results of the Portuguese hypertensive subpopulation of the Dyslipidemia International Study (DYSIS). Clin Exp Hypertens. 2015;37(2):116–21.

    Article  CAS  PubMed  Google Scholar 

  39. Huang Q, Qin L, Dai S, et al. AIP1 suppresses atherosclerosis by limiting hyperlipidemia-induced inflammation and vascular endothelial dysfunction. Arterioscler Thromb Vasc Biol. 2013;33(4):795–804.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kassan M, Galan M, Partyka M, et al. Endoplasmic reticulum stress is involved in cardiac damage and vascular endothelial dysfunction in hypertensive mice. Arterioscler Thromb Vasc Biol. 2012;32(7):1652–61.

    Article  CAS  PubMed  Google Scholar 

  41. Ndisang JF, Wang R. Novel therapeutic strategies for impaired endothelium-dependent vascular relaxation. Expert Opin Ther Patents. 2002;12(8):1237–47.

    Article  CAS  Google Scholar 

  42. Ndisang JF, Wang R. Alterations in heme oxygenase/carbon monoxide system in pulmonary arteries in hypertension. Exp Biol Med. 2003;228(5):557–63.

    CAS  Google Scholar 

  43. Ndisang JF, Wang R. Age-related alterations in soluble guanylyl cyclase and cGMP pathway in spontaneously hypertensive rats. J Hypertens. 2003;21(6):1117–24.

    Article  CAS  PubMed  Google Scholar 

  44. Ndisang JF, Jadhav A. Heme-arginate suppresses phospholipase C and oxidative stress in the mesenteric arterioles of mineralcorticoid-induced hypertensive rats. Hypertens Res. 2010;33(4):338–47.

    Article  CAS  PubMed  Google Scholar 

  45. Yang HY, Bian YF, Zhang HP, et al. LOX1 is implicated in oxidized low-density lipoprotein-induced oxidative stress of macrophages in atherosclerosis. Mol Med Rep. 2015;12(4):5335–41.

    CAS  PubMed  Google Scholar 

  46. Peire MA, Puig-Parellada P. Oxygen-free radicals and nitric oxide are involved in the thrombus growth produced by iontophoresis of ADP. Pharmacol Res. 1998;38(5):353–6.

    Article  CAS  PubMed  Google Scholar 

  47. Droge W. Free radicals in the physiological control of cell function. Physiol Rev. 2002;82(1):47–95.

    Article  CAS  PubMed  Google Scholar 

  48. Libby P, Ridker PM, Maseri A. Inflammation and atherosclerosis. Circulation. 2002;105(9):1135–43.

    Article  CAS  PubMed  Google Scholar 

  49. Endtmann C, Ebrahimian T, Czech T, et al. Angiotensin II impairs endothelial progenitor cell number and function in vitro and in vivo: implications for vascular regeneration. Hypertension. 2011;58(3):394–403.

    Article  CAS  PubMed  Google Scholar 

  50. Landmesser U, Drexler H. The clinical significance of endothelial dysfunction. Curr Opin Cardiol. 2005;20(6):547–51.

    Article  PubMed  Google Scholar 

  51. Bonetti PO, Lerman LO, Napoli C, Lerman A. Statin effects beyond lipid lowering—are they clinically relevant? Eur Heart J. 2003;24(3):225–48.

    Article  CAS  PubMed  Google Scholar 

  52. Cholesterol Treatment Trialists C, Baigent C, Blackwell L, et al. Efficacy and safety of more intensive lowering of LDL cholesterol: a meta-analysis of data from 170,000 participants in 26 randomised trials. Lancet. 2010;376(9753):1670–81.

    Article  Google Scholar 

  53. de Denus S, Spinler SA, Miller K, Peterson AM. Statins and liver toxicity: a meta-analysis. Pharmacotherapy. 2004;24(5):584–91.

    Article  PubMed  Google Scholar 

  54. Nickenig G, Stablein A, Wassmann S, Wyen C, Muller C, Bohm M. Acute effects of ACE inhibition on coronary endothelial dysfunction. J Renin Angiotensin Aldosterone Syst. 2000;1(4):361–4.

    Article  CAS  PubMed  Google Scholar 

  55. Yamamoto K, Ozaki H, Takayasu K, et al. The effect of losartan and amlodipine on left ventricular diastolic function and atherosclerosis in Japanese patients with mild-to-moderate hypertension (J-ELAN) study. Hypertens Res. 2011;34(3):325–30.

    Article  CAS  PubMed  Google Scholar 

  56. Napoli C, Bruzzese G, Ignarro LJ, et al.: Long-term treatment with sulfhydryl angiotensin-converting enzyme inhibition reduces carotid intima-media thickening and improves the nitric oxide/oxidative stress pathways in newly diagnosed patients with mild to moderate primary hypertension. American Heart Journal 2008, 156(6):1154 e1151-1158.

  57. Sonoda M, Aoyagi T, Takenaka K, Uno K, Nagai R. A one-year study of the antiatherosclerotic effect of the angiotensin-II receptor blocker losartan in hypertensive patients. A comparison with angiotension-converting enzyme inhibitors. Int Heart J. 2008;49(1):95–103.

    Article  CAS  PubMed  Google Scholar 

  58. Strawn WB, Chappell MC, Dean RH, Kivlighn S, Ferrario CM. Inhibition of early atherogenesis by losartan in monkeys with diet-induced hypercholesterolemia. Circulation. 2000;101(13):1586–93.

    Article  CAS  PubMed  Google Scholar 

  59. Tepe G, Laird J, Schneider P, et al. Drug-coated balloon versus standard percutaneous transluminal angioplasty for the treatment of superficial femoral and popliteal peripheral artery disease: 12-month results from the IN.PACT SFA randomized trial. Circulation. 2015;131(5):495–502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Siracuse JJ, Giles KA, Pomposelli FB, et al. Results for primary bypass versus primary angioplasty/stent for intermittent claudication due to superficial femoral artery occlusive disease. J Vasc Surg. 2012;55(4):1001–7.

    Article  PubMed  PubMed Central  Google Scholar 

  61. • McTaggart RA, Marks MP. The case for angioplasty in patients with symptomatic intracranial atherosclerosis. Front Neurol. 2014;5:36. This article describes the role of endovascular treatment of intracranial atherosclerotic disease with primary intracranial angioplasty in selected patients.

  62. Baur LA, Hazelton B, Shrewsbury VA. Assessment and management of obesity in childhood and adolescence. Nat Rev Gastroenterol Hepatol. 2011;8(11):635–45.

    Article  CAS  PubMed  Google Scholar 

  63. Chen MM, O’Halloran EB, Ippolito JA, Choudhry MA, Kovacs EJ. Alcohol potentiates postburn remote organ damage through shifts in fluid compartments mediated by bradykinin. Shock. 2015;43(1):80–4.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Kumari S, Mittal A, Dabur R. Moderate alcohol consumption in chronic form enhances the synthesis of cholesterol and C-21 steroid hormones, while treatment with Tinospora cordifolia modulate these events in men. Steroids. 2016;114:68–77.

  65. Solak ZA, Kabaroglu C, Cok G, et al. Effect of different levels of cigarette smoking on lipid peroxidation, glutathione enzymes and paraoxonase 1 activity in healthy people. Clin Exp Med. 2005;5(3):99–105.

    Article  CAS  PubMed  Google Scholar 

  66. Sotos-Prieto M, Bhupathiraju SN, Mattei J, et al. Changes in diet quality scores and risk of cardiovascular disease among US men and women. Circulation. 2015;132(23):2212–9.

    Article  CAS  PubMed  Google Scholar 

  67. Joint WHO/FAO Expert Consultation on Diet NatPoCD: Diet, nutrition and the prevention of chronic diseases. Report of a joint WHO/FAO expert consultation. Geneva, Switzerland 2003, 916:104–117.

  68. Jankovic N, Geelen A, Streppel MT, et al. WHO guidelines for a healthy diet and mortality from cardiovascular disease in European and American elderly: the CHANCES project. Am J Clin Nutr. 2015;102(4):745–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Ghayur MN, Janssen LJ. A natural way to cardiovascular health. Nat Rev Cardiol. 2010;7(3):1–2.

    Article  PubMed  Google Scholar 

  70. Urpi-Sarda M, Casas R, Chiva-Blanch G, et al. Virgin olive oil and nuts as key foods of the Mediterranean diet effects on inflammatory biomarkers related to atherosclerosis. Pharmacol Res. 2012;65(6):577–83.

    Article  CAS  PubMed  Google Scholar 

  71. Hansen D, Dendale P, van Loon LJ, Meeusen R. The impact of training modalities on the clinical benefits of exercise intervention in patients with cardiovascular disease risk or type 2 diabetes mellitus. Sports Med. 2010;40(11):921–40.

    Article  PubMed  Google Scholar 

  72. Lenk K, Uhlemann M, Schuler G, Adams V. Role of endothelial progenitor cells in the beneficial effects of physical exercise on atherosclerosis and coronary artery disease. J Appl Physiol. 2011;111(1):321–8.

    Article  PubMed  Google Scholar 

  73. Thompson PD, Buchner D, Pina IL, et al. Exercise and physical activity in the prevention and treatment of atherosclerotic cardiovascular disease: a statement from the Council on Clinical Cardiology (Subcommittee on Exercise, Rehabilitation, and Prevention) and the Council on Nutrition, Physical Activity, and Metabolism (Subcommittee on Physical Activity). Circulation. 2003;107(24):3109–16.

    Article  PubMed  Google Scholar 

  74. Press V, Freestone I, George CF. Physical activity: the evidence of benefit in the prevention of coronary heart disease. QJM: monthly journal of the Association of Physicians. 2003;96(4):245–51.

    Article  CAS  PubMed  Google Scholar 

  75. Ndisang JF, Wang R, Vannacci A, et al. Haeme oxygenase-1 and cardiac anaphylaxis. Br J Pharmacol. 2001;134(8):1689–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Ndisang JF, Mishra M. The heme oxygenase system selectively suppresses the proinflammatory macrophage m1 phenotype and potentiates insulin signaling in spontaneously hypertensive rats. Am J Hypertens. 2013;26(9):1123–31.

    Article  CAS  PubMed  Google Scholar 

  77. Ndisang JF, Chibbar R. Heme oxygenase improves renal function by potentiating podocyte-associated proteins in N omega-nitro-l-arginine-methyl ester (l-NAME)-induced hypertension. Am J Hypertens. 2015;28(7):930–42.

    Article  PubMed  Google Scholar 

  78. Ndisang JF, Chibbar R, Lane N. Heme oxygenase suppresses markers of heart failure and ameliorates cardiomyopathy in L-NAME-induced hypertension. Eur J Pharmacol. 2014;734:23–34.

    Article  CAS  PubMed  Google Scholar 

  79. Ndisang JF, Jadhav A. Upregulating the heme oxygenase system suppresses left ventricular hypertrophy in adult spontaneously hypertensive rats for 3 months. J Card Fail. 2009;15(7):616–28.

    Article  CAS  PubMed  Google Scholar 

  80. Ndisang JF, Jadhav A. Heme arginate therapy enhanced adiponectin and atrial natriuretic peptide, but abated endothelin-1 with attenuation of kidney histopathological lesions in mineralocorticoid-induced hypertension. J Pharmacol Exp Ther. 2010;334(1):87–98.

    Article  CAS  PubMed  Google Scholar 

  81. Ndisang JF, Jadhav A. Hemin therapy suppresses inflammation and retroperitoneal adipocyte hypertrophy to improve glucose metabolism in obese rats co-morbid with insulin-resistant type-2 diabetes. Diabetes Obes Metab. 2013;15(11):1029–39.

    Article  CAS  PubMed  Google Scholar 

  82. Ndisang JF, Jadhav A. Hemin therapy improves kidney function in male streptozotocin-induced diabetic rats: role of the heme oxygenase/atrial natriuretic peptide/adiponectin axis. Endocrinology. 2014;155(1):215–29.

    Article  PubMed  Google Scholar 

  83. Ndisang JF, Jadhav A, Mishra M. The heme oxygenase system suppresses perirenal visceral adiposity, abates renal inflammation and ameliorates diabetic nephropathy in Zucker diabetic fatty rats. PLoS One. 2014;9(1), e87936.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Ndisang JF, Lane N, Jadhav A. The heme oxygenase system abates hyperglycemia in Zucker diabetic fatty rats by potentiating insulin-sensitizing pathways. Endocrinology. 2009;150(5):2098–108.

    Article  CAS  PubMed  Google Scholar 

  85. Ndisang JF, Lane N, Jadhav A. Upregulation of the heme oxygenase system ameliorates postprandial and fasting hyperglycemia in type 2 diabetes. Am J Physiol Endocrinol Metab. 2009;296(5):E1029–41.

    Article  CAS  PubMed  Google Scholar 

  86. Ndisang JF, Lane N, Syed N, Jadhav A. Up-regulating the heme oxygenase system with hemin improves insulin sensitivity and glucose metabolism in adult spontaneously hypertensive rats. Endocrinology. 2010;151(2):549–60.

    Article  CAS  PubMed  Google Scholar 

  87. Jadhav A, Ndisang JF. Treatment with heme arginate alleviates adipose tissue inflammation and improves insulin sensitivity and glucose metabolism in a rat model of Human primary aldosteronism. Free Radic Biol Med. 2012;53(12):2277–86.

    Article  CAS  PubMed  Google Scholar 

  88. Jadhav A, Tiwari S, Lee P, Ndisang JF. The heme oxygenase system selectively enhances the anti-inflammatory macrophage-M2 phenotype, reduces pericardial adiposity, and ameliorated cardiac injury in diabetic cardiomyopathy in Zucker diabetic fatty rats. J Pharmacol Exp Ther. 2013;345(2):239–49.

    Article  CAS  PubMed  Google Scholar 

  89. Jadhav A, Ndisang JF. Heme arginate suppresses cardiac lesions and hypertrophy in deoxycorticosterone acetate-salt hypertension. Exp Biol Med (Maywood). 2009;234(7):764–78.

    Article  CAS  Google Scholar 

  90. Tiwari S, Ndisang JF. Heme oxygenase system and hypertension: a comprehensive insight. Curr Pharm Des. 2014;20(9):1354–69.

    Article  CAS  PubMed  Google Scholar 

  91. Tiwari S, Ndisang JF. The heme oxygenase system and type-1 diabetes. Curr Pharm Design. 2014;20(9):1328–37.

    Article  CAS  Google Scholar 

  92. Fantuzzi G, Mazzone T. Adipose tissue and atherosclerosis: exploring the connection. Arterioscler Thromb Vasc Biol. 2007;27(5):996–1003.

    Article  CAS  PubMed  Google Scholar 

  93. Keating ST, Plutzky J, El-Osta A. Epigenetic changes in diabetes and cardiovascular risk. Circ Res. 2016;118(11):1706–22.

    Article  CAS  PubMed  Google Scholar 

  94. Kwak BR, Back M, Bochaton-Piallat ML, et al. Biomechanical factors in atherosclerosis: mechanisms and clinical implications. Eur Heart J 2014, 35(43):3013–3020, 3020a-3020d.

  95. Kusters DM, Vissers MN, Wiegman A, Kastelein JJ, Hutten BA. Treatment of dyslipidaemia in childhood. Expert Opin Pharmacother. 2010;11(5):739–53.

    Article  CAS  PubMed  Google Scholar 

  96. Liu J, Ren Y, Kang L, Zhang L. Overexpression of CCN3 inhibits inflammation and progression of atherosclerosis in apolipoprotein E-deficient mice. PLoS One. 2014;9(4), e94912.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Abraham NG, Junge JM, Drummond GS. Translational significance of heme oxygenase in obesity and metabolic syndrome. Trends Pharmacol Sci. 2016;37(1):17–36.

    Article  CAS  PubMed  Google Scholar 

  98. Pechlaner R, Willeit P, Summerer M, et al. Heme oxygenase-1 gene promoter microsatellite polymorphism is associated with progressive atherosclerosis and incident cardiovascular disease. Arterioscler Thromb Vasc Biol. 2015;35(1):229–36.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgemnts

This work was supported by a grant from the Heart & Stroke Foundation of Saskatchewan, Canada, to Dr. Joseph Fomusi Ndisang.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph Fomusi Ndisang.

Ethics declarations

Conflict of Interest

Jessica Hurtubise, Krystie McLellan, Kevin Durr, Oluwadara Onasanya, Daniel Nwabuko, and Joseph Fomusi Ndisang declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Jessica Hurtubise and Krystie McLellan are co-first authors.

Topical Collection on Lipid and Metabolic Effects of Gastrointestinal Surgery

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hurtubise, J., McLellan, K., Durr, K. et al. The Different Facets of Dyslipidemia and Hypertension in Atherosclerosis. Curr Atheroscler Rep 18, 82 (2016). https://doi.org/10.1007/s11883-016-0632-z

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11883-016-0632-z

Keywords

Navigation